
System Dynamics (22.554 & 24.509)

V. Modeling and Simulating Dynamic Systems with Matlab/Simulink

Introduction

We have already seen some of the capabilities of Matlab for matrix manipulation and linear

algebra operations. In addition, some simple time-domain dynamic simulations of low-order

state-space models have been performed. Although our primary focus is on the general state-

space matrix formulation, several alternate representations are possible, and Matlab makes it easy

to convert between various representations. It also has functions for simulation and plotting in

both the time and frequency domains. A summary of the various representations of linear time

invariant systems within Matlab is given in Fig. 5.1. Note that both discrete and continuous

systems can be modeled with analogous treatments, and that the conversion of continuous to

discrete form (or vice versa) is possible at the state space level. In this section of notes, many of

the operations indicated in Fig. 5.1 for continuous systems are illustrated via examples. The

reader should see Tables 5.1 and 5.2 at the end of this section for a series of three sample input-

output sessions in Matlab. These tables contain listings of modeldemo1/2/3.m and

modeldemo1/2/3.out, respectively (the diary files have been edited slightly for presentation

here). The physical model treated in this example is described below.

Consider, for example, a simple mass-spring-dashpot mechanical system that can be described by

the following force balance,

m
d

dt
y t c

d

dt
y t ky t u t

2

2
() () () ()+ + = (5.1)

Fig. 5.1 Model conversion relationships in Matlab.

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

2

where y(t) is the instantaneous displacement of the system from equilibrium, and k and c are

proportionality constants that describe the spring and dashpot properties, respectively. As we

have seen in previous assignments, this system can be put into state matrix form by letting x1 = y

and x2 = dy/dt, giving

 1 1 1

2 2 2

d x x x0 1 0
u(t) and y(t) 1 0

x x xk m c m 1 mdt

        
= + =        − −        

 (5.2)

where the A B C and D, , , matrices associated with the standard state space format for linear time

invariant systems are given by direct comparison with the general equations,

d

dt
x Ax Bu and y Cx Du= + = + (5.3)

Time Domain Simulation

Once the defining matrices are available and an LTI object has been defined, time domain

simulations are particularly simple using three different Matlab functions, impulse, step, and

lsim. These functions for the simulation of a state space system have already been introduced in

Section III. For example, the sequence for an arbitrary input function could be written as

sys = ss(A,B,C,D), [Y,T,X] = lsim(sys,U,t,xo)

There are special forms that can be used in certain applications and the requirements on the

format of certain elements (such as the input U matrix in the lsim function) may not be

completely obvious, so careful use of the functions is required. Also note that the impulse, step,

and lsim commands can be used with the transfer function form of a system [where the LTI

object is defined via sys = tf(num,den) -- as already discussed in Section IV]. Therefore, in

general, because of the number of possibilities that exist, it is good practice for the user to

consult Matlab's help files for a complete description of each function. As a typical example, the

impulse and step functions are used to show the time domain behavior of the mass-spring-

dashpot system modeled in the Matlab sample session at the end of this section (see Figs. 5.2 and

5.3 and Tables 5.1 and 5.2).

Model Conversion

The transfer function representation of systems has also been described in some detail. In the

state-space formulation, one has

Y s G s U s() () ()= (5.4)

where the system transfer function matrix is given as

G s C sI A B D() = − +
−1

 (5.5)

Performing the indicated matrix operations for the single input-single output (SISO) mechanical

system described above gives a single scalar transfer function,

2

1
G(s)

ms cs k
=

+ +
 (5.6)

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

3

Note that this could also be easily derived from the original second-order differential equation.

In general, however, multiple input-multiple output (MIMO) systems are quite tedious to work

with algebraically, and the model conversion functions in Matlab are quite useful in this regard.

In particular, the conversions from state-space form to transfer function form (and vice versa)

and from the transfer function form to zero-pole-gain form are very useful. With the LTI object

representation in Matlab, these conversions are quite straightforward. The ss, tf, and zpk

commands easily convert among the various forms. The Matlab functions to do the conversions

suggested above are

sys1 = ss(A,B,C,D), sys2 = tf(sys1), sys3 = zpk(sys2)

One can also extract the information stored within the data structure associated with a particular

LTI object with the ssdata, tfdata, and zpkdata commands, or by direct structure-like

referencing. For example, the command, [num,den] = tfdata(sys2), returns the numerators and

denominators of the LTI object sys2. num and den are cell arrays with as many rows as outputs

and as many columns as inputs, and their i,j entries specify the transfer function from input j to

output i. Each element of the cell array is a vector that contains the coefficients of the numerator

or denominator polynomial in s, in order of decreasing powers of s. Note that the sys2 object is

first converted to a transfer function object if necessary.

An alternate approach would be to extract the individual cell arrays directly from the data

structure and then display it using Matlab’s celldisp command and/or perform other

manipulations as desired. The sequence for simply displaying the data could be accomplished

with the following commands:

fieldnames(sys2)

num1 = sys2.num, den1 = sys2.den

celldisp(num1), celldisp(den1)

Note also that, if we desire to actually extract the numerical data from the cell array into a

numeric variable, we need to use the curly brackets, { }, within the command. For example, to

extract the numerical data for the 1,1 element of the transfer function matrix, we have

nnum1 = num1{1,1}, nden1 = den1{1,1}

where num1 and den1 are cells arrays (from the above example) and nnum1 and nden1 are

numeric arrays containing the coefficients of the numerator and denominator polynomials for the

desired element of the transfer function matrix. Note that using cden1 = den1(1,1) returns a cell

array in the cden1 variable. Thus, the use of curly brackets, { }, returns numeric values, and the

use of the normal parentheses, (), returns a cell structure when addressing a particular element

of a cell array.

Similar manipulations can be performed with the zero-pole-gain representation. In particular, the

command, [Z,P,K] = zpkdata(sys3), returns the zeros, poles, and gain for each IO channel of the

LTI system sys3. The Z and P cell arrays and the K matrix have as many rows as outputs and as

many columns as inputs, and their i,j entries specify the zeros, poles, and gain of the transfer

function from input j to output i.

In the case of the single-input single-output system (SISO) given in the current example, the

transfer function and zero-pole-gain form simplify to the common representation given by

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

4

()()

()()()
1 2

1 2 3

s z s znum(s)
G(s) K

den(s) s p s p s p

− −
 

− − −
 (5.7)

The help files for the various Matlab commands mentioned above should be consulted for further

details in using these functions and also on the several related functions that are available. Also

the user should be cautioned that model conversion for large systems is a tricky business because

of potential numerical difficulties -- so make sure that the results are reasonable before

continuing. The Matlab sample session listed in Tables 5.1 and 5.2 illustrates several conversion

routines for the current SISO mechanical system example.

Residue or Partial Fraction Form

In many cases, one may also be interested in reducing a ratio of polynomials in s to the partial

fraction expansion form. For example, G(s) for the SISO mechanical system can be written as

1 2

2 1 2

r rB(s) 1 m
G(s) k(s)

c kA(s) s p s p
s s

m m

= = = + +
− −

+ +

 (5.8)

where, in this case,

p
c c mk

m
1 2

2 4

2
, =

−  −
 (5.9)

and r1 and r2 can be computed using a variety of methods [and k(s) = 0]. For problems of this

type, Matlab has the residue function, [r,p,k] = residue(B,A), where B and A are row vectors

containing the polynomial coefficients and r and p are column vectors containing the residues

and poles, respectively. k(s) is only defined if the order of B(s) is greater than that of A(s),

which is not the usual case for the analysis of linear systems.

Frequency Domain Simulation

Performing frequency domain simulations is conceptually straightforward, but they can be

computationally intensive. In practice, one simply evaluates the expression,

G j C j I A B D() = − +
−1

 (5.10)

for several values of  and then usually plots the data in one of three ways -- using Bode,

Nichols, or Nyquist plots. In Matlab, some preconditioning of the matrices is performed for

increased computational efficiency, but this work is transparent to the user.

Matlab has several functions for obtaining frequency domain signatures. The first step is to

generate a vector of frequencies. This is usually done so that the points are logarithmically

spaced between decades 10d1 and 10d2 with a total of n points with w = logspace(d1,d2,n). The

bode or nyquist functions can then be used to evaluate G j() at each frequency point,

[MAG,PHASE] = bode(sys,w)

or

[RE,IM] = nyquist(sys,w)

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

5

If sys has NU inputs and NY outputs and LW = length(w), MAG and PHASE are NYNULW

arrays and the response at the frequency w(k) is given by MAG(:,:,k) and PHASE(:,:,k). A

similar description of the nyquist output can be obtained from the Matlab help files. The MAG

variable is the magnitude of the transfer function in absolute units, and the Matlab command

MAGDB = 20*log10(MAG) converts it into decibels.

Finally, with the frequency response data available, one can construct various frequency response

plots using Matlab's standard plot functions. Also note that Matlab will automatically generate

the desired plots if there are no left hand side arguments in the function call. This often gives a

better plot with a lot less work. For example, the frequency response for the SISO mass-spring-

dashpot system is computed and graphed as part of the Matlab sample session given in Table 5.1.

A comparison of the time domain responses in Figs. 5.2 and 5.3 (impulse and step responses) and

the various frequency domain signatures in Figs. 5.4 to 5.6 (Bode, Nichols, and Nyquist plots)

can help identify characteristic features that are common for typical second-order systems.

Block Diagrams/Model Building

Many real systems that are comprised of several components and feedback loops are given in

block diagram form. It can often be quite tedious to find equivalent system representations,

G s() , and the corresponding state-space matrices, A B C and D, , , via hand manipulation. But, as

usual, we can use Matlab to help build the state-space representation from the block diagram

form (although this is really a rather advanced feature of the Matlab system and numerical

difficulties can occur). One can do this in Matlab using a variety of commands within the

Control Toolbox or you can use the Simulink graphical interface for modeling systems.

To illustrate these processes, we will work with the simple mechanical system example given

above. Let's first put this system in block diagram form, and then we can automatically recreate

the original state space and overall transfer function forms as a test of the model building

capabilities in Matlab and Simulink. Expanding the state-space equations and taking the Laplace

transform of the individual equations gives

d

dt
x x X s

s
X s1 2 1 2

1
= =() ()

d

dt
x

k

m
x

c

m
x

m
u X s

k m

s c m
X s

m

s c m
U s2 1 2 2 1

1 1
= − − + =

−

+
+

+
() () ()

From the Laplace transform equations, it is easy to represent individual blocks, as follows:

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

6

Now connecting these blocks and noting that the desired output is Y(s) = X1(s), gives

X2(s) X1(s)
1

Y(s)Sum

k/m

s+c/m

G3(s)

1

s

G2(s)

1/m

s+c/m

G1(s)

1

U(s)

Some minimal block diagram arithmetic (a feedback part in series with the first block) gives the

overall transfer function between Y(s) and U(s), where the resultant G(s) is the same as before

[see eqn. (5.6)].

The Old Way (using command-based code)

Now the challenge is to get Matlab to take this overall system block diagram and automatically

generate the state space and global transfer function representations. The Control Toolbox has a

number of functions that can be used to accomplish this task. Although each case can be treated

differently, there are five basic steps in this procedure, as follows:

1. The first step is to define the individual transfer functions for each block (numbered 1, 2, 3,

..., nblocks). In this simple example we have three blocks where each transfer function is

defined as the ratio Nn(s)/Dn(s). For this case one can define the following transfer functions

(see Tables 5.1 and 5.2 for the actual Matlab representation):

n m d s c m d s k m d s c m1 1 1 2 1 2 3 3= = + = = = = +& & & n n

2. We then build an unconnected state-space model by repeated calls to Matlab's tf and append

commands, as needed. For example, we can append blocks 1, 2 and 3 to give an

‘unconnected’ system with the following commands:

sys1 = tf(n1,d1), sys2 = tf(n2,d2), sys3 = tf(n3,d3)

sysuct = append(sys1,sys2,sys3), sysucs = ss(sysuct)

which gives the system

1 11 1 1

2 2 22 2

3 3 3
3 3

1 1 11 1

2 2222

3 3
333

A 0 0 B 0 0x x u
d

x 0 A 0 x 0 B 0 u
dt

x x u0 0 A 0 0 B

y C 0 0 D 0 0x u

y 0 C 0 x 0 D 0 u

x u0 0 D0 0 Cy

        
        = +        
           

        
        = +        
           

To simplify this process for the case of several system blocks, the append command can

have as many systems in the input argument list as needed.

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

7

3. The next step is to define a matrix, Q, which indicates how the individual blocks are

interconnected. The matrix Q has a row for each block. The first element in each row is the

block number and the subsequent entries contain the block numbers where the current block

gets its summing inputs (a negative block number implies a negative feedback connection).

Zeros are used as needed to fill the array so that each row has the same number of columns.

For the above example, the Q matrix would be given as

Q = [1 0 0; 2 1 -3; 3 2 0]

4. Identify the system inputs and outputs in row vectors iu and iy, respectively, where the

entries are simply the appropriate block numbers. In our example of a simple mass-spring-

dashpot system, we only have a single input [i.e. u(t)] and a single output [i.e. y(t) = x1(t)].

For this case the iu and iy vectors are identified as

iu = [1], iy = [2]

5. The final step is to simply connect the blocks as described in the Q matrix into a full state

matrix representation. The appropriate statement is

syscs = connect(sysucs,Q,iu,iy)

Performing these steps gives a state matrix formulation equivalent to the system described via the

original block diagram. Thus, the model building process is complete.

In many cases the above process does not give a minimal state space realization of the system.

This implies that there are probably some poles and zeros that can be canceled. Generally, this is

not a problem, but minimal systems are usually more efficient during time and frequency domain

simulations. Matlab has commands to remove the extra states and find a minimal realization (see

minreal). For example, for this system the proper command is

syscsm = minreal(syscs)

At this point the user has an overall state-space formulation of the original system that was in the

form of several connected MIMO blocks. The block diagram arithmetic that can often be a very

tedious undertaking has been completed automatically, resulting in a set of state-space matrices

that capture the full dynamics of the original system. One can now work with this system as

desired. In modeldemo2.m and modeldemo2.out (see Tables 5.1 and 5.2), we simply show that

conversion back into the transfer function form gives the original transfer function that we started

with; thus successfully completing this modeling demonstration. Also note that numerical

difficulties can be encountered in the model conversion process. We did not have any difficulty

with this particular example but, in general, the user should be careful to systematically evaluate

and study the resultant system behavior.

The New Way (using the Simulink graphical interface)

As a final task in this Matlab modeling demonstration, let’s build the same system as just

described, but this time we will use the Simulink graphical interface. In simple terms, Simulink

represents a graphical interface which automatically performs the append and connect

operations that we illustrated above. In fact, however, Simulink has evolved into a very powerful

modeling capability that can perform sophisticated analyses of coupled linear and nonlinear

systems within a relatively easy-to-use graphical environment.

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

8

We will briefly explore some additional Simulink capabilities at a later time. For now, the goal

is to simply build the above 3-block system within Simulink, extract the A B C and D, , , state-

space matrices from the resultant model, and illustrate that it gives the expected dynamic

response for this simple mechanical spring-mass-dashpot system.

The process starts with the graphical representation of the system in Simulink. After typing

simulink at the Matlab command line and opening a new model file, one simply drags the

appropriate blocks that are needed to represent a given system from the Simulink block library to

the workspace area. Dragging the mouse between desired blocks connects the inputs and outputs

of each block. Finally, the individual blocks are customized to contain the desired parameters for

the current simulation. The resulting graphical representation is saved as a model file (with an

slx or mdl extension) for later use within Matlab or as a standalone Simulink model.

In the current demo, the Simulink model was saved as modeldemo3_sl.slx (see footnote).

Simply typing modeldemo3_sl at the Matlab prompt displays the graphical representation of the

system (see block diagram at the top of page 6). Also, as the last step in this series of

demonstrations, modeldemo3.m gives an illustration of how to use the graphical model

embedded in modeldemo3_sl.slx. In this case we simply extract the A B C and D, , , LTI state

matrices using the linmod command,

[A,B,C,D] = linmod(‘modeldemo3_sl’)

and proceed to show that the system is identical to those generated above (see the code and diary

output listings in Tables 5.1 and 5.2 for further details). Thus, this first Simulink demo simply

shows that the Simulink graphical interface can be used for model construction as an alternative

to the append, connect, … sequence from the Control Toolbox library. Simulink, however, is

often the preferred option primarily because of its wide range of capabilities, overall flexibility,

and general ease of use.

We have now completed this brief demo illustrating some of Matlab’s modeling capabilities. In

general, the reader is encouraged to browse through the help files for many of Matlab's

interesting and useful functions and to give Simulink a try. With some experience, you will find

that the Matlab/Simulink combination is one of the best tools available for the modeling and

simulation of medium-sized dynamic systems. Feel free to experiment with some of the many

features these codes have to offer. Also, be sure to take advantage of their capabilities in some of

your other courses, as appropriate...

Note: The recent versions of Simulink allow saving the model file as a *.slx binary file or as a

*.mdl ascii file, with the *.slx format being the default and more efficient file type. These files

store all the necessary information so that Simulink can regenerate the system model within its

graphical user interface. Most of the information in these files is not particularly useful to the

general user, but you never know -- however, with the ascii-formatted *.mdl file format, it is

easily accessible if you need it for some reason…

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

9

Fig. 5.2 Impulse response of typical second order system.

Fig. 5.3 Step response of typical second order system.

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

10

Fig. 5.4 Bode plots for typical second order system.

Fig. 5.5 Nichols plots for typical second order system.

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

11

Fig. 5.6 Nyquist plots for typical second order system.

Table 5.1 Listing of Matlab files modeldemo1/2/3.m.

%

% MODELDEMO.M Sequence of Matlab sample programs that demonstrate

% various modeling and simulation techniques (both time and

% frequency domain) including a simple Simulink sample

%

% Mass-Spring-Dashpot Mechanical System

% my''(t) + cy'(t) + ky(t) = u(t)

%

% This example has been broken into three parts (3 files), as follows:

% Demo 1: simple simulation and model conversion techniques (*** this file ***)

% Demo 2: modeling of systems in block diagram form (the OLD way)

% Demo 3: modeling with Simulink (the NEW way)

%

% File prepared by J. R. White, UMass-Lowell (last update: Feb. 2020)

%

 clear all, close all, nfig = 0;

 format compact

%

% open diary file for saving solutions

 delete modeldemo1.out, diary modeldemo1.out

 disp(' *** MODELDEMO1.OUT *** Diary File for MODELDEMO1.M '), disp(' ')

%

% define coefficients for several cases

 m = 1 % kg mass

 k = 1 % kg/s^2 spring const

 c = [2.0 2.5 1.2 0.0] % kg/s critical/over/under/no damping factor

%

% create state space model for each case

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

12

 disp(' State Space Models')

 km = k/m;

 A1 = [0 1;-km -c(1)/m], A2 = [0 1;-km -c(2)/m]

 A3 = [0 1;-km -c(3)/m], A4 = [0 1;-km -c(4)/m]

 B = [0 1/m]', C = [1 0], D = [0]

 sys1s = ss(A1,B,C,D); sys2s = ss(A2,B,C,D);

 sys3s = ss(A3,B,C,D); sys4s = ss(A4,B,C,D);

%

% simulate different time domain responses (impulse & step inputs)

 t = 0:.2:15; % time vector (seconds)

%

 y1 = impulse(sys1s,t); y2 = impulse(sys2s,t);

 y3 = impulse(sys3s,t); y4 = impulse(sys4s,t);

 nfig = nfig+1; figure(nfig)

 subplot(221),plot(t,y1,'r','LineWidth',2),title('Critical Damping - Impulse'),grid

 xlabel('Time (sec)'),ylabel('System Response')

 subplot(222),plot(t,y2,'b','LineWidth',2),title('Over Damping - Impulse'),grid

 xlabel('Time (sec)'),ylabel('System Response')

 subplot(223),plot(t,y3,'g','LineWidth',2),title('Under Damping - Impulse'),grid

 xlabel('Time (sec)'),ylabel('System Response')

 subplot(224),plot(t,y4,'m','LineWidth',2),title('No Damping - Impulse'),grid

 xlabel('Time (sec)'),ylabel('System Response')

%

 y1 = step(sys1s,t); y2 = step(sys2s,t);

 y3 = step(sys3s,t); y4 = step(sys4s,t);

 nfig = nfig+1; figure(nfig)

 subplot(221),plot(t,y1,'r','LineWidth',2),title('Critical Damping - Step'),grid

 xlabel('Time (sec)'),ylabel('System Response')

 subplot(222),plot(t,y2,'b','LineWidth',2),title('Over Damping - Step'),grid

 xlabel('Time (sec)'),ylabel('System Response')

 subplot(223),plot(t,y3,'g','LineWidth',2),title('Under Damping - Step'),grid

 xlabel('Time (sec)'),ylabel('System Response')

 subplot(224),plot(t,y4,'m','LineWidth',2),title('No Damping - Step'),grid

 xlabel('Time (sec)'),ylabel('System Response')

%

% Model Conversion in Matlab

%

% For the case with m = k = 1 (numerically), the system transfer function

% for the simple mass-spring-dashpot system is given as

% G(s) = 1/[s^2 + cs + 1)] = z(s)/p(s)

% for various values of c (viscous damping factor)

%

% State-Space to Transfer Function in Matlab

 disp(' Transfer Function Form')

 sys1t = tf(sys1s), sys2t = tf(sys2s)

 sys3t = tf(sys3s), sys4t = tf(sys4s)

%

% Transfer Function to Zero-Pole in MATLAB

 disp(' Zero-Pole-Gain Form')

 sys1z = zpk(sys1t), sys2z = zpk(sys2t)

 sys3z = zpk(sys3t), sys4z = zpk(sys4t)

%

% Sometimes the Residue or Partial Fraction form is useful

% (not really in this case, but let's demonstrate it anyway)

 disp(' Residue Form')

% note that the tfdata command defines cell arrays

 [n1,d1] = tfdata(sys1t); [n2,d2] = tfdata(sys2t);

 [n3,d3] = tfdata(sys3t); [n4,d4] = tfdata(sys4t);

% let's extract the cell arrays into normal vectors for use in residue

 n1 = n1{1}, d1 = d1{1}, n2 = n2{1}, d2 = d2{1},

 n3 = n3{1}, d3 = d3{1}, n4 = n4{1}, d4 = d4{1},

% now let's use the residue command

 [r1,pr1,kr1] = residue(n1,d1), [r2,pr2,kr2] = residue(n2,d2)

 [r3,pr3,kr3] = residue(n3,d3), [r4,pr4,kr4] = residue(n4,d4)

%

% Getting Frequency Domain Plots is also easy in Matlab

%

% Bode plots

 nfig = nfig+1; figure(nfig)

 w = logspace(-2,2,400);

 subplot(2,2,1),bode(sys1s,'r',w),title('Critical Damping'),grid % ss form

 subplot(2,2,2),bode(sys2s,'b',w),title('Over Damping'),grid % ss form

 subplot(2,2,3),bode(sys3t,'g',w),title('Under Damping'),grid % tf form

 subplot(2,2,4),bode(sys4t,'m',w),title('No Damping'),grid % tf form

 h = findobj(gcf,'LineStyle','-'); nh = length(h);

 for i = 1:nh; set(h(i),'LineWidth',2); end

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

13

%

% Nichols plots (log-mag vs angle)

 nfig = nfig+1; figure(nfig)

 subplot(2,2,1),nichols(sys1s,'r',w),grid,title('Critical Damping')

 subplot(2,2,2),nichols(sys2s,'b',w),grid,title('Over Damping')

 subplot(2,2,3),nichols(sys3s,'g',w),grid,title('Under Damping')

 subplot(2,2,4),nichols(sys4s,'m',w),grid,title('No Damping')

 h = findobj(gcf,'LineStyle','-'); nh = length(h);

 for i = 1:nh; set(h(i),'LineWidth',2); end

%

% Nyquist plots (Im vs Re)

 nfig = nfig+1; figure(nfig)

 subplot(2,2,1),nyquist(sys1s,'r',w),grid,title('Critical Damping')

 subplot(2,2,2),nyquist(sys2s,'b',w),grid,title('Over Damping')

 subplot(2,2,3),nyquist(sys3s,'g',w),grid,title('Under Damping')

 subplot(2,2,4),nyquist(sys4s,'m',w),grid,title('No Damping')

 h = findobj(gcf,'LineStyle','-'); nh = length(h);

 for i = 1:nh; set(h(i),'LineWidth',2); end

%

 diary off % turn off diary file

%

% Note: Before leaving this demo, briefly illustrate the LTIVIEW command!!!

% (use File/Import to bring in the systems of interest -- then explore...)

% (note also that all the above frequency domain plots are "interactive")

 ltiview

%

% end of demo

%

% MODELDEMO.M Sequence of Matlab sample programs that demonstrate

% various modeling and simulation techniques (both time and

% frequency domain) including a simple Simulink sample

%

% Mass-Spring-Dashpot Mechanical System

% my''(t) + cy'(t) + ky(t) = u(t)

%

% This example has been broken into three parts (3 files), as follows:

% Demo 1: simple simulation and model conversion techniques

% Demo 2: modeling systems in block diagram form (the OLD way) (*** this file ***)

% Demo 3: modeling with Simulink (the NEW way)

%

% File prepared by J. R. White, UMass-Lowell (last update: Feb. 2020)

%

 clear all, close all

 format compact

%

% open diary file for saving solutions

 delete modeldemo2.out, diary modeldemo2.out

 disp(' *** MODELDEMO2.OUT *** Diary File for MODELDEMO2.M '), disp(' ')

%

% Modeling Systems Given in Block Diagram Form (The OLD Way)

%

% Define the constants for the Under Damping case

 m = 1, k = 1, c = 1.2

%

% Step 1 -- Setup individual transfer functions (see notes for block diagram)

 n1 = 1/m, d1 = [1 c/m], sys1 = tf(n1,d1);

 n2 = 1, d2 = [1 0], sys2 = tf(n2,d2);

 n3 = k/m, d3 = [1 c/m], sys3 = tf(n3,d3);

%

% Step 2 -- Build a block diagonal (unconnected) system

 sysuct = append(sys1,sys2,sys3); sysucs = ss(sysuct)

%

% Step 3 -- Specify interconnections among blocks

 q = [1 0 0;2 1 -3;3 2 0]

%

% Step 4 -- Specify inputs and outputs

 iu = [1], iy = [2]

%

% Step 5 -- Connect system together (this is the desired state-space form)

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

14

 syscs = connect(sysucs,q,iu,iy)

%

 syscsm = minreal(syscs) % find a minimal realization of SS system

 syscz = zpk(syscsm) % convert to zero, pole, gain form

 sysct = tf(syscz) % convert to transfer function form

%

 diary off % turn off diary file

%

% end of demo

%

% MODELDEMO.M Sequence of Matlab sample programs that demonstrate

% various modeling and simulation techniques (both time and

% frequency domain) including a simple Simulink sample

%

% Mass-Spring-Dashpot Mechanical System

% my''(t) + cy'(t) + ky(t) = u(t)

%

% This example has been broken into three parts (3 files), as follows:

% Demo 1: simple simulation and model conversion techniques

% Demo 2: modeling systems in block diagram form (the OLD way)

% Demo 3: modeling with Simulink (the NEW way) (*** this file ***)

%

% File prepared by J. R. White, UMass-Lowell (last update: Feb. 2020)

%

 clear all, close all

 format compact

%

% open diary file for saving solutions

 delete modeldemo3.out, diary modeldemo3.out

 disp(' *** MODELDEMO3.OUT *** Diary File for MODELDEMO3.M '), disp(' ')

%

% Modeling Systems Given in Block Diagram Form with Simulink (The NEW Way)

%

% Define the constants for the Under Damping case

 m = 1, k = 1, c = 1.2

%

% Display Simulink graphical model on screen

 modeldemo3_sl

%

% Extract linear model from SIMULINK graphical model (saved in modeldemo3_sl.slx)

 disp(' Data from graphical SIMULINK model')

 [A,B,C,D] = linmod('modeldemo3_sl'), syss = ss(A,B,C,D);

 sysz1 = zpk(syss) % convert to zero, pole, gain form

 syssm = minreal(syss) % find a minimal realization of SS system

 sysz2 = zpk(syssm) % convert to ZPK form (after min. realization)

%

 diary off % turn off diary file

%

% end of demo

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

15

Table 5.2 Listing of Matlab diary files modeldemo1/2/3.out.

 *** MODELDEMO1.OUT *** Diary File for MODELDEMO1.M

m =

 1

k =

 1

c =

 2.0000 2.5000 1.2000 0

 State Space Models

A1 =

 0 1

 -1 -2

A2 =

 0 1.0000

 -1.0000 -2.5000

A3 =

 0 1.0000

 -1.0000 -1.2000

A4 =

 0 1

 -1 0

B =

 0

 1

C =

 1 0

D =

 0

 Transfer Function Form

Transfer function:

 1

s^2 + 2 s + 1

Transfer function:

 1

s^2 + 2.5 s + 1

Transfer function:

 1

s^2 + 1.2 s + 1

Transfer function:

 1

s^2 + 1

 Zero-Pole-Gain Form

Zero/pole/gain:

 1

(s+1)^2

Zero/pole/gain:

 1

(s+2) (s+0.5)

Zero/pole/gain:

 1

(s^2 + 1.2s + 1)

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

16

Zero/pole/gain:

 1

(s^2 + 1)

 Residue Form

n1 =

 0 0 1

d1 =

 1 2 1

n2 =

 0 0 1

d2 =

 1.0000 2.5000 1.0000

n3 =

 0 0 1

d3 =

 1.0000 1.2000 1.0000

n4 =

 0 0 1

d4 =

 1 0 1

r1 =

 0

 1.0000

pr1 =

 -1

 -1

kr1 =

 []

r2 =

 -0.6667

 0.6667

pr2 =

 -2.0000

 -0.5000

kr2 =

 []

r3 =

 0 - 0.6250i

 0 + 0.6250i

pr3 =

 -0.6000 + 0.8000i

 -0.6000 - 0.8000i

kr3 =

 []

r4 =

 0 - 0.5000i

 0 + 0.5000i

pr4 =

 0 + 1.0000i

 0 - 1.0000i

kr4 =

 []

 *** MODELDEMO2.OUT *** Diary File for MODELDEMO2.M

m =

 1

k =

 1

c =

 1.2000

n1 =

 1

d1 =

 1.0000 1.2000

n2 =

 1

d2 =

 1 0

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

17

n3 =

 1

d3 =

 1.0000 1.2000

a =

 x1 x2 x3

 x1 -1.2 0 0

 x2 0 -0 0

 x3 0 0 -1.2

b =

 u1 u2 u3

 x1 1 0 0

 x2 0 1 0

 x3 0 0 1

c =

 x1 x2 x3

 y1 1 0 0

 y2 0 1 0

 y3 0 0 1

d =

 u1 u2 u3

 y1 0 0 0

 y2 0 0 0

 y3 0 0 0

Continuous-time model.

q =

 1 0 0

 2 1 -3

 3 2 0

iu =

 1

iy =

 2

a =

 x1 x2 x3

 x1 -1.2 0 0

 x2 1 0 -1

 x3 0 1 -1.2

b =

 u1

 x1 1

 x2 0

 x3 0

c =

 x1 x2 x3

 y1 0 1 0

d =

 u1

 y1 0

Continuous-time model.

1 state removed.

a =

 x1 x2

 x1 2.14e-031 -1.414

 x2 0.7071 -1.2

b =

 u1

 x1 2.14e-031

 x2 -0.7071

c =

 x1 x2

 y1 1 8.863e-032

System Dynamics -- Section V: Modeling and Simulating Dynamic Systems in Matlab/Simulink

Lecture Notes for System Dynamics by Dr. John R. White, UMass-Lowell (March 2020)

18

d =

 u1

 y1 0

Continuous-time model.

Zero/pole/gain:

 1

(s^2 + 1.2s + 1)

Transfer function:

 1

s^2 + 1.2 s + 1

 *** MODELDEMO3.OUT *** Diary File for MODELDEMO3.M

m =

 1

k =

 1

c =

 1.2000

 Data from graphical SIMULINK model

A =

 0 1.0000 -1.0000

 0 -1.2000 0

 1.0000 0 -1.2000

B =

 0

 1

 0

C =

 1 0 0

D =

 0

Zero/pole/gain:

 (s+1.2)

(s+1.2) (s^2 + 1.2s + 1)

1 state removed.

a =

 x1 x2

 x1 -0.2464 -0.4607

 x2 1.661 -0.9536

b =

 u1

 x1 0.5

 x2 -0.5

c =

 x1 x2

 y1 0.7071 0.7071

d =

 u1

 y1 0

Continuous-time model.

Zero/pole/gain:

 1

(s^2 + 1.2s + 1)

