System Dynamics (22.554 and 24.509)

Exam \#1 Spring 2014

Problem \#1a. (10 points)

Find the general solution to the following LTI system:

$$
\frac{\mathrm{d}^{3}}{\mathrm{dt}^{3}} \mathrm{y}+2 \frac{\mathrm{~d}^{2}}{\mathrm{dt}^{2}} \mathrm{y}+5 \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{y}=15
$$

Use the classical approach for solving linear constant coefficient ODEs by finding separate homogeneous and part solutions (i.e. do NOT use the space-space approach here since this approach is much more tedious for this case).

Problem \#1b. (10 points)

The plot here shows the step response of two different $2^{\text {nd }}$ order systems. Identify which system has the following eigenvalues:

$$
\lambda_{1}=-1 \quad \lambda_{2}=-6
$$

Clearly justify your selection between sys1 and sys2. Note that a guess without a valid argument that supports your choice will not be worth much!

Problem \#2. (20 points)

a. Two masses m_{1} and m_{2} are connected by a linear spring with spring constant k as shown in the sketch. Assuming negligible friction in the system, the equations of motion are

$$
\begin{aligned}
& \mathrm{m}_{1} \ddot{\mathrm{x}}_{1}=-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{F} \\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}=-\mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)
\end{aligned}
$$

where x_{1} and x_{2} are the positions of the masses, the double dot notation represents the $2^{\text {nd }}$ derivative with respect to time, and $\mathrm{F}(\mathrm{t})$ is a independent applied force on the system.

If the desired output is the distance between the masses, $\mathrm{y}=\mathrm{x}_{1}-\mathrm{x}_{2}$, put this LTI system into standard state space form

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{z}=\mathrm{Az}+\mathrm{Bu} \quad \text { and } \quad \mathrm{y}=\mathrm{Cz}+\mathrm{Du}
$$

by explicitly defining the state vector z , input u , and the appropriate $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D matrices.

Note: z is used here (instead of x) as the state vector so that it does not get confused with the positions of the masses, x_{1} and x_{2}, as denoted in the sketch.
b. Now assume that the applied force F is proportional to the difference in the actual output $y(t)$ and some desired output $y_{d}(t)$, where $y_{d}(t)$ is now the independent input to the system. In particular, if $\mathrm{F}=\alpha\left(\mathrm{y}-\mathrm{y}_{\mathrm{d}}\right)$, where α is a known constant, determine the new state-space matrices, A and B , for this modified system.

Also, for the new system, we wish to have two outputs,

$$
\mathrm{y}_{1}=\mathrm{x}_{1}-\mathrm{x}_{2} \quad \text { and } \quad \mathrm{y}_{1}=\alpha\left(\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{y}_{\mathrm{d}}\right)
$$

Determine the new output matrices, C and D , for this situation.

Problem \#3. (20 points)

Given the nonlinear system described by

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}_{1}=2 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{1} \mathrm{u}_{1} \\
& \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{x}_{2}=\mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}+2 \mathrm{u}_{2}
\end{aligned}
$$

a. Linearize the system about the reference state defined by $\underline{x}_{r}=\left[\begin{array}{ll}-1 & 2\end{array}\right]^{\mathrm{T}}$ and $\underline{u}_{r}=\left[\begin{array}{ll}-1 & -3\end{array}\right]^{\mathrm{T}}$. In particular, find the $\underline{\underline{A}}$ and $\underline{\underline{B}}$ matrices for the linearized system.
b. Is the linearized system stable? Justify your answer.

Problem \#4. (40 points)

Linear stationary systems written in state form can be expressed as

$$
\frac{\mathrm{d}}{\mathrm{dt}} \underline{x}=\underline{\underline{\mathrm{A}}} \underline{x}+\underline{\underline{B}} \underline{u} \quad \text { where } \quad \underline{y}=\underline{\underline{C}} \underline{x}+\underline{\underline{D}} \underline{\underline{u}}
$$

a. Using the integrating factor technique for solving linear first-order equations, formally derive an analytic solution for this system for an arbitrary input with zero initial conditions.
b. If $\underline{u}(t)$ is a unit step function, formally evaluate the expressions developed in Part a to obtain a formal solution for $\underline{y}(t)$.
c. In a particular SISO system with two states, we have

$$
\underline{\underline{\mathrm{A}}}=\left[\begin{array}{ll}
-3 & 1 \\
-2 & 0
\end{array}\right] \quad \underline{\underline{B}}=\left[\begin{array}{c}
4 \\
-5
\end{array}\right] \quad \underline{\underline{\mathrm{C}}}=\left[\begin{array}{ll}
1 & -1
\end{array}\right] \quad \underline{\underline{D}}=0
$$

Using the results of Parts a and b, determine an explicit expression for the step response of this system (with zero initial conditions). Show your work!!!

Note: If you were not successful with Part b, you should a least compute $\underline{\underline{A}}^{-1}$ and $e^{\underline{\underline{A t}}}$ to get partial credit for Part c.

