
One-Speed Point Kinetics Equations  
Introduction 
Reactor kinetics is the study of the time-dependent behavior of a nuclear core or system under 
both normal and off-normal transient conditions over a relatively short period of time.  The 
variations in the system are usually caused by changes in control rod positioning, soluble boron 
concentration, coolant and/or fuel temperature changes, etc.  These changes can, directly or 
indirectly, add positive or negative reactivity into the system.  If the system was previously at the 
steady state critical condition, these variations perturb the neutron balance so that the neutron 
multiplication factor, k, is no longer unity, and the system enters a transient state, where the 
neutron density will increase or decrease until a new balance is reached.   

The physics of both critical and subcritical systems undergoing a transient is described by the 
time-dependent neutron balance equation.  In previous lectures (see Ref. 1, for example), we set 
the time derivative term in the multigroup balance equation to zero, since the focus there was on 
steady state operation.  In kinetics studies however, the g (r, t) t∂φ ∂

  term becomes important, 
and it must be included in the full description of the balance equation.   

In the current development, we will focus on the one-speed (one energy group) approximation to 
the multigroup balance equation since both approaches lead to the same set of space-independent 
equations.  This approximation is important, since it greatly simplifies the notation and the ease 
with which we can manipulate the equations.  On the other hand, although the final equations are 
identical, there are important subtle differences in the definition of several kinetics parameters 
that are defined during the development process.  The most important difference here is related 
to the fact that the delayed neutron emission spectrum is somewhat softer (i.e. lower average 
energy) than the prompt fission spectrum.  In the detailed multigroup formulation, this important 
distinction is retained, leading to the definition of a series of “effective” kinetics parameters that 
explicitly account for the different emission spectra.  Unfortunately, in the 1-group 
approximation, the prompt and delayed neutron spectra are identical (all neutrons appear in the 
single group)  --  thus, the effects associated with the different emission spectra cannot be 
treated.  Nevertheless, the gain in understanding and clarity associated with the one-speed 
approximation more than offsets its negative attributes.  Also, since we know that the use of the 
effective kinetics parameters is important in real analysis, we can simply use the more rigorous 
definitions (from the literature) within the equations developed here. 

Even with removal of the energy variable, the remaining neutron balance equation still contains 
full space and time dependence  --  this is referred to as the Space-Time Kinetics Formulation.  
However, there are many applications of interest (especially during normal operations) where 
only small reactivity changes are made, and no significant change in the spatial distribution of 
the neutron population is observed.  For these situations, only the time-dependence of the 
magnitude of the neutron density is important. When this approximation is appropriate, a full 
space-time formulation is not required, and one can simplify things considerably by using a 
space-independent (space-integrated) kinetics formulation  --  what is commonly referred to as 
the Point Kinetics Equations.  Thus, the focus of this set of Lecture Notes is to develop the 
theory and terminology of One-Speed Point Kinetics, along with the two primary formulations 
used in most applications: the Lifetime Formulation and the Generation Time Formulation. 
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Point Kinetics Equations 
For this development, we will start with the one-speed time-dependent diffusion equation, since 
the relatively simple 1-group treatment of the neutron balance equation gives all the essential 
features of interest here (see Refs. 2-4 for more detailed treatments that include the energy 
variable).  In words, the neutron balance equation states that 

loss rate of rate of change production rate of 
of neutron density neutrons per unit volume neutrons per unit volume= −  

and, for the 1-group approximation, we have 

f i i a
i

n 1 (1 ) C Q D
t v t

 ∂ ∂f  = = −β nΣ f+ λ + − −∇ ∇f+Σ f   ∂ ∂  
∑

 

     (1) 

where all the standard notation applies: 

n  neutron density (neutrons/cm3) 

 nvφ =   neutron flux (neutrons/cm2-s) 

 v  neutron speed (cm/s) 

 
6

i
i 1=

β = β∑  total delayed neutron fraction 

 fνΣ f   total fission source density (neutrons/cm3-s) 

 f(1 )−β νΣ f  prompt fission source density (neutrons/cm3-s) 

 λi  decay constant for delayed precursor group i (1/s) 

 Ci  fictitious delayed precursor concentration for group i (atoms/cm3) 

 i i
i

Cλ∑  delayed fission source density (neutrons/cm3-s) 

 Q  external neutron source density (neutron/cm3-s) 

 D−∇ ∇φ
 

  neutron leakage rate per unit volume (neutrons/cm3-s) 

 aΣ φ   neutron absorption rate density (neutrons/cm3-s) 

Note that, in steady state, n t 0∂ ∂ = , and this implies that the prompt and delayed fission sources 
plus the external source must exactly balance the leakage and absorption loss terms. 

The time-dependent balance for the delayed precursors in group i also represents a particle 
balance equation, where the  

rate of change precursor production precursor loss rate
of precursor density rate per unit volume per unit volume= −  

or 
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i
i f i i

C C for i 1, 2, 6
t

∂
= β νΣ f−λ =

∂
       (2) 

with 

 i fβ νΣ f  production rate of delayed precursors in group i (precursors/cm3-s) 

 i iCλ   decay rate of the ith delayed precursors (precursors/cm3-s) 

and, for steady state, these two terms must balance. 

Equations (1) and (2) represent a set of seven coupled partial differential equations in space and 
time, where all the cross sections, fluxes, and source terms are functions of both space and time.  
In general, these equations are rather difficult to solve!!! 

However, there are many applications in reactor operations when the spatial flux shape does not 
change significantly with time.  For these cases, the general space-time description can be 
reduced to a point model (spatially integrated model) that includes time as the only independent 
variable.  This procedure reduces the system to seven ordinary differential equations  –  which 
are significantly easier to solve, especially with the modern ODE solvers that are available in a 
variety of computational packages.   

There is a formal procedure for doing this reduction, during which, the so-called effective 
kinetics parameters are defined precisely.  The most general procedure usually starts with the 
energy-dependent (or multigroup) neutron balance equation, instead of the simple 1-group 
formulation given here.  Our specialization allows a more straightforward development that 
gives identical point kinetics equations, with slightly less rigor in the definition of some 
parameters.  Since the resultant differences in definition do not affect our present discussion and 
application of the final equations, we will proceed here with the 1-group formulation (since the 
notation is much easier to follow). 

Thus, starting with eqns. (1) and (2), we assume that the flux can be separated into a slowly 
varying spatial distribution and a more rapidly varying amplitude function, where 

 o(r, t) (r, t)T(t) (r)T(t)φ = ψ ≈ ψ
          (3) 

where the spatial distribution with the ‘o’ subscript represents the initial steady state value and 
T(t) represents the time-dependent amplitude of the neutron flux.  Although the assumption that 

o(r, t) (r)ψ ≈ ψ
 

, is not really necessary during the formal derivation, we will make this common 
approximation here just to simplify some subsequent manipulations  --  and this simplification is 
indeed often used in most practical applications anyway. 

Now, we substitute eqn. (3) into the neutron and precursor balance equations and integrate the 
resultant equations over the spatial domain of interest to give 

o f o i i o a o
i

1 dT (1 ) T C Q D T
v dt

   ψ = −β νΣ ψ + λ + − −∇ ∇ψ + Σ ψ    
∑

dd

  (4) 

i i f o i i
d C T C for i 1, 2, 6
dt

= β νΣ ψ −λ =       (5) 
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where the angle bracket notation,  , implies the spatial integration over the given domain.  
Note, however, that all the quantities, in general, are still functions of time.  These equations 
represent one form of the so-called Point Kinetics Equations. 

Although eqns. (4) and (5) appear even more complicated than the original space-time neutron 
balance equations, it is important to recognize that they are indeed much simpler  --  they 
represent a system of ordinary differential equations with time as the only independent variable.  
Since each term includes a spatial integral (i.e. the terms in the angle brackets), these equations 
represent the spatially integrated or point model that is used widely to describe a variety of 
reactor dynamics problems.   

However, the equations given here are usually not used in this form for practical application.  In 
particular, since the cross sections can be time dependent and under operator control (i.e. 
movement of a control rod affects Σa, etc.) almost every term in these equations can be modified 
to initiate a transient case.  However, from an operational perspective, the effect of a change in 
the cross sections manifests itself as a change in the multiplication factor, k, (or in the reactivity, 
r).  The manipulation of eqns. (4) and (5) to incorporate k or r directly leads to the traditional 
Lifetime Formulation (uses k) and Generation Time Formulation (uses r) of Point Kinetics.  
In these formulations, the multiplication factor, k(t), and reactivity, r(t), become the driving 
force for initiating most transient analyses. 

Note:  In the context of the 1-group diffusion equation, k and r have the following formal 
definitions (which will be useful in subsequent manipulations): 

   f o

o a o

neutron production rate from fission production  k
loss rate loss D

nΣ ψ
= = =

−∇ ∇ψ + Σ ψ
dd



 (6) 

   
f o o a o

f o

Dk -1 production - loss  
k production 

 nΣ ψ -- ∇ ∇ψ + Σ ψ r = = =
nΣ ψ

dd



   (7) 

The Lifetime Formulation 
For this representation of point kinetics, one first defines the prompt neutron lifetime.  This can 
be done in an intuitive fashion by arguing that, at steady state, the total neutron loss rate is given 
by the total neutron population divided by the neutron lifetime.  In equation form, this can be 
written as 

neutron population neutron populationloss rate or lifetime
lifetime loss rate

= =  

Defining lp as the prompt neutron lifetime, the one-speed approximation gives 

o

p
o a o

1
vl

D

ψ
=

−∇ ∇ψ + Σ ψ
 



        (8) 

where the numerator is just the total neutron population at steady state conditions (recall that       
φ = nv  or  n = φ/v ).   
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We now divide every term in eqn. (4) by the neutron loss rate to give 

  

o
f o

i i
io a o o a o o a o

o a o

o a o o a o

1
dT 1v (1 ) T C
dtD D D

D1 Q T
D D

ψ νΣ ψ
= −β + λ

−∇ ∇ψ + Σ ψ −∇ ∇ψ + Σ ψ −∇ ∇ψ + Σ ψ

−∇ ∇ψ + Σ ψ
+ −

−∇ ∇ψ + Σ ψ −∇ ∇ψ + Σ ψ

∑dddddd    

  

dd



dddd  

 

 

and use the definitions of k and lp to simplify to 

   

[ ]p i i
i o a o o a o

dT 1 1l (1 )k 1 T C Q
dt D D

= −β − + l +
−∇ ∇ψ + Σ ψ −∇ ∇ψ + Σ ψ

∑ dddd  

 

 

Dividing by lp gives 

[ ]
i i

ip
o o

(1 )k 1dT 1 1T C Q1 1dt l
v v

−β −
= + l +

ψ ψ
∑    (9) 

Now, if we define the time dependent normalized precursor and external source amplitudes as  

i i

o

1c (t) C (t)1
v

=
ψ

         (10) 

o

1q(t) Q(t)1
v

=
ψ

         (11) 

we get the standard form of the neutron balance equation for the lifetime formulation of point 
kinetics, or 

[ ]
i i

ip

(1 )k 1dT T c q
dt l

−β −
= + l +∑       (12) 

To complete the derivation, we need to manipulate the precursor balance equation in a similar 
fashion.  In particular, dividing eqn. (5) by the total neutron population, o vψ , gives 

f o
i i i i

o o o

1 d 1C T C for i 1, 2, 61 1 1dt
v v v

νΣ ψ
= β − λ =

ψ ψ ψ
  

Using eqns. (8) and (10), this expression for the precursor balance can be converted into standard 
form, giving 

i
i i i

p

dc k T c for i 1, 2, 6
dt l

= β − l =        (13) 
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Equations (12) and (13) represent the Lifetime Formulation of the point kinetics equations.  
Once lp has been defined, the conversion of eqns. (4) and (5) into this form follows a fairly 
straightforward algebraic procedure.  The process, however, forces one to think about the 
meaning of each term and, in particular, it emphasizes that the precursor amplitudes and external 
source magnitude in the final equations really represent normalized spatially integrated quantities  
--  and this fact is important when these equations are used in practical applications.  In fact, the 
main reason for deriving the equations here (rather than simply using the final equations from an 
appropriate reference) was to emphasize this point.  Thus, when using eqns. (12) and (13), one 
always needs to be aware of the real meaning of each term. 

The Generation Time Formulation 
The development of the generation time formulation of point kinetics follows the same general 
procedure as above.  Here, we first define the prompt generation time and then use this, and the 
definition of reactivity, to formally convert eqns. (4) and (5) into standard form.  In particular, in 
an analogous fashion to the above development, we define the neutron production rate from 
fission in a steady state critical system as the total neutron population divided by the neutron 
generation time, or 

   neutron population neutron populationproduction rate or generation time
generation time production rate

= =  

Defining Λ as the prompt neutron generation time, the one-speed approximation gives 

o

f o

1
v
ψ

Λ =
νΣ ψ

          (14) 

Now we divide every term in eqn. (4) by the neutron production rate from fission to give 

   

o
f o

i i
if o f o f o

o a o

f o f o

1
dT 1v (1 ) T C
dt

D1 Q T

ψ νΣ ψ
= −β + λ

νΣ ψ νΣ ψ νΣ ψ

−∇ ∇ψ + Σ ψ
+ −

νΣ ψ νΣ ψ

∑
dd



 

and use the definitions of r and Λ to simplify to 

   
f o o a o

i i
if o f o f o

DdT 1 1T C Q
dt

  νΣ ψ − −∇ ∇ψ + Σ ψ  Λ = −β + λ +
 νΣ ψ νΣ ψ νΣ ψ
 

∑
dd



 

or 

( ) i i
i f o f o

dT 1 1T C Q
dt

Λ = ρ−β + λ +
νΣ ψ νΣ ψ∑    (15) 

Now, if we use the normalized precursor and external source amplitudes as defined in eqns. (10) 
and (11), eqn. (15) becomes 
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( )
o o

i i
i f o f o

1 1
dT v vT c q
dt

ψ ψ
Λ = ρ −β + λ +

νΣ ψ νΣ ψ∑     (16) 

But, with the definition of the prompt generation time, Λ, in eqn. (14), the final neutron balance 
equation results, 

( )
i i

i

dT T c q
dt

ρ −β
= + λ +

Λ ∑       (17) 

To complete the generation time formulation, we simply divide eqn. (5) by the total neutron 
population, 

f o i
i i i

o o o

C1 d C T for i 1, 2, 61 1 1dt
v v v

νΣ ψ
= β − λ =

ψ ψ ψ
  

and introduce the normalized precursor amplitude and definition of Λ to give 

i i
i i

dc T c for i 1, 2, 6
dt

β
= − λ =
Λ

       (18) 

Equations (17) and (18) represent the “standard” form of the Generation Time 
Formulation of the point kinetics equations. 

------------------------------ 

Personal Note:  Previous versions of these Lecture Notes used a slightly different formulation 
for eqns. (17) and (18).  The earlier versions followed the suggestions made in Ref. 2 (which is 
slightly different from most other treatments), and defined the normalized precursor and external 
source amplitudes for the Generation Time Formulation as 

i i
f o

1c (t) C (t)=
νΣ ψ

   and  
f o

1q(t) Q(t)=
νΣ ψ

 

which then lead to a slightly different set of final equations, as follows: 

( ) i i
i

dT T c q
dt

Λ = ρ −β + λ +∑  

i
i i i

dc T c for i 1, 2, 6
dt

= β − λ =   

Although I personally like this formulation from Ott’s text (Ref. 2), this approach caused more 
confusion with my previous students than was warranted  --  because it was somewhat different 
from most of the readily available references.  Thus, to avoid any unnecessary agony for future 
students, I have decided to modify all my Lecture Notes that use the Generation Time 
Formulation of Point Kinetics to conform to the “standard” form (as in Refs. 3 and 4, for 
example).  Thus, all future reference to the Generation Time Formulation will use eqns. (17) and 
(18) as given above in the main development and not Ott’s formulation as suggested in Ref. 2. 

  (JRWhite, 12/30/11) 

Ott’s Generation 
Time Formulation 
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Summary 
The goal here was to derive the equations that are commonly utilized to represent and model the 
dynamics of nuclear systems and to get a good understanding of the meaning of each term.  The 
one-speed approximation simplified the development (needed to integrate over only space 
instead of both space and energy) and the resultant expressions are identical to the ones 
developed using the multigroup formulation.  The reader is cautioned, however, that one should 
always use the most accurate information available for a given system when doing actual 
analysis  --  thus, if βeff and Λeff are available for a particular system, for example, they definitely 
should be used!!!  Also note that it was assumed that only one isotope contributes to the fission 
process whereas, in practice, β and λ would be isotope dependent in a detailed computational 
study.  All these details were deliberately omitted here, so that only the basic elements of the 
balance equations (and their subsequent manipulation) could be highlighted.  The goal, of course, 
was to keep things as simple as possible so that one does not get too lost in all the details.  
Hopefully this development was successful in achieving this goal  --  since, once a good 
foundation is established, one can always go back and add further details as needed for a specific 
application (see Refs. 2-4, for example)… 
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