
A 2-Group Example:  Point Source of Fast Neutrons in an Infinite Moderating Medium 
 
Most of the examples involving non-multiplying media applications up to now have used           
1-group theory.  In this set of Lecture Notes, we will treat a simple 2-group application to 
illustrate the basic mathematical procedure that is needed, and then delay further applications 
involving the use of 2-group theory until the critical reactor problem has been examined.  This 
approach makes sense because 2-group diffusion theory is not usually applied to the pure 
shielding problem  --  but it is indeed the primary workhorse for the core physics problem.  Thus, 
the goal here is to get a qualitative view of neutron diffusion within the 2-group approximation, 
and to overview the sequential solution scheme for each group balance equation (not to 
accurately predict the actual flux level in such systems).  
The 2-group diffusion equation for a homogeneous non-multiplying medium can be written as 
follows (see the general multigroup diffusion equation from Ref. 1 with constant material 
properties, no fission, and no upscatter): 
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Since the coefficients are constant, division by the diffusion coefficient gives 
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where 2
1L  and 2

2L  are the fast and thermal diffusion areas.   

Now, to illustrate the application of the 2-group diffusion equation in a diffusing medium, let’s 
assume that we have a point source of fast neutrons (Q1 neutrons/sec) in an infinite homogeneous 
non-multiplying medium where it is valid to assume that Σ1→2 >> Σa1 (which allows replacing the 
fast diffusion area with the neutron age, T 1 1 2D / →τ = Σ ).  In this case, eqn. (2) becomes 
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Note here that we have decided to use a subscript T to denote the cross sections and flux within 
the thermal group (except for D2).  Also notice that since the fast fixed source is only non-zero at 
r = 0, we will treat this as a source condition and exclude the point r = 0 when solving the fast 
group equation.  One final, but important, observation is that eqns. (3a) and (3b) are only 
sequentially coupled.  This means that the fast group equation is independent of φT, and it can be 
solved without consideration of the thermal equation.  Then, once φ1 is known, φT can be 
obtained from the solution of eqn. (3b). 
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In performing this procedure, one should note that the φ1 equation is identical in form to the        
1-group point source problem that was solved previously [see Refs. 2 or 3].  Therefore, by 
analogy, we can immediately write the solution to eqn. (3a) as 
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With φ1(r) known, eqn. (3b) for φT(r) in a 1-D spherical coordinates' system becomes 
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This expression is a linear non-homogeneous 2nd order variable-coefficient differential equation.  
As detailed in Ref. 3, the substitution φT = ω/r can simplify this expression considerably, giving 

 T
2

r/1
2 2

T 2T

Qd 1 e
4 Ddr L

− τω− ω = −
πτ

       (6) 

which is now a linear non-homogeneous 2nd order constant-coefficient ODE.  
The standard solution technique for solving eqn. (6) is to write the general solution as the linear 
combination of the homogeneous and particular solutions.  From the 1-group point source 
problem treated earlier (Ref. 3), we know that the homogeneous solution is simply 

 T Tr/L r/L
h 1 2(r) A e A e−ω = +         (7) 

Now, if we assume that the particular solution has the same functional behavior as the down-
scatter source, we might try 

 Tr/
p (r) Ce− τω =          (8) 

as a potential particular solution [notice that this has the same form as the forcing function in 
eqn. (6), including all of its linearly independent derivatives  --  and this follows the general rule 
for finding the particular solution within the Method of Undetermined Coefficients].  Putting this 
assumed solution into the defining source-driven ODE [i.e. eqn. (6)] gives 
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and, solving for C gives 
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Thus, our assumed solution was correct and we can now write the general solution as 
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The next step in the standard solution procedure is to apply appropriate boundary conditions so 
as to uniquely determine the A1 and A2 coefficients within the general solution.  In this case, the 
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fact that the flux must remain finite as r → ∞, immediately forces A2 = 0.  With this constraint, 
eqn. (10) becomes 
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Also, since there must be symmetry around the point r = 0 and there is no discrete or 
discontinuous source of thermal neutrons at r = 0, the second boundary condition is simply that 
the thermal leakage out of a sphere of radius r is zero as r → 0.  We can impose this constraint as 
a mathematical limiting expression, or 
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Substituting eqn. (13) into eqn. (12) and taking the limit as r → 0 gives 
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or A1 = −C          (15) 
Therefore, the final solution for the thermal flux is 
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Thus, we have solved our first 2-group problem!  This was done for the specific case where there 
is a point isotropic source of fast neutrons in an infinite non-multiplying medium.  The spatial 
distribution of the fast flux is given by eqn. (4) and the thermal flux profile is given by eqn. (16).  
The ratio of these two flux profiles  --  referred to as the fast-to-thermal flux ratio, φ1/φT  --  is 
also of interest, and this can be written as 
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To help visualize the spatial behavior of these profiles, a short Matlab program called ptsrc2g.m 
was written to evaluate and plot φ1(r), φT(r), and φ1/φT for various moderators with Q1 = 1 
neutron/sec (i.e. a unit source).  The fast and thermal material data were obtained from Table 5.3 
and Table 5.2 in Lamarsh (Ref. 2), respectively, and the resultant profiles are contained in Figs.  
1 and 2.  Note that the material options within the code (see code listing in Table 1) include  
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Fig. 1  Results from ptsrc2g.m for an infinite water medium. 

 

 
Fig. 2  Results from ptsrc2g.m for an infinite graphite medium. 
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water, graphite, and beryllium, but only the water and graphite profiles are shown here.  In 
addition, a user option to select either a linear of logarithmic y-axis for the flux profiles is 
available since substantial attenuation over several orders of magnitude can occur.  Again, only 
one of the options (logarithmic axis) is shown here, but the reader is encouraged to actually run 
the ptsrc2g code to explore other possibilities. 
Concerning the results, first we note that the decrease in the flux level in both groups is faster in 
water than in graphite since, as we have seen before in Ref. 3, the diffusion lengths in graphite 
are much larger than for water (note that, for the plots, we let r go to 100 cm for the graphite case 
and only to 30 cm for the water moderator case).  Also of interest in this 2-group model is the 
relative behavior of the fast and thermal fluxes for a given material.  In particular, note that, after 
a short distance, the fast-to-thermal flux ratio approaches a constant in water but, in graphite, the 
fast flux continues to attenuate at a faster rate than the thermal flux, with the φ1/φT ratio 
eventually approaching zero.  Thus, for example, a large thickness of graphite could be used 
within an experimental facility to selectively filter out the high energy neutrons, leaving a nearly 
pure population of thermal neutrons  --  such as in the graphite thermal column in the UMass-
Lowell research reactor (UMLRR)… 
To see why graphite behaves differently from water, we only need to look at the diffusion 
properties of these two materials (from Ref. 2), as shown in the short table below: 

Material/Property 
D1 

(cm) 
τT 

(cm2) 
T1/ τ  

(cm-1) 

D2 
(cm) 

2
TL  

(cm2) 
T1/ L  

(cm-1) 
water 1.13 27 0.192 0.16 8.1 0.351 

graphite 1.02 368 0.052 0.84 3500 0.017 
 
From here we see that, for water, T T1/ 1/ Lτ < , which says that Tr/Le−  decreases faster than 

Tr/e− τ .  Thus, as r → ∞, we have 
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But, for graphite, T T1/ 1/ Lτ > , which says that Tr/e− τ  decreases faster than Tr/Le− .  Thus, 
as r → ∞, we have 
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and  1

T
0

∞

φ
≈

φ
      (for graphite) 

Of course, these quantitative results agree with the plots of φ1/φT from above, and these help us 
rationalize the observed trends  --  and the particular observation made here is extremely useful 
for the design of experimental facilities with relatively high thermal fluxes and relatively low fast 
neutron contamination.   
Finally, we note once again that the 2-group diffusion theory model used here only gives a 
qualitative perspective on the behavior of neutron diffusion in non-multiplying media.  Since 
there is indeed a strong angular dependence of the flux in the direction away from the source, the 
original approximations made to reduce the general neutron balance equation to the diffusion 
equation are not really valid for these type of analyses  --  and, in practice, transport theory is 
usually used to get much better quantitative estimates of the neutron transport in these systems.  
However, our simple 2-group diffusion theory example still gives us a good qualitative 
understanding of these systems, and this was the primary physics-oriented goal of this example.  
Thus, along with the demonstration of how to mathematically solve a multigroup source-driven 
problem (with no upscatter), we have also gained a little physical insight into the neutronic 
behavior of general 2-group non-multiplying systems  --  and both accomplishments should add 
significantly to your growing inventory of tools and experiences for understanding general 
steady state problems in reactor theory… 
 

Table 1   Listing of the ptsrc.m code. 
 
% 
%   PTSRC2G.M  Plots the flux profiles associated with a Point Source of   
%              Fast Neutrons in an Infinite Moderator 
% 
%   This file plots the fast and thermal flux profiles associated with a point  
%   source of fast neutrons diffusing in an infinite moderating medium. Data  
%   for water, graphite, and beryllium are available (from Lamarsh) for comparison  
%   of how the diffusion parameters of different materials affect the diffusion and 
%   attenuation of neutrons. 
% 
%   A plot of the fast-to-thermal flux ratio is also generated. 
% 
%   File prepared by J. R. White, UMass-Lowell (Jan. 2015) 
% 
  
      clear all,  close all,  nfig = 0; 
%  
%   define material properties with data from Lamarsh 3rd Ed.(Tables 5.2 and 5.3) 
%   --> order: water, graphite, and beryllium 
      DD1 = [1.13 1.016 0.562];  % fast diffusion coeff (cm) 
      TT = [27 368 102];         % thermal neutron age (cm^2) 
      TTSR = sqrt(TT);           % square root of neutron age (cm) 
      DD2 = [0.16 0.84 0.50];    % thermal diffusion coeff (cm) 
      LLS = [8.1 3500 480];      % diffusion area (cm^2) 
      LL = sqrt(LLS);            % diffusion length (cm) 
      TITL = ['Water    '; 'Graphite '; 'Beryllium']; 
% 
%   select moderator material 
      K = menu('Choose Moderator Matl', ... 
               '           Water           ', ... 
               '         Graphite          ', ... 
               '         Beryllium         '); 
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      D1 = DD1(K);  T = TT(K);    TSR = TTSR(K); 
      D2 = DD2(K);  LS = LLS(K);  L = LL(K);   titl = TITL(K,:); 
% 
%   select type of plot 
      IPLT = menu('Type of Flux Plot?', '   Linear Y-Axis   ','   Log Y-Axis   '); 
% 
%   define radial grid  (use R approx 5*fast diffusion length) 
%   Note: start at about 1 cm to avoid the singularity at r = 0    
      N = 200;   R = ceil(5*TSR/10)*10;    r = linspace(1,R,N); 
% 
%   compute fluxes and fast to thermal flux ratio (for unit source strength) 
      c1 = 1/(4*pi*D1);   c2 = LS/(4*pi*D2*(LS-T)); 
      phi1 = c1*exp(-r/TSR)./r; 
      phi2 = c2*(exp(-r/L) - exp(-r/TSR))./r; 
      ratio = phi1./phi2; 
% 
%   plot flux profiles 
      nfig = nfig+1;  figure(nfig) 
      if  IPLT == 1,  
        subplot(2,1,1),plot(r,phi1,'r-',r,phi2,'g--','LineWidth',2),grid 
      end 
      if  IPLT == 2,  
        subplot(2,1,1),semilogy(r,phi1,'r-',r,phi2,'g--','LineWidth',2),grid 
      end 
      title(['Flux & Ratio Profiles for a Point Source of Fast Neutrons in ',titl]) 
      ylabel('Flux per Unit Source '),legend('fast','thermal') 
% 
%   plot fast-to-thermal flux ratio 
      subplot(2,1,2),plot(r,ratio,'b-','LineWidth',2),grid 
      xlabel('Radial Distance from Source (cm)'),ylabel('\phi_1/\phi_T') 
% 
%   end of problem 
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