
Solutions to the Steady State Diffusion Equation 
 

Introduction 
In a previous set of Lecture Notes (see Ref. 1), we got our first look at the multigroup neutron 
balance equation.  To keep things reasonably straightforward in our introductory treatment, the 
focus was on the diffusion theory approximation, where Fick’s Law was used to approximate the 
net neutron current in terms of the gradient of the scalar neutron flux.  After a set of formal 
definitions that introduced the proper multigroup notation and terminology, the resultant 
multigroup diffusion equation was then written using a concise matrix operator formulation, and 
a brief overview of the explicit operator equations used in various applications was given.  The 
goal of Ref. 1 was to lay a solid theoretical foundation for really understanding the multigroup 
balance equation.   

Please make sure you are comfortable with the material in Ref. 1 before continuing!!! 

Now, with a good understanding of the fundamental balance equations, our emphasis will shift to 
the study of various analytical techniques for solution and interpretation of the resultant 
equations in a variety of simple, but informative, situations.  This task  --  the solution and 
interpretation of the steady state neutron balance equation  --  is the real goal of this section of 
Lecture Notes (and the associated files that address specific example cases).  In fact, the current 
document can be thought of as roadmap that summarizes and categorizes the many analytical 
examples and visualization resources that have been developed to shed some further insight into 
the solution of the neutron balance equation for a variety of configurations and scenarios.  The 
various solutions addressed here (and in the associated files) are broken into two main categories  
--  subcritical non-multiplying systems and critical reactor systems  --  with a number of sub-
topics that focus on 1-group vs. 2-group systems, bare vs. reflected systems, various geometries 
(Cartesian, spherical, and cylindrical), etc..  In addition, a number of specific references are made 
concerning the nuclear data needed for performing these preliminary analyses.  Thus, by the time 
we finish this learning module, you should be able to set up and solve the diffusion equation for 
a variety of configurations, obtain the nuclear data needed to quantitatively evaluate the problem 
solutions, and analyze and interpret the results and draw conclusions for the given problem under 
study.  

We will first concentrate on configurations containing only moderating media (also referred to as 
non-multiplying systems since there is no fissionable material present), since this class of 
problems is relatively straightforward to solve for simple geometries.  The examples treated here 
will give considerable insight to the behavior of neutrons in non-multiplying or mainly diffusing 
media.  The critical reactor problem, where the fission process is the dominant source of 
neutrons, will then be treated once we have a good handle on some of the required mathematics 
needed to fully understand the behavior of such systems.  The set of examples treated within 
both these problem classes will give us sufficient insight to do some preliminary design and 
analysis of real reactor systems  --  such as analysis of the current UMLRR core configuration 
for example. 

Since both problem categories rely heavily on the student's ability to obtain and interpret the 
solution of second order differential equations, we will start our discussions with a short review 
of the classification and solution of second order linear systems.  However, it is mainly the  
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student's individual responsibility to be fairly knowledgeable in this area of mathematics (since 
Differential Equations is a prerequisite for this course).  Thus, right now might be a good time to 
pick up your Differential Equations book and review the basics… 

Solution of Second-Order Constant Coefficient ODEs 
As a quick review of the terminology and solution methods for linear ordinary differential 
equations (ODEs), let’s focus on the case of a 2nd order system.  In particular, given the 
following linear 2nd order non-homogeneous (i.e. source-driven) system, 

y"(x) a y '(x) b y(x) f (x)+ + =        (1) 

the general solution is given as the linear combination of the solutions to the homogeneous and 
particular equations, 

h py(x) y (x) y (x) = +          (2) 

where yh(x) is a solution to the homogeneous (or complementary) equation 

y"(x) a y '(x) b y(x) 0+ + =         (3) 

and yp(x) is a particular solution to the original ODE given by eqn. (1).  Note also that, since the 
highest derivative in the system is 2nd order, the general solution as given by eqn. (2) will contain 
two arbitrary coefficients, and a unique solution for a specific problem is obtained by satisfying 
two boundary conditions (which uniquely determine the two arbitrary coefficients in the general 
solution for source-driven systems). 

The solution to a linear 2nd order constant-coefficient homogeneous ODE can be written in the 
form of a simple exponential, yh ∼ erx, where r is an unknown constant.  Putting this assumed 
solution into eqn. (3) leads to the characteristic equation 

2r a r b 0+ + =           (4) 

Referring to r1 and r2 as the two distinct solutions to the characteristic equation (the case of 
repeated roots is a relatively uncommon occurrence), the homogeneous solution can be written 
as a linear combination of the individual solutions, or 

 1 2r x r x
h 1 2y (x) c e c e= +          (5) 

Note that for the special case of a = 0 and b = ±α2 (this is consistent with the two different 
forms of the 1-group diffusion equation that are commonly encountered  --  see below), eqn. (3) 
becomes 

 2y '' (x) y(x) 0±α =          (6) 

which gives 

 2 2 2
1,2r 0 or r±α = = ± α       (7) 

Thus, the sign of b = ±α2 becomes very important, since two completely different forms for the 
solution can result.   
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When b = −α2, the roots are real and distinct and yield a solution written in the form of real 
exponentials.  However, when b = +α2, the roots are still distinct, but now they are pure 
imaginary complex conjugates  --  and these lead to solutions in the form of complex 
exponentials  --  that is, the roots to the characteristic equation are r1,2 = ±iα, where i (or 
sometimes j) is the imaginary number i j 1= = − .  

The complex exponentials are almost always written in terms of sinusoids using Euler formula, 
j xe cos x jsin x± α = α ± α         (8) 

Thus, for the case of pure imaginary roots, eqn. (5) becomes 

 
( ) ( )

( ) ( )

j x j x
h 1 2 1 2

1 2 1 2

1 2

y (x) c e c e c cos x jsin x c cos x jsin x

c c cos x j c c sin x
A cos x A sin x

α − α= + = α + α + α − α

= + α + − α

= α + α

  (9) 

Note that, for the case where we get real exponential solutions (for b = −α2), one can perform a 
similar manipulation using hyperbolic sinusoids.  To see this, we first formally define the 
hyperbolic sine and cosine in terms of real exponential functions, 

x x x xe e e esinh x and cosh x
2 2

a −aa  −a− +
a = a =    (10) 

or xe cosh x sinh x±α = α ± α         (11) 

Now, for the case of real distinct roots, r1,2 = ±α, eqn. (5) becomes 

 
( ) ( )

( ) ( )

x x
h 1 2 1 2

1 2 1 2

1 2

y (x) c e c e c cosh x sinh x c cosh x sinh x

c c cosh x c c sinh x
A cosh x A sinh x

α −α= + = α + α + α − α

= + α + − α

= α + α

  (12) 

Finally, we note that, although the first and last forms of yh(x) in eqn. (12) are equivalent, it is 
often more convenient to use the first form (exponential form) for infinite systems and the last 
form (hyperbolic sinusoids) for finite systems.  This is purely a matter of convenience, but 
following this simple rule of thumb often minimizes the algebra needed when solving problems 
of this type  --  and we will try to utilize this useful suggestion in the examples to follow. 

In summary, the following table collects the various homogeneous solutions to the specialized 
ODE given in eqn. (6)  --  and we will indeed use these results shortly in our subsequent 
examples.  It should be noted, however, that the specialized solutions given here and the overall 
approach for obtaining these are only applicable to linear constant coefficient ODEs  --  so be 
sure to only apply these results and techniques where appropriate!!! 

2y '' y 0−α =  2y '' y 0+α =  
x x

1 2y(x) c e c e (infinite region)α −α= +  j x j x
1 2y(x) c e c e (rarely used)a − a= +  

1 2y(x) A cosh x A sinh x (finite region)= α + α  1 2y(x) A cos x A sin x (usual form)= a + a  
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Now, to complete our review, we need to say a few words about the particular solution, yp(x).  
There are two general techniques for finding the particular solutions to linear constant coefficient 
ODEs  --  the Method of Undetermined Coefficients (UC method) and the Variation of 
Parameter Method (VOP method).  The UC method is the easiest to apply, but the VOP method 
can be applied to a wider range of problems (see any good DE textbook for further details).  
Fortunately, the UC method will work just fine for all the problems we will encounter in our 
current study, so we will only briefly review this method within these Lecture Notes.  

Within the Method of Undetermined Coefficients, one essentially makes an assumption 
concerning the form of yp(x), and then, via substitution of the assumed solution into the defining 
source-driven ODE, determines the unknown coefficients within the assumed solution.  The 
method is relatively easy to apply once a proper form for yp(x) has been determined.  This can be 
done by systematically applying the following two rules: 

General rule:  Choose yp(x) to have the same form as the RHS forcing function, f(x), and all its 
linearly independent derivatives.  Evaluate the unknown coefficients within yp(x) by substitution 
into the original inhomogeneous ODE, and simply equate the coefficients of the terms with 
similar forms on both sides of the equation.  If there are m arbitrary coefficients in the assumed 
yp(x) solution, this procedure will lead to m independent equations for the m unknowns.  Solving 
these for the m coefficients gives the desired yp(x) [there should be no arbitrary coefficients in 
yp(x) upon completion of this procedure]. 

Special rule:  If yp(x) via the general rule for a constant coefficient linear system contains one or 
more terms that are solutions to the homogeneous equation, one then multiplies these terms by xk 
where k is the smallest integer value that makes all the terms in yp(x) linearly independent of the 
homogenous solution, yh(x) [again, you should refer to your DE text for a discussion of the 
Reduction of Order Method that shows where the xk factor comes from…].   

Note:  As indicated above, the case of repeated roots within the homogenous solution does not 
occur very often in practical applications.  This same statement is true when it comes to the use 
of the Special Rule within the UC method as noted above.  However, when you took your DE 
course, a lot of emphasis was probably placed on these special cases since they lead to a number 
of interesting situations and they are certainly needed for a general treatment of the overall 
subject.  However, in our focused treatment of the steady state neutron diffusion equation, we 
will not really need to apply either of these special cases…   

Well, this completes our quick review of the mathematics needed to solve and interpret the 
diffusion equation for a number of useful situations and we will see a number of specific 
examples in the sections to follow.  Please remember, however, that the above techniques, as 
illustrated here, are only applicable for linear constant-coefficient ODEs.  In our work, these 
conditions will apply for Cartesian geometry problems with homogeneous material regions (i.e. 
constant material properties).  However, they do not apply, in general, to spherical or cylindrical 
geometry situations  --  and we will have to introduce other approaches for these cases.  In 
particular, for spherical geometry problems, a simple substitution can often convert the original 
variable-coefficient ODE into one with constant coefficients  --  and we will definitely take 
advantage of this simple substitution/transformation process.  For cylindrical geometry problems, 
however, things are not so simple, and we will have to introduce a whole new class of functions 
(called Bessel functions) to solve problems requiring cylindrical coordinates.   
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In addition, we will also see that homogeneous boundary value problems can give completely 
different behavior relative to source driven systems  --  thus, the subcritical fixed-source problem 
and the critical reactor problem have substantially different mathematical properties.  Thus, we 
have a lot of mathematics to do but, in all this work, please don’t lose sight of the reactor physics 
fundamentals we are trying to illustrate  --  since this is the real goal here.  The mathematics is 
quite interesting and quite elegant, but our real focus here is on the physical interpretations that 
the mathematical solutions allow us to make.  Thus, in this module we will learn a lot of reactor 
physics as well as a lot of really neat mathematics, but the real goal here is the reactor physics 
insight we can glean from the various mathematical procedures that are utilized… 

Non-Multiplying Source-Driven Systems 
The best way to illustrate the use of the diffusion equation is to apply it to some simple, but 
representative, situations.  We will start with the simplest of cases, and then, increase complexity 
as our understanding grows.  In this subsection, we will restrict our analyses to cases where no 
fissile material is present.  This restriction causes the fission source term in the general diffusion 
equation to vanish.  In a subsequent subsection, we will concentrate on the case where fission is 
the dominant source term.  To get started, however, it is easier to treat the simple fixed source 
problem first, where the source is totally independent of the neutron flux (this subject is also 
treated in some detail in Chapter 5 of Lamarsh  --  see Ref. 2). 

1-Group Problems:  As a starting point, let's restrict our analyses to the 1-group approximation 
with no fission.  This situation is appropriate when analyzing neutron attenuation in non-
multiplying (diffusing) media such as reflector or shield geometries.  In this case (that is, 1-group 
theory and no fission), the general multigroup diffusion equation (see Ref. 1) becomes  

aD(r) (r) (r) (r) Q(r)−∇ ∇φ +Σ φ =
 

    

        (13) 

For a homogeneous region, the macroscopic absorption cross section and diffusion coefficient 
are constants.  With this additional restriction, eqn. (13) becomes 

 2
aD (r) (r) Q(r)− ∇ φ +Σ φ =

    

or 2 a Q(r)(r) (r)
D D
Σ

∇ φ − φ = −


          (14) 

for each homogeneous region in a given problem. 

Since the term containing both D and Σa occurs so frequently, we define the diffusion area as    
L2 = D/Σa and the diffusion length as aL D /= Σ .  With these definitions, eqn. (14) becomes 

 2
2

1 Q(r)(r) (r)
DL

∇ φ − φ = −


          (15) 

Equation (15) gives the mathematical representation of neutron behavior in a 1-group, non-
multiplying, homogeneous region.  We will look at the solution to eqn. (15) for several standard 
source-geometry configurations.  In particular, Table 1 summarizes the various 1-group source 
and geometry combinations that are treated in detail within this series of Lecture Notes, within 
Lamarsh (Ref. 2), and/or as potential student homework problems. 
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Table 1   Standard configurations that illustrate neutron diffusion using 1-group theory. 

Case Geometry Description Source Description Reference Material 

1 infinite 1-D slab geometry isotropic infinite planar source 
at x = 0 Ref. 2 and Ref. 3  

2 finite 1-D slab geometry  isotropic infinite planar source 
at x = 0 Ref. 2 and Ref. 3  

3 infinite 1-D spherical 
geometry  isotropic point source at r = 0 Ref. 2 and Ref. 4  

4 finite 1-D spherical geometry  isotropic point source at r = 0 Ref. 4  

5 two-region finite 1-D slab 
geometry 

isotropic infinite planar source 
at x = 0 (at interface between 
two regions) 

Ref. 5 

6 infinite 1-D slab geometry 
two isotropic infinite planar 
sources separated a distance H 
(located at x = ±H/2)  

Ref. 6 

7 finite 1-D slab geometry uniformly distributed isotropic 
source potential HW problem 

8 
two-region 1-D slab geometry 
(finite inner region and 
infinite outer region) 

uniformly distributed isotropic 
source in inner region potential HW problem 

9 finite 1-D spherical geometry uniformly distributed isotropic 
source potential HW problem 

10 
two-region 1-D spherical 
geometry (finite inner region 
and infinite outer region) 

uniformly distributed isotropic 
source in inner sphere potential HW problem 

 

The cases studied here include Cartesian (slab) and spherical geometry, infinite and finite region 
sizes, 1-region and 2-region configurations, discrete (i.e. discontinuous) and uniformly 
distributed sources, and even a case with multiple discrete sources.  These situations cover many 
of the simple configurations of interest where the 1-group steady state diffusion equation can be 
solved analytically to get a reasonable estimate of overall behavior, and they can give the student 
a good understanding of neutron diffusion in typical non-multiplying systems. 
--------------- 
Note:  Most multidimensional geometries, except for a few special cases, cannot be solved 
analytically.  Instead, they usually require numerical solution of a spatially discretized form of 
the balance equations (i.e. via finite difference methods).  Although quite interesting, this subject 
is beyond the scope of this course and will not be treated here.  Also, note that there are no 1-D 
cylindrical geometry problems in the above table of standard solutions.  Although cylindrical 
geometry configurations are of interest here, they require the introduction of Bessel functions to 
solve the resultant equations.  Since there is already enough mathematics associated with the 
above cases, we have decided to postpone our discussion of Bessel functions and the solution of 
cylindrical geometry problems for a bit  --  until we discuss the critical reactor problem…   
--------------- 
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At this point the student should study Cases 1 - 6 in detail using the listed references.  References 
3 - 6, in particular, include a simple Matlab graphical user interface (GUI) that actually evaluates 
and plots the resultant solutions, in addition to the step-by-step mathematical treatment of the 
overall solution methodology.  This combination  --  that is, both the theory and application for a 
specific situation  --  should give the reader a good understanding of the overall topic of neutron 
diffusion in a non-multiplying diffusing medium.  And, with all this background, you will be 
well prepared to address any homework problems related to these subjects that may be assigned. 

Please make sure you are comfortable with the material in Refs. 3-6 before continuing!!! 

The Diffusion Length:  In your analysis of Cases 1 - 6, you should have discovered the 
importance of the diffusion length, L, (or diffusion area, L2) in describing the observed spatial 
distribution of the resultant flux profiles.  To highlight this term even further, Ref. 7 shows that 
the diffusion length, L, is directly related to the distance traveled from birth to death of a neutron 
in an infinite system.  In addition, Ref. 7 also shows that the simple 1-group representation and 
interpretation of the diffusion area and diffusion length (L2 and L, respectively), can be easily 
extended to the 2-group case, where we now make a distinction between the fast and thermal 
diffusion properties of a given material.  In particular, the fast and thermal diffusion areas, 

2 2
1 2L and L , respectively, are defined explicitly as 

 2 1
1

a1 1 2

DL
→

=
Σ +Σ

 and 2 2 2
2 T

a2

DL L= =
Σ

     (16) 

Note also that, in a moderating medium, the primary interaction at high energy is neutron 
scattering.  Therefore, Σ1→2 is usually much greater than Σa1 for purely moderating media.  If we 
make this assumption, then the expression for the fast diffusion area reduces to D1/Σ1→2 which is 
typically called (for historical reasons) the thermal neutron age, τT, or, 

 1
T

1 2

D

→

τ =
Σ

          (17) 

The thermal neutron age (or fast diffusion area) is very similar to the thermal diffusion area, 2
2L  

(or 2
TL  as used in some references --  e.g. Ref. 2), except that it applies to the fast group instead 

of the thermal group. 

Please make sure you are comfortable with the material in Ref. 7 before continuing!!! 

Cross Sections for Preliminary Calculations:  In discussing the various material properties of 
interest, we also need to briefly address how to obtain preliminary data for both 1-group and 2-
group computations involving both non-multiplying and multiplying systems.  This is indeed 
essential so that typical problem situations can be addressed using a reasonable set of material 
properties for the various situations of interest.  In particular, a separate set of Lecture Notes and 
a simple Matlab GUI (see Ref. 8) were developed to assemble, in one place, a library of data for 
doing computations such as these.  All the data used here are based on various tabular and 
graphical information from Lamarsh (Ref. 2), including the equations necessary to properly 
account for both density and temperature variations from the tabulated reference conditions.  
Reference 8 details the equations and procedures used and, at this point, you should take the time 
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to review these Lecture Notes and associated Matlab GUI, since this information will be needed 
for many of the subsequent example problems and homework problems that you will encounter.   

Please make sure you are comfortable with the material in Ref. 8 before continuing!!! 

A 2-Group Example:  Now, returning to our discussion of neutron diffusion in non-multiplying 
media, we should note that all the examples up to now have used 1-group theory.  This was done 
since the mathematics is less tedious than for multigroup problems and these examples allowed 
us to emphasize the spatial part of the problem.  In general multigroup problems, however, we 
have a coupled set of G 2nd order differential equations which, as you might imagine, can be 
somewhat tedious to solve analytically.  Certainly for the general case that includes fission and 
upscatter, this is indeed the case.  However, for a non-multiplying source-driven problem with no 
upscatter, the G equations are only coupled in one direction  --  that is, the balance equation for 
group g is unaffected by the neutron field at lower energies.  Thus, the coupled equations can be 
solved sequentially starting with group 1, then group 2, etc. until the balance equations for all G 
groups have been evaluated.   

To see this, consider the specific case of 2-group theory.  For a non-multiplying medium with no 
upscatter, the general multigroup neutron balance equation (see  Ref. 1) reduces to 

 1 1 a1 1 2 1 1D ( ) Q→−∇ ∇φ + Σ +Σ φ =
 

        (18a) 

 2 2 a2 2 1 2 1 2D Q→−∇ ∇φ +Σ φ −Σ φ =
 

        (18b) 

Now, if we apply these equations within a homogeneous region (with constant material 
properties), the leakage term simplifies considerably, allowing us to eliminate the vector notation 
and to divide each equation by the appropriate group diffusion coefficient.  Doing this gives  

 2 1
1 12

11

Q1
DL

∇ φ − φ = −          (19a) 

 2 1 22
2 2 12

2 22

Q1
D DL

→Σ
∇ φ − φ = − − φ        (19b) 

where we have used the definitions of the fast and thermal diffusion areas from above. 

Equation (19) illustrates the sequential coupling as described above.  Here we see that the 
equation for group 1 is driven by the source Q1, but that it is unaffected by the neutron 
population at lower energies (i.e. the thermal flux does not appear in the fast group balance 
equation).  In contrast, however, the Σ1→2φ1 term represents a source term for group 2 (i.e. the 
downscatter source), so the resultant thermal flux is clearly a direct function of the fast flux.  
With this overview, the scenario for solving for the flux in both groups should now be clear  --  
we first solve eqn. (19a) for φ1 and then this can be used to develop the full source for solving for 
the particular and general solutions for the group 2 equation.  Reference 9 illustrates this 
sequential solution methodology for the case of a point source of fast neutrons in an infinite 
moderating material.  Using 2-group theory, both the fast and thermal flux profiles are derived 
and a short Matlab code is utilized to help visualize the spatial behavior of φ1(r), φ2(r), and the 
fast-to-thermal flux ratio, φ1(r)/φ2(r), in a variety of moderator materials. 

Please make sure you are comfortable with the material in Ref. 9 before continuing!!! 
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Well, we have now generated a variety of solutions to the diffusion equation for non-multiplying 
medium problems.  However, before leaving this subsection, it should be cautioned that the 
various examples given here for neutron diffusion in moderating media were mainly illustrative 
of the mathematical tools needed for solving these types of problems, and for obtaining a good 
feeling for how the diffusion and absorption properties of a material (diffusion length or neutron 
age) affect the resultant flux distribution.  Treating these examples from only a qualitative view 
is important since, in practice, the 1-group and 2-group diffusion approximations are not very 
accurate for finding flux distributions or dose rate predictions in shielding applications 
(multigroup transport theory is clearly more appropriate for this class of problems).   

In contrast, however, few-group diffusion theory does give a good quantitative estimate of the 
neutron behavior within most critical reactor core configurations  --  and this will be the subject 
of the next subsection.  Thus, although the above methodology can only be applied in a 
qualitative sense for shielding analyses, the skills that we developed for analyzing the non-
multiplying medium problem will be directly applicable in subsequent work, where most of our 
effort will be concentrated on solving and quantifying many aspects of the core physics problem 
(rather than shielding applications). 

The Critical Reactor Problem 
Much of the emphasis in this course is concerned with the detailed understanding of the behavior 
of neutrons within the core regions of a critical system (both research reactors and large power 
reactors).  However, most of the topics discussed thus far are only indirectly related to core 
physics; they have only supplied the necessary background for a discussion of reactor core 
analysis.  Even the last section, with its several examples illustrating the solution of the neutron 
diffusion equation, only emphasized applications in non-multiplying media (regions away from 
the core).  Finally, in this section, we will discuss the critical reactor problem. 

The core physics problem is somewhat unique.  We know that, for steady state power 
production, the reactor has to be just critical.  This means that there has to be a precise balance 
between the neutron production and loss rates.  Any arbitrary mixture of fuel, moderator, and 
structure will not satisfy this constraint.  We will find that a new restriction, usually called the 
criticality condition, has to be satisfied.  The criticality condition will interrelate the material 
composition and geometric configuration such that a critical system can be achieved. 

These concepts will become clear as we develop the mathematics that describe the core physics 
problem.  We will rely exclusively on the diffusion approximation to neutron transport and we 
will use many of the same techniques utilized in the previous section for the analysis of non-
multiplying media. The primary difference in the core physics (versus shielding) problem is that 
now the fission source (rather than a fixed source) dominates the neutron production term.  This 
gives rise to a subtle change in the defining equation, but it leads to a substantial change in the 
character of the solutions.  Thus, the solution to the critical reactor problem will exhibit its own 
unique character. 

To add some substance to this discussion, consider the general steady-state multigroup diffusion 
equation, 

 g g Rg g gD (r) (r) (r) (r) S (r)−∇ ∇φ +S φ =
 

    

       (20) 

where the source, gS (r)  is given as 
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 g g g fg ' g ' g ' g g '
g ' g ' g

S (r) Q (r) (r) (r) (r) (r)→
≠

= + χ νSf  + Sf ∑ ∑          (21) 

This equation is general, and for any specific application, only the applicable terms are used.  In 
most cases of interest, one of the following three situations arises: 

1. Non-multiplying systems:  no fission source (shielding applications) 

2. Subcritical systems:  both fission and external sources are important (core analyses during 
startup and shutdown) 

3. Critical systems:  no external sources (steady state core design and analysis) 

The previous section focused on the case where there is no fission source.  The second case must 
be considered in situations where both the fixed source and fission source are important.  The 
most common situation where this arises is during reactor startup and shutdown periods.  Clearly 
the reactor core has a substantial fission potential, but it may be arranged in a subcritical 
configuration (either by having some assemblies missing or by having large amounts of control 
inserted).  Without an external source, there would be no steady state flux in this subcritical 
arrangement.  However, in most fuel (especially fuel that has a substantial amount of burnup), 
there is an inherent neutron source due to the relatively large spontaneous fission and (α,n) 
reaction cross sections for many of the heavy actinides.  The neutrons emitted from these 
reactions undergo subcritical multiplication (they cause fission in the fuel material) and give rise 
to a steady state neutron distribution throughout the system. 

The analysis of subcritical systems with external (or inherent) sources utilizes the same 
procedures as described in the previous section.  For this reason (and because of time 
limitations), we won't consider specific subcritical multiplication applications at this time.  It is 
important to recognize, however, that the treatment of a subcritical fixed-source problem is only 
a minor generalization of the non-multiplying medium problem (so you already know how to 
solve problems of this type).  The only consideration here is that, without the source, the system 
must be subcritical (leakage and absorption must dominate neutron production from fission). 

To see this, consider the 1-group representation of eqns. (20) and (21) for a homogeneous 
subcritical configuration containing fuel, moderator, structure, and possibly some neutron poison 
material.  For this case, the balance equation becomes 

 2
a fD (r) (r) (r) Q(r)− ∇ f +Σ f −νΣ f =

     

or 2 a f Q(r)(r) (r)
D D

Σ −νΣ
∇ f − f = −



         (22) 

Now, recall that we previously defined the neutron multiplication factor as 

 fission neutrons in one generationk
fission neutrons in previous generation

=  

However, all of the fission neutrons from the previous generation ultimately have to be absorbed 
within the reactor or leak out of the system during the current generation.  Therefore, k (or k∞ in 
the case of zero leakage) is given by an instantaneous balance, 
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    f f f
2

a aa

neutron production ratek and k
neutron loss rate D ∞

< nΣ f > < nΣ f > nΣ
= = = =

< Σ f > Σ< Σ f > + < − ∇ f >
 (23) 

which says that Σa > νΣf for a subcritical system with k∞ < 1 and this leads to the conclusion that  

2 a f 0
D

Σ −νΣ
κ = >          (24) 

Thus, for a subcritical steady-state system, eqn. (22) can be written as 

2 2 Q(r)(r) (r)
D

∇ φ − κ φ = −


          (25) 

which has the same form as eqn. (15) for a non-multiplying medium and, therefore, it is solved 
using identical methods. 

Now, the third, and probably most important, class of problems that arise is the critical reactor 
problem.  In this situation, the leakage and absorption rates exactly balance the neutron 
production from fission, and any inherent neutron source that may be present in the fuel is totally 
dominated by the fission source.  Since the fixed source is negligible (see note below), it is 
simply dropped from the defining equations.  Thus, eqns. (20) and (21) with gQ (r) 0=

  represent 
a complete mathematical model of the neutron behavior in a critical reactor configuration (using 
the diffusion theory approximation). 

For the 1-group case, the same arguments concerning the sign of the second term lead to the 
following expressions 

2 f a(r) (r) 0
D

νΣ −Σ
∇ f + f =

   

or 2 2 2 f a(r) B (r) 0 where B
D

νΣ −Σ
∇ f + f = =

       (26) 

In this case, B2 is referred to as the material buckling (sometimes written as B2
m since it is only a 

function of material properties), and it is written as a positive quantity since νΣf ≥ Σa in a critical 
system (with k = 1 and k∞ ≥ 1). 
Equation (26) is the 1-group equation for a critical homogeneous reactor and we will spend a bit 
of time working with this expression  --  since solution and analysis of this balance equation can 
give us a lot of insight into the core physics problem.  To put this equation into perspective with 
our previous work, we note that the analogous representation for a homogeneous non-
multiplying region was given in eqn. (15) as 

 2
2

1 Q(r)(r) (r)
DL

∇ φ − φ = −


          (15) 

-------------------- 
Note:  It should be noted that if a substantial external source is inserted within a just critical reactor, the 
flux level starts (and continues) to increase until the source is removed.  Thus, a steady-state, critical, 
fixed-source problem is not possible (the three terms: steady state, critical, and fixed source are 
contradictory).  Since we are currently restricting our study to steady-state critical systems, no fixed 
sources will be allowed. 
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Besides the obvious difference on the RHS of these expressions [i.e. the lack of a fixed source in 
eqn. (26)], one should also note that the signs of the second term on the LHS of eqns. (26) and 
(15) are different  --  and it is this combination of the change in sign and the fact that it is a 
homogeneous equation that gives rise to the fundamental differences in the character of (r)ϕ

  for 
critical versus subcritical systems. 

In addition, we know from the above discussion that, for a steady state critical system, there has 
to be a very precise balance between the neutron production and loss rates, and any arbitrary 
mixture of fuel, moderator, structure, and control will not satisfy this constraint.  This situation is 
consistent with the basic nature of the defining equation for a critical reactor system  --  and this 
occurs in many areas of physics and is referred to as a classical eigenvalue problem.  As detailed 
in Ref. 1, to emphasize this mathematical/physical form, one usually includes a mathematical 
eigenvalue (denoted as λ) before the fission source term in the basic defining equations.  
To be explicit, let’s rewrite eqn. (26) to include the eigenvalue formulation.  Doing this, where 
we emphasize that, in a critical operating reactor, λ is unity, we have 

2 f a(r) (r) 0
D

λνΣ −Σ
∇ f + f =

   

or 2 2 2 f a(r) B (r) 0 where B
D

λνΣ −Σ
∇ f + f = =

       (27) 

To see the significance of λ, let's integrate a slightly modified version of eqn. (27) over all space, 
giving 

2
a fD 0− ∇ f+Σ f −λ νΣ f =  

or 
2 2

a a

f f

D DB loss rate
production rate

− ∇ f+Σ ff +Σ f
l = = =

nΣ fn Σ f
    (28) 

The term fνΣ f  represents the total neutron production rate from fission and 2
aDB φ+ Σ φ  

represents the total loss rate (leakage + absorption).  From the definition of the multiplication 
factor, k,  

production ratek
loss rate

=          (29) 

we see that λ is simply the inverse of the effective multiplication factor, or 

1
k

λ =            (30) 

Thus, we see that the addition of the eigenvalue within the defining equation is quite justifiable.  
At operating conditions, k = 1/λ = 1.0.  In design analysis, however, we often want to know if a 
particular combination of materials will give a critical reactor.  For any given material config-
uration, the calculated k may not be unity, but this, in fact, tells the designer how far from critical 
the configuration is, and that some modification is required (control in or out, more or less fuel is 
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required, etc.).  Thus, λ is usually computed as part of the solution procedure, and it is allowed to 
vary from unity so that the neutron balance equation can be balanced mathematically (i.e. λ * 
production = loss).  This approach allows considerable insight to be gained from any given 
reactor material distribution and geometry combination.  It should be emphasized, however, that 
in an operating critical system, λ must be unity!!! 

Now, rearranging eqns. (27) – (30) slightly gives 

f f
22

aa

1k
DBDB

νΣ f νΣ
= = ⇒
λ +Σf+Σ f

       (31) 

where the last simplification assumes that the reactor can be modeled as a single homogenous 
region.  Note also that, for an infinite system where leakage is negligible, eqn. (31) reduces to a 
simple expression that only includes the material properties of the system (that is, the neutron 
production cross section, νΣf, and the absorption cross section, Σa), or 

f f

a a
k∞

νΣ f νΣ
= ⇒

Σ f Σ
         (32) 

Before using the above equations within some specific applications, it should be noted that the  
1-group fission source can be expressed in several ways  --  and varying this formulation then 
leads to different representations for the above equations and to alternate forms for writing k and 
k∞.  Thus, depending on what data may be available for a given problem, it may be convenient to 
alternate the choice for a given situation.   

To illustrate some of the various forms, we first recall the difference between the definitions of η 
and ν, where 

 average number of neutrons emitted
absorption in the fuel

h =       (33) 

and 

 average number of neutrons emitted
fission

n =       (34) 

With these definitions, one can express the 1-group fission source, Sfis, as 

 fis f3
neutrons fissionsS
fission cm sec

  = = nSf   −  
      (35) 

or F
fis a3

neutrons emitted absorptions in fuelS
absorption in fuel cm -sec

  = = ηSf   
  

    (36) 

Now, we define a new term called the fuel utilization, as 

 neutrons absorbed in fuelf = fuel utilization = 
neutrons absorbed in complete system

   (37) 

and, for a homogeneous reactor, f can be written as 
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F F F
a a a

a aa

(r) (r)dr
f

(r) (r)dr

Σ f < Σ f > Σ
= = ⇒

< Σ f > ΣΣ f
∫
∫

ddd 

ddd 

       (38) 

Now, using these expressions, one also has the following equivalent forms 
F

fis f a a aS f k∞= νSf  = ηSf  = ηSf   = Sf         (39) 

where the last expression uses the 1-group k∞ formulation from eqn. (32). 
Finally, with these different representations for the fission source, we can also write the 
multiplication factor in various ways, as follows, 

f af
2 2 2 2 2 2 2

a

k fk
DB L B 1 1 L B 1 L B

∞νΣ ΣνΣ η
= = = =

+Σ + + +
     (40) 

and we will see several applications where these various representations will be used. 

One final note here, before we actually solve some problems, concerns the value of B2 that 
appears in many of the above equations.  If you have been paying close attention, you will have 
noticed that we introduced a new parameter, λ or 1/k, into the expression for B2 in eqn. (27) and 
then simply solved for k in terms of B2.  These somewhat circular manipulations, of course, have 
introduced a new parameter, but no new equation.  Thus, we cannot solve eqn. (27) for B2 
without a value for λ = 1/k, and we can’t solve eqn. (40) for k without a value of B2.  Thus, we 
clearly need another independent constraint equation to bring closure to the above development.  
This closure will, of course, come naturally from the formal solution of the balance equation in 
eqn. (27), which we rewrite here as 

2 2(r) B (r) 0∇ φ + φ =
           (41) 

Equation (41) is referred to as the 1-group critical reactor equation for a homogeneous region, 
and our job now focuses attention on the solution of this equation for a variety of simple core 
geometries  --  and, in solving this equation, we will automatically bring closure to the dilemma 
concerning “What is B2?”… 

1-Group 1-D Problems:  As we did for the non-multiplying media problem, we will start with a 
series of relatively simple cases, and then gradually increase complexity until we have a pretty 
good understanding of the overall critical reactor problem  --  the goal being the solution of eqn. 
(41) for a variety of situations.  In particular, Ref. 10 addresses this goal with a comprehensive 
treatment of the 1-group 1-D problem, including both bare and reflected core configurations (i.e. 
1-region core and 2-region core-reflector geometries) in all three orthogonal coordinate systems 
(Cartesian, spherical, and cylindrical coordinates).  In addition to the theoretical development, it 
also describes the core_refl1g_gui Matlab program that implements the theory within a user-
friendly GUI so that the reader can easily visualize the resultant flux profiles and actually 
perform a series of simple design analyses for these systems.  And, as you might expect, it also 
answers the question “What is B2?”!!! 
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In particular, concerning B2, Ref. 10 explains that this quantity is sometimes referred to as the 
geometric buckling and that the so-called criticality condition for all 1-group problems is 
simply that the geometric buckling, B2

g, is identical to the material buckling, B2
m, from eqn. (27), 

or  

 2 2
g mB B=           (42) 

where, the actual value of B2
g is determined by imposing the given boundary conditions on the 

problem of interest.  For the 2-region core-reflector problem, the situation is the same as for the 
bare core problem, but its representation is a little more complex, and we see that the so-called 
critical determinant gives the expected criticality condition for the problem.  Although the 
details of these different developments will not be repeated here  --  since it is expected that the 
reader will thoroughly study all of Ref. 10 and be familiar will all its derivations and 
explanations --  we do re-emphasize that, because of a general criticality condition that will 
occur in every problem (some of these statements are slightly more complicated than others), the 
B2 that occurs in the various expressions for the multiplication factor in eqn. (40) is indeed 
related to the geometric buckling (that is, the buckling that results from satisfying the physical 
boundary condition).  Thus, eqn. (40) says that the core multiplication factor is a function of both 
the physical geometry (which is contained in the B2 term) and the core material composition (D, 
L2, k∞, etc.), and this is exactly what was expected of a critical reactor system (note that, at just 
critical, k = 1.000). 

As a summary of the solutions from Ref. 10, we reproduce Table 1 from Ref. 10 as Table 2 in 
the current document.  This table contains a lot of information and, after a thorough review of 
Ref. 10, the student is expected to be familiar with all this material  --  including a general under-
standing of the overall solution strategy as well as the detailed derivation of any of the equations 
listed here.  Clearly the derivation of the solutions for the 2-region core-reflector cases represent 
more work but, even here, the solution strategy is essentially the same as for the simple bare core 
cases.  Also, as apparent in Table 2, the cylindrical geometry configurations give solutions in 
terms of the ordinary and modified Bessel functions and, even though these might seem a little 
intimidating at first glance, they are really no more difficult to work than the well-known 
sinusoids and exponential functions  --  once you have had a little experience with this class of 
functions (see Refs. 2 and 11 as well as Ref. 10 for more information about both the ordinary and 
modified Bessel functions).   

Finally, we note that the goal of the core_refl1g_gui program is simply to evaluate and visualize 
the pertinent equations in Table 2 for each of the geometries addressed here.  Thus, the student 
can easily get both quantitative and qualitative solutions to a variety of 1-D 1-group critical 
reactor problems without having to struggle with the actual implementation of the tabulated 
solutions  --  that is, we try to make it easy here so that you can focus more of the interpretation 
of the physics and not have to deal with any Matlab coding or any potentially unfamiliar 
numerical solution techniques (such as the root finding methodology needed to get B2 for the 
core-reflector cases).  Thus, the combination of the theory and simple GUI implementation 
contained in Ref. 10 should give you all the necessary tools to fully understand the 1-group 1-D 
critical reactor problem  --  and this is an important first step towards gaining a good overall 
understanding of steady-state reactor theory… 

Please make sure you are comfortable with the material in Refs. 10-11 before continuing!!! 
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Table 2   Summary equations and various relationships for several 1-group 1-D critical systems (from Ref. 10). 

Geometry Configuration Flux Profile Power Normalization Geometric Buckling 

1-D Slab 

Bare Core 1(x) A cos Bxφ =  

1
o

f

PBA Ba2 sin
2

=
κΣ

 

2
2B

a
π =  

 
 

Core-Reflector 
c 1(x) A cosBxφ =  

( )o rx a /2 /Lo
r 1

Ba(x) A cos e
2

− −φ =  
o r c

r

Ba L D Bf (B) cot 0
2 D

= − =  

1-D 
Sphere 

Bare Core 2
sin Br(r) A

r
φ =  

[ ]
2

2
f o o o

PBA
4 sin BR BR cosBR

=
πκΣ −

 

2
2B

R
π =  

 
 

Core-Reflector 
c 2

s i n Br(r) A
r

φ =  

( )o rr R /L

r 2 o
e(r) A sin BR

r

− −

φ =  

c o
o

r
r o

1f (B) D Bcot BR
R

1 1D 0
L R

 
= − 

 
 

+ + = 
 

 

1-D 
Cylinder 

Bare Core 1 0(r) A J (Br)φ =  

1
f o 1 o

PBA
2 R J (BR )

=
πκΣ

 

2
2 2.4048B

R
 =  
 

 

Core-Reflector 
c 1 0(r) A J (Br)φ =  

0 o
r 1 0 r

0 o r

J (BR )(r) A K (r / L )
K (R / L )

φ =  

c 1 o 0 o r

r
0 o 1 o r

r

f (B) D BJ (BR )K (R / L )
D J (BR )K (R / L ) 0
L

=

− =
 

Notes: For the bare cores, the extrapolated core size is given by:   a = ao + 2d    or    R = Ro + d 

 The multiplication factor for all the 1-group 1-D critical systems is given by:   fc
eff 2

c ac

k
D B

νΣ
=

+ Σ
 

 For the core-reflector systems, the statement  f(B) = 0  represents a classical root finding problem, where one searches for the smallest value 
of B to obtain the fundamental mode solution. 
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The Bare Finite Cylindrical Reactor:  The previous subsection addressed several simple           
1-group 1-D critical bare and reflected reactor geometries.  Although it would be nice to extend 
this formal development to a variety of 2-D geometries, finding analytical solutions to even a 
simple two-region core-reflector model in 2-D geometry is not possible  --  so we must resort to 
numerical methods to address most of the real multidimensional geometries of interest (and the 
subject of numerical methods is beyond the scope of this introductory treatment of reactor 
theory).  However, one exception is the multidimensional bare homogeneous 1-region reactor 
problem, where an analytical technique known as the Separation of Variables method does 
indeed lead to an exact analytical solution for the usual Cartesian and cylindrical geometry 
problems.   

In particular, Ref. 12 demonstrates the formal Separation of Variables solution for a bare critical 
homogeneous 2-D RZ cylindrical reactor.  This geometry is of interest since it resembles (in a 
very approximate way) the core of a large PWR or BWR system (without the usual reflector 
region).  Within this configuration, Ref. 12 shows that a cosine-shaped axial profile with a J0(βr) 
Bessel function in the radial direction is the expected form for the solution  -- and it shows that 
we can (approximately) build the 2-D profiles in terms of the 1-D flux shapes determined 
previously.  This is a very simplistic and approximate representation in more complicated 
situations, but it does allow us to visualize the general qualitative behavior of more complex 
systems  --  which can be very useful in more realistic modeling situations.  Thus, the RZ model 
development and visualization examples given in Ref. 12 serve to illustrate the basic ideas of the 
Separation of Variables solution scheme, they represent our first attempt at addressing and 
understanding multidimensional systems, and they give some limited insight to what might be 
expected in more complex 2-D and/or 3-D situations.  The reader should indeed study Ref. 12 in 
detail to get a good handle on the overall solution methodology and to visualize the behavior of 
the flux and current distributions in a simple 2-D configuration. 

Please make sure you are comfortable with the material in Ref. 12 before continuing!!! 

2-Group Critical Systems:  As noted previously, thermal reactor systems require a minimum of 
two energy groups to describe the actual behavior of the neutron life cycle within these systems.  
Up to this point we have focused only on 1-group critical systems, so now it is time to highlight 
the solution of the 2-group diffusion theory representation of critical systems  --  and this is done 
in detail in Ref. 13.  In particular, the formal Lecture Notes given in Ref. 13 develop a formal    
2-group solution methodology for bare homogeneous systems, define the terms in the so-called 
4-factor and 6-factor formulas, address how these terms can help one understand and quantify 
the life cycle of neutrons in a thermal system, outline how to perform preliminary critical size 
and composition calculations, and even address how to treat reflected systems within the context 
of a theory that was developed primarily for bare systems.   

In general, there is a lot of fundamental reactor theory covered within this set of Lecture Notes 
(Ref. 13), and the student is well advised to have a good handle on this material  --  since the 
topics covered here are key to understanding the behavior of the current generation and future 
generations of thermal reactors (PWRs, BWRs, HTGRs, etc.) 

As a quick summary of the wealth of information available in Ref. 13, below we list several 
important relationships for easy reference  --  however, the reader should definitely consult     
Ref. 13 for the detailed development and explanation of these expressions: 
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 Formal 2-Group Theory       Approximate 2-Group Theory 

   ( )2
1 1 R1 1 f1 1 f 2 2D 0− ∇ f +Σ f −λ νΣ f + νΣ f =   2

1 1 1 2 1 a2 2
kD 0
p
∞

→− ∇ φ +Σ φ −λ Σ φ =  

   2
2 2 a2 2 1 2 1D 0→− ∇ φ +Σ φ −Σ φ =    2

2 2 a2 2 1 2 1D p 0→− ∇ φ +Σ φ − Σ φ =  

   
( )

( )( )
2

f1 2 a2 f 2 1 2
eff 2 2

1 R1 2 a2

D B
k

D B D B
→νΣ +Σ + νΣ Σ

=
+Σ +Σ

  
( )( )

1 2 a2
eff T F2 2

1 1 2 2 a2

kk k P P
D B D B

∞ →
∞

→

Σ Σ
= =

+Σ +Σ
 

   f1 a2 f 2 1 2

R1 a2
k →
∞

νΣ Σ + νΣ Σ
=

Σ Σ
    Tk f p∞ = η ε  

   
2

2 a21

2 1 2

D B

→

+Σφ
=

φ Σ
     

2
2 a21

2 1 2

D B
p →

+Σφ
=

φ Σ
 

Modified 1-Group Theory 

( )eff 2 22 2
TT T

k kk
1 M B1 L B

∞ ∞= =
++ + τ

 

where, in all cases,  

 1 1 2 2(r) c (r) and (r) c (r)φ = φ φ = φ
dddd     

where (r)φ
  satisfies an equation of the form 

 2 2 2 2(r) B (r) 0 or (r) B (r)∇ φ + φ = ∇ φ = − φ
     

and several of the terms in the above equations are defined as follows: 

 
( )

F
a2 2 aF 2 aF aF

aF aM aaF aM 2a2 2

dr
thermal utilization f

dr

Σ f Σ f Σ Σ
= = = = =

Σ +Σ ΣΣ +Σ fΣ f
∫
∫

d

d

 

 

( ) ( ) ( )
( ) ( )
aFT aF T

T
aFaF TT

f 2T f 2 f
FF

2 aFa2a T

E E E dEthermal
reproduction factor E E dE

h Σ f hΣ f
= h = =

Σ fΣ f

nΣ f fnΣ nΣ
= = =

f ΣΣΣ f

∫
∫  

 f1 1 f 2 2 f1 1 2 f 2

f 2 2 f 2
fast fission factor

nΣ f + nΣ fn Σ ff  + nΣ
= ε = =

nΣ fn Σ
 

 1 2 1 1 2

a1 1 1 2 1 a1 1 2

resonance escape pprobability
→ →

→ →

Σ φ Σ
= = =

Σ φ + Σ φ Σ +Σ
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1 2 1
F 22

T1 1 1 2 1

1fast non-leakage Pprobability 1 BD B
→

→

Σ f
= = =

+ tf + Σ f
 

a2 2
T 2 22

T2 2 a2 2

1thermal non-leakage Pprobability 1 L BD B
Σ φ

= = =
+φ + Σ φ

 

2
T T Tthermal migration area M L= = + t  

Also note that a key factor in our ability to perform preliminary critical size and critical 
composition calculations was the assumption of a dilute homogeneous system.  This assumption 
leads to the following approximations: 

 MM
tr

1D D
3

≈ =
Σ

  T TMτ = τ   ( )2 2
T TML 1 f L= −  

and that pε ≈ 1.0. 

Finally, with the definition of reflector savings, δ, as the difference between the critical sizes of 
the bare and reflected systems, one can use the above relationships for a reflected system as well 
as for the bare core, where the reflected reactor uses the above equations for a bare core with an 
effective core size given by ao + 2δ for a slab and Ro + δ for spherical or cylindrical geometry.  
Thus, the above equations can be used to do preliminary analyses for both bare and reflected 2-
group critical systems  --  with the formal derivations and explanations given in further detail in 
Ref. 13. 

Please make sure you are comfortable with the material in Ref. 13 before continuing!!! 

Additional Theoretical and Modeling/Analysis Considerations 
The previous two sections of these notes (and the supporting reference material) cover several 
topics related to the solution of the steady state diffusion equation for both source driven and 
critical reactor systems.  Although this material gives a good introductory overview of steady-
state reactor theory, it certainly does not represent a complete treatise on this subject  --  and 
there are many important topics that have not been discussed and/or only an elementary 
treatment has been given here.  Much of the omitted material is clearly not appropriate for 
discussion in an introductory course (transport theory solutions, numerical solution of the 
balance equations, etc.), but some subjects have not been discussed in detail simply due to a lack 
of time.  However, in an attempt to be as complete as possible, we will briefly mention a few of 
the missing topics here, just so you are at least vaguely familiar with some of the considerations 
that have been neglected in previous discussions.  In addition, the simple geometries treated 
previous have given us a good idea of the expected flux behavior in a variety of situations, but 
there are also many cases that have not been addressed.  Thus, we will show some real modeling 
and analysis results for a simple 2-group 2-D core-reflector model and for a typical core 
configuration within the UMass-Lowell research reactor (UMLRR), just so we can point out 
some interesting situations that cannot be treated easily with simple analytical models. 

In particular, we want to briefly address four additional topics, as identified in the following 
subsections: 
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Heterogeneous Effects:  We have consistently used the term “homogeneous” to describe the 
material properties in all our previous models.  Clearly, however, reactor geometries are not 
simple homogeneous mixtures of fuel, moderator/coolant, structure, and control.  Instead, the 
actual geometries are quite complicated and quite heterogeneous  --  with discrete regions of fuel, 
clad, coolant, structure, etc..  Figures 1 and 2 highlight this heterogeneous geometry, with a 
detailed sketch of a typical Westinghouse PWR 17×17 fuel assembly and a simple drawing of 
the core region for the UMLRR  --  clearly these geometries are not physically homogeneous!!!  

 
Fig. 1   Standard Westinghouse PWR 17×17 fuel assembly design. 
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Fig. 2   Post-FNI core layout within the UMLRR. 

 

The challenge then becomes “How do we create equivalent homogeneous regions that properly 
account for the heterogeneous detail in the physically heterogeneous geometries?”.  This task is 
usually treated as part of the cross section averaging and collapsing process as discussed briefly 
in a previous set of Lecture Notes (see Ref. 14).  In general, this process is quite involved and a 
few paragraphs excerpted from Ref. 14 overviews the key issues involved, as follows: 

----------  excerpt from Ref. 14 with minor editing  ---------- 

The equation to be used for collapsing the fine group data for some spatial region z is of the form  

g' g'vzg ' gz
gz

g'vzg' g

1 N(r) (r) (r)dr
N

(r)dr
∈

∈

σ φ

σ =
φ

∑ ∫
∑ ∫

dddd  

dd

 

where g' refers to the fine group number and g is a broad group index.  To 
evaluate this equation, one needs to know the geometry (denoted by the 
spatial variable r and domain of interest vz), the material composition 
(denoted by N( r ) and its average value over vz as Nz), and the spatial 
variation of the fine group weight function, φg′( r ).  This typically requires 
that a fine group 1-D or 2-D model be employed to solve for φg′( r ). 

In doing this, some representative portion of the overall heterogeneous 
geometry is modeled in one-dimensional or two-dimensional geometry.  
This unit cell or unit assembly calculation is designed to be simple enough 
so that φg′( r ) can be computed, but accurate enough so that the resultant 
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average cross sections are indicative of a full multidimensional heterogeneous geometry fine 
group analysis.  The broad group cell or assembly averaged cross sections can then be used in 
full or partial core 2-D and 3-D computer models that only incorporate homogeneous regions 
within the models. 

The key goal, of course, is to somehow incorporate all the 
detailed information that is available in the heterogeneous 
geometry and fine-group energy resolution into the broad 
group assembly averaged cross sections.  This is not an 
easy task, and there is still ongoing research on how best to 
accomplish this task.  The two key issues involved here 
relate to the concepts of space and energy self shielding.  
These two concepts are illustrated nicely in the two 
sketches:  one showing the flux depression that can occur 
in the neighborhood of a resonance, and the other showing 
the depression in the thermal flux that often occurs in the 
vicinity of a fuel rod (or other absorber material).  These 
indicate the fine detail that must be accounted for in the 
space and energy dependent weight function, φg′( r ), when 
collapsing to the problem-dependent broad group level. 

Clearly some details have been left out of the above 
discussion.  In addition, it should be noted that there is no 
single path to follow, and it is somewhat of an art to perform 
these kinds of computations.  The definition of the unit cell, 
the choice of the initial fine group and resultant broad group 
energy structures, and the selection of the calculational 
methods to compute φg′( r ) are decisions that need to be 
made.  Only some experience (and good fortune) will get you 
through the torturous path of generating broad group cross sections. 

-------------------- 

Lamarsh (Ref. 2) also addresses the subject of heterogeneous systems, with focus on how the 
components of the 4-factor formula change for heterogeneous versus homogenous systems.  This 
discussion is instructive from a qualitative viewpoint, but sophisticated computer modeling, as 
noted above, is usually needed for quantitative results.  The two factors mostly affected are the 
thermal utilization, f, and the resonance escape probability, p.  Within this context, lumping of 
the fuel tends to reduce the thermal flux in the fuel region (spatial self shielding) and this tends to 
decrease the thermal absorption rate in the fuel   --  thus fhet < fhomo.  Concerning the resonance 
region, lumping of the fuel also increases the atom density and macroscopic absorption cross 
sections in these resonances.  This, in turn, can cause a flux dip at the localized resonance 
energies (resonance self shielding) and this tends to decrease resonance absorption and increase 
the resonance escape probability  --  thus phet > phomo.  In most low enriched systems, since the 
average absorption cross section at resonance energies is greater than at thermal, the lumping of 
the fuel generally increases p more than it decreases f.  Thus, (pf)het > (pf)homo for low enriched 
systems.  However, it should be noted that these effects are quite subtle, and detailed computer 
modeling is usually needed to quantify these effects for design and analysis purposes. 
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Coupling of Thermal Hydraulics and Reactor Physics:  Before any reactor physics 
computations can occur, we must have knowledge of the material composition and temperature, 
so that the appropriate atom densities and macroscopic cross sections can be determined.  
However, in practice, the computed flux distribution and power density profile affect the 
material temperature and density distribution which, in turn, impacts the physics calculation, etc. 
etc.  This coupling represents a nonlinear relationship, since the cross sections are implicitly 
related to the computed flux and power distribution.  In addition, since the temperatures and 
densities are spatially dependent, the macroscopic cross sections are also functions of space (fuel 
burnup also causes a spatial dependence).  This spatial behavior and nonlinear coupling is 
definitely important in high power systems, and this is usually treated within a nonlinear iteration 
scheme within the design codes used within the nuclear industry.   

The energy removal process will be discussed in some detail and some actual heat transfer 
calculations will be performed in your subsequent Reactor Engineering course that will allow 
you to estimate the fuel and coolant temperature profiles in an operating PWR and BWR.  
However, at this point, it is sufficient to note that the connection between the physics 
calculations and the thermal-hydraulic computations is the power density, PD, where 

fg g
g

PD(r) (r) (r)= κ Σ f∑            (43) 

Note also that, in the heat transfer literature, the internal heat generation term is often given as 
q′′′  --  so, in nuclear heat transport studies, q '''(r) PD(r)=

   for the configuration under study 
(with usual units of W/cm3 or BTU/ft3).  Thus, the physics calculation feeds the thermal-
hydraulic analysis and, in turn, the resultant temperature profile allows us to compute the 
appropriate macroscopic cross sections for the system  --  and this nonlinear iteration scheme is 
continued until the power density and temperature profiles no longer change… 

Within this context, it should also be noted that the physics analysis also feeds any safety 
calculations that will be performed for a given reactor system.  In safety analyses, one is often 
interested in the worst case scenario, so usually the hottest assembly and/or hottest channel is the 
focus of the analysis.  For a hot channel analysis, we are interested in the fuel pin and channel 
configuration with the maximum power production, since this often leads to the highest 
temperatures and the greatest potential for fuel damage  --  and excessive temperatures that can 
lead to fuel damage must be avoided under all plausible accident scenarios.  

The power peaking factor, F, and/or the hot channel factor, FR, are the usual quantities that are 
passed along from the physics analysis team to the safety analysis group.  The total peaking 
factor is simply a ratio of the peak to average power density, or 

max

ave

PDF
PD

=           (44) 

where the power density at a point is given by eqn. (43), and the hot channel factor (which is 
sometimes referred to as the radial peaking factor) is given by 

R
maximum pin powerF
average pin power

=         (45) 
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These two quantities are clearly related by the axial peaking factor, Fz, which represents the peak 
to average power density along the hot fuel pin.  In particular, we have 

F = FRFz            (46) 

These peaking factors are important because, with these quantities, one can easily construct the 
peak heat generation rates within the hot channel, or 

ave
fuel

Pmax power density F PD F
V

 
= × =  

 
      (47) 

R R
Ppower produced  F ave pin power Fin hot pin # of fuel pins

 
= × =  

 
   (48) 

where P is the total reactor power and Vfuel is the total volume of all the fuel pins.  Since the 
average power density and the average pin power are readily available quantities, if F and FR are 
known, then eqns. (47) and (48) can be easily evaluated for these two important quantities  --  
that is, the maximum power density in the system and the power (or average power density) 
produced in the hottest fuel pin in the reactor.  

In general, F, FR, and Fz are determined from detailed physics calculations for the system under 
study  --  and this is usually done via numerical solution of the multigroup neutron balance 
equation and appropriate manipulation of the resultant discrete power density distribution.  
However, if the core geometry is simple enough to allow analytical calculations, then these 
quantities can be determined from simple integration of the analytical results.   

As an example, let’s consider the finite bare homogeneous cylindrical reactor model from Ref. 
12.  In this 1-group case, the resultant power density is given by  

 fPD(r, z) (r, z)= κΣ f          (49) 

and the total reactor power is simply the integral of eqn. (49) over the full core volume, or 

f fP dr (r, z) 2 rdrdz= κΣ f = κΣ f π∫ ∫
d        (50) 

where κ is an energy per fission conversion factor (200 MeV/fission = 3.204×10-11 W-s/fission) 
and 

 0
2.4048(r, z) AJ r cos z

R H
π   φ =    

   
       (51) 

Since this is a bare homogeneous system, the maximum power density clearly occurs at the 
center of the reactor (at r = 0 and z = 0), so that PDmax is simply 

max f f
1 f fuel fuel

2.4048 P 3.638PPD A
4J (2.4048) V V

 π
= κΣ = κΣ = κΣ 

    (51) 

where the expression for A comes directly from Ref. 12 and assumes that the extrapolation 
distances are small (i.e. H ≈ Ho and R ≈ Ro). 
Now, since the total peaking factor is simply a ratio of the peak to average power density, we 
have 
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max fuel

ave

fuel

3.638P
PD VF 3.638PPD

V

= = =         (52) 

Also, since the peak in the axial profile occurs at z = 0, the radial power density profile at this 
axial location is given by 

 f f 0 1 0z 0
2.4048 2.4048PD(r,0) (r, z) AJ r c J r

R R=
   = κΣ f = κΣ =   
   

   (53) 

and the radial peaking factor is given by 

( )

o

max 1
R R1ave 02 0

o

1

o o1 1
12

o

PD(r,0) cF
2 c 2.4048rPD(r,0) r J dr

RR
c 2.4048 2.316

R R 2.4048R2 c 2J 2.4048J
2.4048 RR

= =
π  

 π  

= ≈ =
π  

 π  

∫
  (54) 

where again, the final evaluation assumes that the extrapolation distance is small, and the result 
for the integration over the core volume comes directly from Ref. 12. 

Doing the same type of analysis for the axial peaking factor at r = 0, gives 

 f f 2r 0PD(0, z) (r, z) A cos z c cos z
H H=

π π   = κΣ f = κΣ =   
   

    (55) 

and 

o

o

max 2 2
z H /22 o2ave

H /2
o o

PD(0, z) c cF 1.571c Hz c 2HPD(0, z) 2cos dz sin
H H H 2H−

π
= = = ≈ =

ππ
π∫

  (56) 

where we note that these results are indeed consistent with eqn. (46), since 

F = FRFz = (2.316)(1.571) = 3.638       (57) 

The various peaking factors defined here are extremely important in reactor design and safety 
analysis studies, and these will be addressed again in some detail in your subsequent Reactor 
Engineering class.  For now, we emphasize that computing these quantities is one of the primary 
goals (among several others) of the reactor physics analysis, and they represent the primary link 
between the reactor physics and thermal hydraulics groups within many nuclear design and 
analysis organizations. 

A Simple 2-D Core-Reflector Model using 2-Group Theory:  The sequence of examples 
illustrated previously were, out of necessity, quite simple  --  since we needed to confine the 
problem specifications to meet several criteria so that the resultant differential equations would 
indeed be solvable using relatively straightforward analytical methods (homogeneous material 
compositions, one or two regions, 1 or 2 energy groups, various 1-D geometries, bare 
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homogeneous 2-D geometries, etc.).  In practice, of course, real reactor systems are much more 
complicated than implied by these simple configurations, but most of the more realistic models 
cannot be addressed using analytical methods.  In this subsection we illustrate, using the 
VENTURE code15, the flux distribution that results for a relatively simple 2-group reflected 
reactor modeled in 2-D XY geometry (this system cannot be solved analytically).  The 
VENTURE code solves 1-D, 2-D, and 3-D reactor geometries using the multigroup diffusion 
theory representation of the neutron balance equation  --  and it is relatively easy to use for 
simple geometries if appropriate cross sections are available. 

For the demo here, we use a well-known PWR benchmark model16 that was used extensively in 
the 1980s and early 1990s to validate a lot of the computational methods development that was 
being done at that time.  Most of the so-called IAEA PWR Benchmark specifications are 
summarized nicely in Fig. 3.  Enough details are available here to model the full 1/8-core 
symmetric 3-D system but, for illustration here, we only address the 2-D XY planar region at the 
axial centerline of the system.  In addition, we have taken the liberty to modify the formal 
benchmark and include a model without control as well as the reference 2-D mid-core model 
with control inserted within four assemblies as implied in Fig. 3. 

The two 2-D models used here are illustrated in Fig. 4, where the top configuration shows the 
model with no control inserted (i.e. a simple core-reflector system), and the bottom layout shows 
the reference benchmark configuration with control in four assemblies within the ¼ core model.  
VENTURE models, using the 2-group data given on the specification sheet, were developed and 
run, and the output flux files were post-processed with a series of in-house Matlab codes to 
generate various views of the resultant flux distributions within the two models.  These profiles 
are summarized in Figs. 5–10, as follows: 

Figure 5 shows the X-directed group-dependent flux profiles for the control-out and control-in 
cases near the centerline of the core (through y ≈ 169 cm).  In particular, both figures clearly 
show a peak in the thermal flux just beyond the core-reflector interface.  This buildup of thermal 
neutrons is primarily due to the discontinuous material properties at the interface, where the 
reflector thermal absorption cross section is significantly lower than in the core region (about a 
factor of 8 for the current system).  Thus, the fast fission neutrons slowing down in this region 
tend to increase the thermal neutron flux (because of the reduced absorption relative to the core 
region) and produce a very distinctive peak in the thermal flux profile.  This thermal peaking is 
an important effect and it certainly must be modeled accurately in thermal systems  --  and this is 
one reason why 1-group theory is not really appropriate for thermal reactor systems. 

For the control versus no control cases, we clearly see that, in the vicinity of the poisoned 
assemblies, there are significant depressions in both the fast and thermal flux profiles.  Here the 
larger thermal absorption cross section causes a reduction in the thermal flux and, in turn, the 
lower thermal flux reduces the fission rate near these assemblies, which causes the depression in 
the fast flux.  The y location for the profiles in Fig. 5 goes directly through the center of the 
rodded assemblies but, in Fig. 6, the y location for the selected profiles (at y  ≈ 150 cm) does not 
pass directly through any controlled assemblies.  However, even in this location, the effect of the 
nearby control rods is still apparent  --  although the flux depressions are significantly reduced. 
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Fig. 3   Specifications for the 2-D/3-D IAEA PWR Benchmark (from Ref. 16). 
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Fig. 4   Material layouts for the two 2-D cases treated here (without & with control). 
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Fig. 5   X-directed flux profiles at y ≈ 169 cm. 
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Fig. 6   X-directed flux profiles at y ≈ 150 cm. 
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Fig. 7   Isometric and top view of the fast flux distribution for the case with no control. 
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Fig. 8   Isometric and top view of the fast flux distribution for the case with control. 
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Fig. 9   Isometric and top view of the thermal flux distribution for the case with no control. 
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Fig. 10   Isometric and top view of the thermal flux distribution for the case with control. 
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Figures 5 and 6 give a quantitative view of the two primary effects of interest here  --  the flux 
depression due to the control rods within certain assemblies and the peak in the thermal flux that 
usually occurs at the core-reflector interface in a thermal reactor.  For a more qualitative view, 
Figs. 7-10 show the fast and thermal surface plots (isometric and top views) for both the no 
control and controlled cases.  These allow a better overall perspective of the expected flux 
distribution throughout the full configuration in these relatively simple systems.  The various 
peaks and valleys in the flux profiles shown here are typical, and these same features are 
observed in more complex systems each time there are large changes in macroscopic cross 
sections across material boundaries within the overall system. 

Some Analyses for the UMLRR:  Here we use the UMass-Lowell research reactor (UMLRR) to 
illustrate the behavior of actual flux profiles within a real reactor system.  As indicated 
previously, the UMLRR was converted from the use of high enriched uranium (HEU) fuel to low 
enriched uranium fuel (LEU) in August 2000 and a new large-volume fast neutron irradiation 
(FNI) facility was designed and installed within the UMLRR in early 2002.  To support these 
design efforts, a series of computational models within the VENTURE15 and DORT17 codes 
were developed and used to design the new configurations and to help analyze the actual as-built 
systems.  VENTURE uses diffusion theory and allows 1-D, 2-D, or 3-D modeling, and DORT 
uses the transport theory approximation which allows treatment of the angular dependence of the 
neutron flux in 2-D configurations.  The VENTURE models typically use two energy groups, 
where the focus is on computing the multiplication factor, blade worth distributions, and other 
reactivity-related parameters, as well as determining the overall power distribution in the system.  
For the 2-D DORT analyses, we typically use a coupled 47-group neutron and 20-group gamma 
cross section library so that we can get detailed representations of both the multigroup neutron 
and gamma radiation fields throughout the facility  --  with special focus on characterization of 
the experimental facilities within the UMLRR. 

Several papers (see Refs. 18-25) have been written over the years for both internal use at UMass-
Lowell and for presentation at a number of national and international conferences that 
summarize the UMass-Lowell design and analysis work for the HEU to LEU conversion effort 
and for the development and initial testing of the FNI facility.  Clearly, we do not have the time 
to go over all this work in detail   --  but you are certainly encouraged to review the appropriate 
references in more detail if you have interest.  Instead, as part of these Lectures Notes, we simply 
show a series of selected diagrams and plots from these works that illustrate some of the 
behavior that is typical in real reactor systems.   

In particular, Figs. 11−16 (from Refs. 23 and 25) show the actual fuel assembly design, the 
detailed 2-D XY core configuration that was modeled, a corresponding set of typical X-directed 
and Y-directed flux profiles near the core centerline, and the top view of a 2-D surface plot 
showing the overall power density distribution within this specific 21-element core layout (note 
that all the control blades are in the out position in these XY models for the axial centerline of 
the UMLRR).  From the geometry diagram, note that each assembly is broken into five regions 
to accommodate the specific design of the UMLRR LEU fuel assembly as shown in Fig. 11 --  
where the top and bottom regions account for the non-fueled portions of the fuel plates and the 
side plates that hold the individual fuel plates in place, the left and right regions of the assembly 
model the dummy aluminum plates on both ends of the assembly, and the homogenized central 
region contains most of the actual fuel plates and water channels within the overall assembly. 
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Fig. 11   Standard LEU1618 fuel assembly geometry.  
(This sketch is rotated 90o relative to the assembly arrangement in the core  –  see Fig. 12.) 

 
Fig. 12   Core layout for the reference LEU fuel design in the UMLRR. 
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Fig. 13   Zone and material map for the reference LEU215 core. 

 

 
Fig. 14   Typical X-directed flux profiles along the core centerline. 
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Fig. 15   Typical Y-directed flux profiles along the core centerline. 

 

 
Fig. 16   2-D XY power distribution for the reference LEU215 core. 
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The geometry details associated with the assembly design are important, since the changes in the 
macroscopic cross sections between individual regions within the assembly and among the 
different element types (full fuel, partial fuel, water filled radiation basket, graphite reflector, 
etc.) give rise to much of the detailed structure seen in the flux and power density plots shown 
here.  For example, the three large peaks in the thermal flux in the X-directed flux profiles in  
Fig. 14 are due to the radiation basket (RB) on the left, the central flux trap (FT) assembly, and 
the regulating blade region (in its control-out configuration) on the right.  The smaller 
intermediate peaks  --  one on the left of the flux trap and two on the right side of the FT 
assembly  --  are due to the dummy aluminum plates and unheated coolant channels on each side 
of the fuel assembly.  These water and aluminum regions act as small reflector zones where the 
thermal flux peaks due to the slowing down of the fast neutrons from the nearby fuel regions.  
Similar behavior is also apparent in the Y-directed thermal flux profile in Fig. 15, where the flux 
trap and the two water-filled control blade channels (remember that the control is out in this 
model) account for the three large flux peaks in this figure.  Also notice that the localized peak 
on the left side (at y ≈ 75 cm) is due to the water-filled radiation basket in this location (used as   
a source holder), and the smaller broader thermal flux peak on the right side of the model (at        
y ≈ 125 cm) is due to the graphite reflector block in this location  --  where we recall that 
graphite has a much larger diffusion length than water and, therefore, the reflector peaks are 
usually not as large in graphite relative to water.   

Concerning the fast flux distributions, much of the above discussion is also appropriate if we 
remember that the fast neutrons are born in the fuel regions and simply slow down to thermal in 
the non-fuel locations.  Thus, we would expect the fast flux to peak in the fuel and dip in the 
water and graphite non-fuel zones  --  and careful inspection of the flux profiles in Figs 14 and 
15 and the geometry layout in Fig. 13 shows that the calculated fast flux behavior is exactly as 
expected.   

Finally, we note that the power density distribution shown in Fig. 16 is also as expected.  Here, 
of course, power is only produced in the fueled regions (we assume that the power is deposited at 
the location of the fission event) and, since most of the fissions are at thermal energies, the 
power density follows the thermal flux distributions in the fuel fairly closely.  Thus, we see that 
the power density peaks occur on the edges of the fuel assemblies (and not in the center of the 
elements) because of the thermal flux peaks in the neighboring water regions.  From Fig. 16 we 
see that the peak power density is about 30 W/cm3 and that this occurs in the fuel assembly just 
to the right of the central flux trap element  --  in fact, to reduce this peak power density 
somewhat, the flux trap has a central region of water (or the experimental basket) and an outer 
graphite rim, since the use of graphite versus water tended to reduce the peak power density 
somewhat without a significant penalty in the experimental thermal flux that could be achieved. 

The results for the LEU215 core model as described above were obtained during the design 
phase of the HEU to LEU conversion effort  --  these represented the predicted behavior of the 
new LEU core.  Once the new core was actually installed, startup physics testing showed that the 
initial core excess reactivity was slightly lower than predicted.  Thus, a small change was made 
that interchanged four water reflectors assemblies with four graphite reflectors to give a small 
increase in reactivity  --  as shown in Fig. 17.  The new model was referred to as the 
LEU216/LEU316 model for computational purposes and this became the actual initial LEU core 
configuration for the UMLRR (denoted as the M-1-3 core by the operations staff).   
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Fig. 17   Target (left) and actual (right) startup cores for the LEU-fueled UMLRR. 

 
Five copper wires (and two gold normalization foils) were inserted in the M-1-3 official startup 
core in the locations shown in Fig. 18, and these were irradiated to produce radioactive Cu-64.  
After irradiation, the wires were cut into 1-inch segments and, from the measured activity of 
each of the wire segments, one can deduce the axial profile of the thermal flux in the particular 
XY grid location.  Figure 19 shows the resultant measured and calculated axial profiles for the 
UMLRR.  Although there are some noticeable differences, the axial profiles are represented 
reasonably well by the VENTURE calculations  --  these flux comparisons and several additional 
measured reactivity worths and the measured differential worth curves for the five control 
elements within the UMLRR gave good confidence in the overall performance of the VENTURE 
modeling.19 

 

Fig. 18   Location of the gold foils and copper wires for the flux mapping measurements. 
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Fig. 19  Measured and computed axial thermal flux profiles at various locations (M-1-3). 
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As a final modeling example, a series of pictures, diagrams, and modeling results associated with 
the design and analysis of the fast neutron irradiator (FNI) within the UMLRR are summarized 
below (from Refs. 20 and 21).  The purpose of this new 
experimental facility was to provide an easily accessible 
large-volume irradiation facility that had a relatively uniform 
fast flux ≥ 1011 n/cm2-s over a 1 ft2 area parallel to the side of 
the core, that minimized the thermal neutron fluence rate and 
gamma dose to the extent possible, and that had a maximum 
reactivity effect below the limit for movable experiments 
within the UMLRR (so that samples could be inserted and/or 
removed during full power operation).  To achieve these 
goals, three existing beam ports were removed from one side 
of the core and a modular arrangement consisting of a large 
volume sample canister, several shield blocks, a large 
aluminum guide collar, four aluminum blocks, and a single 
flux shaping element was constructed within an aluminum 
grid support structure similar to the core grid structure (as 
shown in the pictures given below in Figs. 20-23).   

                   
 Fig. 20  Side view of FNI during installation.   Fig. 21  Top view of FNI during installation. 

                      
     Fig. 22  FNI configuration with Al collar.            Fig. 23  Photo of large sample canister. 
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Two-dimensional computational models in both XY and YZ orientations 
were generated to assist in the design and analysis of the new FNI 
facility, where Figs. 24 and 25 show the zone and material layouts for 
the final version of these models.  As apparent, a number of changes to 
the core region were needed to accommodate the new experimental 
facility (new arrangement of fuel assemblies, movement of the startup 
source, addition of five leaded void boxes, etc.) and a whole new 
experimental facility replaced the three beams ports on one side of the 
core.   

Although there were a significant number of calculations and 
intermediate results generated during the whole development effort, only 
a few of the final summary results are given here (see Refs. 20 and 21 
for further details).  In particular, Fig. 26 shows the overall effectiveness 
of the basic FNI design (with lots of borated aluminum and lead in the 
FNI shield blocks) in attenuating the low energy and gamma fluxes to a 
greater extent relative to the fast flux component  --  with a fast flux in 
the experimental region that slightly exceeds the design specification of 
1011 n/cm2-s.  This is also summarized in Table 3, where we see several 
integral indicators that compare an in-core radiation basket facility with 
the ex-core FNI facility.  Finally, Fig. 27 shows the absolute and normalized neutron spectra in 
the in-core D2 and ex-core FNI sample locations.  Certainly the ex-core facility has a lower 
thermal flux component but, as apparent, this benefit was obtained at the expense of a reduced 
fast flux level.  In addition, as illustrated in the normalized plot of just the fast spectra (Fig. 27b), 
the high energy end of the energy profile is also degraded somewhat  --  and this is the inevitable, 
but undesirable result of having an easily accessible ex-core irradiator (since there will always be 
some moderation of the high energy neutrons when passing through any medium  --  even high 
mass number materials).  Overall, however, the fast-to-thermal and fast-to-gamma flux ratios in 
the FNI are much greater than in the in-core irradiation location  --  thus, the new facility does 
indeed meet its intended role as an accessible large-volume fast neutron irradiator. 

Summary 
Well, we have finally completed this section of Lecture Notes.  We started this lesson with a 
base understanding of multigroup diffusion theory, but we had no practical knowledge of the 
application of that theory to real design and analysis situations.  Now, upon completion of this 
section of the course, you have been exposed to a variety of applications, ranging from simple   
1-group source-driven and critical systems to the detailed design and analysis of a new LEU 
fueled core and a new ex-core experimental facility for the UMLRR.  Along the way, a number 
of useful analytical procedures were developed for performing preliminary critical size and 
critical composition calculations, for determining the flux profile and magnitude in a number of 
simple configurations, for computing peaking factors, fast-to-thermal flux ratios, etc., for 
addressing the elements of the four and six factor formulas and relating these to the general life-
cycle of a neutron in thermal systems, for addressing heterogeneous effects, and for extending 
and applying the concepts treated in our simple analytical treatments to the design and analysis 
of realistic systems.  In all, we have done a lot here, and a good understanding of this material 
will help give you a strong foundation for future studies and/or work within the reactor physics 
area! 
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Fig. 24a   Full view of XY computational model. 

 

 
Fig. 24b   Expanded view of core and FNI from XY computational model. 
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Fig. 25a   Full view of YZ computational model. 

 

 
Fig. 25b   Expanded view of core and FNI from YZ computational model. 
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Fig. 26   Y-directed flux profiles from the DORT XY model. 

 

Table 3  Integral parameters for in-core location D2 and the new ex-core FNI facility. 

Parameter of Interest Radiation 
Basket D2 

FNI 
Sample 

Broad Group Fluxes (n/cm2-sec) 
Fast Flux > 0.1 MeV 3.26E+12 1.83E+11 

Epithermal Flux 3.42E+12 2.45E+11 
Thermal Flux < 1 eV 1.14E+13 4.85E+09 
Total Neutron Flux 1.81E+13 4.33E+11 
Total Gamma Flux 2.95E+13 5.05E+10 

Additional Fast Flux Characterization 
Fast Flux > 1 MeV 1.72E+12 5.08E+10 

Fast Flux > 0.01 MeV 4.02E+12 2.55E+11 
1 MeV Equiv. Flux 3.08E+12 1.39E+11 

RDF 0.77 0.55 
Energy Deposition Rates (Krad/hr) 

Neutrons in Air 2.58E+04 1.38E+02 
Neutrons in Silicon 9.37E+02 3.20E+01 

Gammas in Air 3.50E+04 4.40E+01 
Gammas in Silicon 3.74E+04 4.62E+01 
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Fig. 27a   Absolute neutron flux in two experimental facilities within the UMLRR. 

 

 
Fig. 27b   Normalized fast neutron spectra within the D2 and FNI regions. 
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