
The Multigroup Neutron Balance Equation  

Introduction 
The neutron balance equation represents a fundamental relationship between the various 
production and loss mechanisms (absorption, fission, scattering, leakage, etc.) that can occur in a 
nuclear system.  To aid in visualizing the various processes involved, it helps to have a good 
understanding of the basic life cycle of a neutron.  In particular, in a thermal reactor, the source 
neutrons from fission are born at high energies, these neutrons slow down via elastic and 
inelastic scattering to thermal energies, and it is these thermal neutrons that cause most of the 
fissions which, in turn, start the cycle over again.  Of course there are other important reactions, 
such as neutron capture and neutron leakage out of the volume of interest, that also affect the life 
cycle of a neutron.   

In describing all these processes quantitatively, one needs to keep track of all the neutron 
production and loss mechanisms at each energy and spatial point of interest.  This is a rather 
difficult job, especially if both space and energy are treated as continuous variables.  In practice, 
of course, both variables are usually discretized in most realistic applications.  For the present 
development, however, we will only discretize the energy variable, resulting in the multigroup 
formulation for the space-continuous neutron balance equation.  The continuous spatial variable 
is retained at this point so that some analytical solutions, for a variety of simple geometries, can 
be obtained.  Thus, our focus for this lecture is the development of the multigroup neutron 
balance equation.  Future lectures will deal with various applications/uses of the equations 
developed here.   

Also developed here is the operator form of the diffusion theory representation to the steady state 
neutron balance equation.  This notation is convenient in many situations, especially when a 
concise shorthand notation helps simplify and explain certain concepts more readily.  In 
particular, we will conclude this section of Lecture Notes on the Multigroup Neutron Balance 
Equation by discussing the most common situations where this equation is used  --  and here the 
operator notation is really quite useful. 

The Multigroup Formulation 
Within the multigroup formulation, the full energy domain is broken into a finite number of 
energy bins.  An arbitrary energy bin or interval is usually given the symbol g and the groups are 
numbered from high energy to low energy.  Thus, the energy scale in the multigroup formulation 
can be represented as shown below: 

 

Since the full space-energy treatment is simply too complex for most realistic situations, our goal 
becomes one of finding out what happens, on the average, in each energy interval, Eg+1 to Eg, 
which is referred to as group g (note that there are G+1 energy boundaries for G total energy 
groups).  Thus, a neutron balance will be performed for an arbitrary energy group g.  This 
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balance will be applied to each interval resulting in a set of G coupled differential equations.  For 
practical reasons, only 1 or 2-group problems are solved analytically.  When G becomes large, 
numerical solution techniques integrated within large production computer codes are employed 
almost exclusively. 

In the multigroup formulation, the flux for energy group g is given as 
g

g 1

E
g E

(E)dE
+

φ = φ∫          (1) 

where it should be noted that this is an energy integrated value.  With this definition, several of 
the reaction rates that will be needed in writing the neutron balance equation are given as 

   g

g 1

3E
a ag gE

# of absorptions/cm -secabsorption rate (E) (E)dE within energy interval g+
= Σ φ = Σ φ =∫   (2) 

where 

g

g 1

g

g 1

E
aE

ag E

E

(E) (E)dE

(E)dE
+

+

Σ φ
Σ =

φ

∫

∫
        (3) 

   g

g 1

3E
t tg gE

# of interactions/cm -sectotal collision rate (E) (E)dE within energy interval g+
= Σ φ = Σ φ =∫   (4) 

where 

g
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g
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E
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+

+
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∫

∫
        (5) 

   g

g 1

3E
f fg gE

# of fissions/cm -secfission rate (E) (E)dE within energy interval g+
= Σ φ = Σ φ =∫    (6) 

where 

g
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g

g 1

E
fE
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E

(E) (E)dE

(E)dE
+

+

Σ φ
Σ =

φ

∫

∫
        (7) 

etc. for all types of reactions.  If we desire the energy integrated reaction rate, then 
G

3
a ag gall

energy g 1
(E) (E)dE # of absorptions/cm -sec

=

Σ φ = Σ φ =∑∫    (8) 

G
3

t tg gall
energy g 1

(E) (E)dE # of interactions/cm -sec
=

Σ φ = Σ φ =∑∫    (9) 

G
3

f fg gall
energy g 1

(E) (E)dE # of fissions/cm -sec
=

Σ φ = Σ φ =∑∫     (10) 

The above reactions (absorption, total, fission, etc.) are sometimes called one-dimensional (1-D) 
processes.  Neutron scattering, on the other hand, is a 2-D process, since we must consider the 
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final neutron energy as well as the initial neutron energy.  For example, the scattering rate from 
energy E' to energy interval dE can be written as 

   s
scattering rate scattering rate  probability of (E ') (E ')f (E ' E)dEfrom E' to dE at E' scattering into dE 

  = = Σ φ →  
  

 (11) 

To simplify the notation slightly, we define the scattering cross section from E' to E as  

s s(E ' E) (E ')f (E ' E)Σ → = Σ →        (12) 

and, with this definition, eqn. (11) becomes 

s
scattering rate (E ' E) (E ')dEfrom E' to dE = Σ → φ        (13) 

Now, when using a discrete energy group notation within the multigroup formulation, we can 
define the group-to-group scattering cross section as 

g ' g

g ' 1 g 1

g '

g ' 1

E E
sE E

g' g E

E

(E ' E) (E ')dE dE '

(E ')dE '
+ +

+

→

Σ → φ
Σ =

φ

∫ ∫

∫
      (14) 

and the scattering rate from g' to g as 

g ' g g '
scattering rate

from g' to g →= Σ φ         (15) 

Note that the total scattering rate out of a particular group g is given as 

g g ' g
g ' g

total scattering
rate out of g →

≠

= Σ φ∑   (outscatter rate)    (16) 

where the notation and ordering of the g and g' are important.  In eqn. (16) the sum is over all 
groups g' that neutrons in group g can scatter into.  The ≠ symbol indicates that group g is not 
included in the sum.  Within group scattering, Σg→gφg, is not a removal mechanism for neutrons 
in group g.   

Similarly, the total scattering rate into group g is given by 

g ' g g '
g ' g

total scattering
rate into g →

≠

= Σ φ∑  (inscatter rate)     (17) 

Again the precise notation is important.  Notice that the reaction takes place in group g' and the 
neutron after scattering ends up in g.  Since we are interested in the total scattering rate into 
group g, the sum is over all groups, g', that scatter into group g. 

Another 2-D neutron production process that is of particular interest is related to the neutrons 
produced from the fission event.  The fission reaction takes place at some neutron energy, E', and 
the neutrons that are emitted have some different energy, E.  The term that describes this process 
is referred to as the fission source.  This term contains information about the fission rate, the 
average number of neutrons emitted per fission, and the fission spectrum (a function that 
describes the distribution of energies for the emitted neutrons). 
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The average number of total neutrons emitted per fission is given the symbol νT (usually just ν).  
The contributions to νT are made up from prompt neutrons and delayed neutrons.  Prompt 
neutrons are emitted directly in fission.  The delayed component occurs from the neutrons that 
are released in the decay of certain fission products.  These delayed neutron precursors are 
produced from fission and the neutrons they emit can be thought of as resulting from fission, 
with a characteristic delay before release.   

As discussed previously in the Fundamentals of NSE course, the delayed neutron precursors are 
usually grouped into six separate groups with effective decay constants, λi, and yields, βi, where  

i
i

T

delayed neutrons from precursor i per fission
total neutrons emitted per fission

ν
β = =

ν
    (18) 

where βi is referred to as the delayed neutron fraction for precursor group i. 

Note that d i
i

 total delayed neutrons per fissionν = ν =∑      (19) 

and        d
i

i T
 total delayed neutron fractionν

β = β = =
ν∑      (20) 

Note also that β is quite small; only about 0.00685 for U235 and about 0.0023 for Pu239. 

In writing an expression for the fission neutron source in a reactor, it is important to consider 
whether the neutrons emitted are prompt or delayed.  The total neutrons emitted per cm3-sec can 
be written as  

T f i i3
i

total neutrons emitted (1 ) (E ') (E ')dE ' C
cm sec

= −β ν Σ φ + λ
− ∑∫    (21) 

The above expression separates the total source into prompt and delayed components, where the 
production rate of delayed neutrons is represented by the total decay rate of all the precursor 
groups (Ci here represents the precursor concentration for group i).  In writing a neutron balance 
equation that includes the time variable (i.e. the non steady-state case), this distinction plays an 
important role.  In fact, without the delayed neutrons, we would not be able to control the chain 
reaction. 

The above concepts concerning prompt and delayed neutrons are extremely important.  
However, our primary focus in this set of Lecture Notes is on developing the steady state neutron 
balance equation.  At steady state, the precursor production rate is identical to the delayed 
neutron production rate, or 

   T f i i3
i

delayed neutrons emitted (E ') (E ')dE ' C
cm sec

= βν Σ φ = λ
− ∑∫  (at steady state) (22) 

so we can write the steady state neutron production rate as 

   T f f fg ' g '3
g '

total neutrons emitted (E ') (E ')dE ' (E ') (E ')dE '
cm sec

= ν Σ φ = νΣ φ = νΣ φ
− ∑∫ ∫   (23) 
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where we have replaced νT with ν, and the last form shows the discrete multigroup 
representation (where the spatial dependence of the cross sections and flux has been omitted for 
convenience and clarity).   
Overall, it is important to be aware of the prompt and delayed components of the total neutron 
source and their role in the control of reactor operations.  However, for our current work, we will 
consider primarily the steady state neutron production rate as given in eqn. (23).  

Not only is it important to determine the number of neutrons emitted per fission, but we also 
need to know the energy of these neutrons.  Fission neutrons are emitted with a continuous 
energy spectrum that is Maxwellian in nature but shifted in energy such that the peak of the 
curve is around 1 MeV and the average energy is about 2 MeV (this profile is sometimes referred 
to as the Watt fission spectrum).  This distribution of fission neutron energies is known as the 
prompt fission spectrum (this is called the prompt fission spectrum because the delayed neutrons 
are also emitted with a characteristic spectrum, which is somewhat softer that the prompt fission 
spectrum  --  but we will not go into all this detail here).  The prompt fission spectrum is denoted 
by χ(E), where 

 probability that a fission neutron will(E)dE be born with an energy in dE around Eχ =      (24) 

Also since this must be a properly normalized distribution function (i.e. probability of finding the 
neutron energy between 0 and ∞ is unity), then 

 
0

(E)dE 1
∞
χ =∫          (25) 

In a multigroup formulation, χg is defined as 
g

g 1

E
g E

(E)dE
+

χ = χ∫          (26) 

and 

g
g

1χ =∑           (27) 

If we combine the discussion of the neutron energy with the treatment of the number of neutrons 
emitted per fission, we can define the steady state fission source as 

3 f
neutrons emitted per (E)dE (E ') (E ')dE 'cm -sec in interval dE = χ νΣ φ∫     (28) 

3 g fg ' g '
g '

neutrons emitted per
cm -sec in group g = χ νΣ φ∑       (29) 

This latter expression [eqn. (29)] will be the term that makes it into the final steady state neutron 
balance equation. 
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Neutron Leakage 
In the multigroup formulation, neutrons that exist within group g can ultimately 

1. be absorbed within group g (via capture, fission, or any other absorption-type reaction), 

2. scatter out of group g, or 

3. leak out of the spatial element of interest (while in energy group g). 

From the above definitions and equations, we know how to describe the absorption and 
scattering rates, but we have not yet looked at the third loss mechanism, neutron leakage.  To 
start this process, let's define the net neutron current, J(r,E)



 , as 

all all
angles angles

ˆ ˆ ˆ ˆ ˆJ(r, E) n(r, E, ) v(E)d n(r, E, )v(E) d= Ω Ω = Ω Ω Ω∫ ∫


      (30) 

where n is the neutron density, v is the neutron speed, and Ω̂  is a unit vector that describes the 
direction of travel.  Since φ = nv, we can also write eqn. (30) as  

all all
angles angles

ˆ ˆ ˆ ˆ ˆJ(r, E) (r, E, )d J(r,E, )d= Ωφ Ω Ω = Ω Ω∫ ∫
 

        (31) 

Note that J(r,E)


 , or gJ (r)


  if one integrates over energy interval ∆Eg = Eg – Eg+1, is a vector 
quantity.  It is the net neutron current density, since ˆJ(r,E, )Ω



  has been integrated over all 
angles.  The direction of gJ (r)



  is not that of any specific collection of neutrons; it has the 
direction of the net flow of neutrons.  Note also that the units of net neutron current are the same 
as neutron flux, neutrons/cm2-sec.  However, the current density is a vector quantity, and it 
describes the net directional behavior of the neutrons. 

Since gJ


 is associated with the net flow of neutrons in energy group g, then 

g g

net rate at which neutrons in group g
ˆJ dA J n dA pass through a surface area dA normal

to the outward pointing unit vector
= =

 


     (32) 

where we note that the units of current density times area is neutrons/second  --  that is, a neutron 
flow rate across differential area dA. 

With this interpretation, we can now define neutron leakage as the net number of neutrons/sec 
that leave a given volume V enclosed by surface area A, or 

g
A

leakage rate out
ˆof volume V for J n dA

energy group g
= ∫



        (33) 

At times it is convenient to convert the surface integral in eqn. (33) to a volume integral over V.  
This can be accomplished with the well-known Divergence Theorem (see any Calculus text).  
Therefore, 

g g
A V

leakage rate ˆJ n dA J drfrom V and g = = ∇∫ ∫
  



        (34) 
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The surface and volume integral formulations for neutron leakage can be used interchangeably.  
In practice, the volume integration is used primarily in the formulation of the pointwise neutron 
balance equation and the surface integral form is used to evaluate leakage once gJ



 is known.  
However, the choice in any application is simply a matter of convenience. 

The Neutron Balance Equation 
We now have all the tools required to write the general multigroup neutron balance equation.  
For some arbitrary volume V and energy group g, one has (accumulation rate = production rate – 
loss rate), or 

loss raterate of change production rate
of  neutrons of  neutrons of  neutrons

within V and g within V and g within V and g
= −     (35) 

    (Term 1)          =         (Term 2)         –         (Term 3)  

where the production terms are: 

1. External source (independent of neutron flux) 

2. Fission source 

3. Inscatter source 

and the loss terms are: 

1. Leakage 

2. Absorption 

3. Outscatter 

where the last two loss components are often combined into the removal term (i.e.  Removal = 
Absorption + Outscatter). 

Writing Term 1 in full detail gives 

   
V E V E

d d n(r,E, t)v(E)drdETerm 1 n(r,E, t)drdE
dt dt v(E)

= =∫ ∫ ∫ ∫
 

      (36) 

or 

   g gV V
g g

d 1 1Term 1 (r, t)dr (r, t)dr
dt v v t

∂
= φ = φ

∂∫ ∫
         (37) 

where the last equality (taking the derivative inside the integral) requires a stationary volume 
element, and the group-averaged inverse velocity is given by 

g

g 1

g

g 1

E

E

E
g

E

1 (E)dE
1 v(E)
v (E)dE

+

+

φ
=

φ

∫

∫
        (38) 

Also writing Terms 2 and 3 in detail gives 



 

Lecture Notes:  The Multigroup Neutron Balance Equation 
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (Sept. 2015) 

8 

   g g fg ' g ' g ' g g 'V V V
g ' g ' g

Term 2 Q (r)dr (r) (r)dr (r) (r)dr→
≠

= + χ νΣ φ + Σ φ∑ ∑∫ ∫ ∫
         (39) 

                   external source               fission source                       inscatter source 

and  

   g ag g g g ' gV V V
g ' g

Term 3 J (r)dr (r) (r)dr (r) (r)dr→
≠

= ∇ + Σ φ + Σ φ∑∫ ∫ ∫
 

       

   (40) 

                          leakage                    absorption                       outscatter 

where we note that Term 2 (the production term) includes the steady state fission source 
expression [not valid for a time dependent problem  --  see discussion related to the difference 
between eqns. (21) and (23) on page 4].   

Since the integrals in Terms 1-3 are over the same arbitrary volume element, one can simply 
equate the integrands to obtain a pointwise or space continuous neutron balance equation (per 
unit volume) for group g, 

g Rg g g g
g

1J (r) (r) (r) S (r) (r)
v t

∂
∇ +Σ φ − = − φ

∂

 

    

      (41) 

where  Rg ag g g '
g ' g

(r) (r) (r)→
≠

Σ = Σ + Σ∑          (42) 

g g g fg ' g ' g ' g g '
g ' g ' g

S (r) Q (r) (r) (r) (r) (r)→
≠

= + χ νΣ φ + Σ φ∑ ∑          (43) 

Notice that eqn. (41) has been multiplied by -1.  The reason for this is simply for consistency of 
notation for steady state cases (i.e. when ∂φg/∂t  = 0).  Also note that eqns. (42) and (43) define 
the removal cross section and total steady state neutron source, respectively.  Equations (41)-(43) 
completely describe the general neutron balance equation (for no delayed neutrons). 

The time derivative term in eqn. (41) was introduced and retained up to this point for generality.  
However, the balance equation developed here is usually applied to steady state systems (since 
the fission source given here is not valid for time dependent problems).  For steady state, the 
temporal derivative vanishes and eqn. (41) reduces to 

g Rg g gJ (r) (r) (r) S (r)∇ +Σ φ =
 

   

        (44) 

This simply states that, in steady state, the loss rate (leakage + removal) exactly matches or 
balances the production rate on a per unit volume basis  --  that is, the production and loss terms 
must balance out at every spatial point and energy group.  Equation (44) [along with the 
definitions given in eqns. (42) and (43)] is the desired steady state multigroup neutron balance 
equation. 

Transport vs. Diffusion Theory 
Before we can solve the steady state equation for a specific system, something needs to be done 
to relate the neutron current, gJ



, to the neutron flux, φg, since we now have a single equation 
with two dependent variables.  There are two approaches for doing this  --  one leading to the 
Transport Equation and the other giving the Diffusion Equation. 
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The Transport Equation is derived by using the basic definition of neutron current as implied in 
eqn. (31).  In its basic form, the angular current density is given by 

ˆ ˆ ˆJ(r, E, ) (r, E, )Ω = Ωφ Ω


          (45) 

Therefore, the gJ∇
 

  term in eqn. (44) becomes 

g g g
ˆ ˆJ∇ =∇ Ωφ = Ω ∇φ

   

            (46) 

Also note that, if self scattering is included in both the inscatter and outscatter terms (so that the 
balance equation is unaffected), then the removal cross section becomes the total cross section, 

tg Rg g g ag g g '
g '

→ →Σ = Σ +Σ = Σ + Σ∑        (47) 

With these substitutions, the steady state Boltzmann transport equation becomes 

g tg g g
ˆ ˆ ˆ ˆ(r, ) (r) (r, ) S (r, )Ω ∇φ Ω +Σ φ Ω = Ω


   

       (48) 

where 

g g g fg ' g ' g ' g g '4 4
g ' g '

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆS (r, ) Q (r, ) (r) (r, ')d ' (r, ' ) (r, ')d '→π π
Ω = Ω +χ νΣ φ Ω Ω + Σ Ω →Ω φ Ω Ω∑ ∑∫ ∫

        (49) 

This expression takes into account the angular dependence of the scattering cross sections and 
the neutron flux.  The formal solution of eqn. (48) for realistic applications is relatively 
complicated.  Discrete Ordinates, Monte Carlo, or Integral Transport Theory methods are usually 
employed for the solution of eqn. (48) (or one of its many equivalent representations).  However, 
a discussion of these methods is beyond the scope of the introductory treatment given here.  
Thus, for the present discussion, the existence of the Boltzmann transport equation and its 
distinction from diffusion theory are the key points of interest. 

The Diffusion Equation uses an approximate relationship between the neutron flux and net 
current density based on the observation that neutrons tend to diffuse from regions of high 
concentration to regions of low concentration.  Fick's Law states this in mathematical terms as 

g g gJ (r) D (r) (r)= − ∇φ
 

           (50) 

which states that the net neutron current is proportional to the negative gradient of the neutron 
flux.  The variable Dg is the proportionality constant and it is typically called the diffusion 
coefficient for group g. 

Substitution of Fick's Law [eqn. (50)] into the basic steady state neutron balance equation     
[eqn. (44)] gives the standard multigroup diffusion formulation, 

g g Rg g gD (r) (r) (r) (r) S (r)−∇ ∇φ +Σ φ =
 

    

       (51) 

where the explicit definitions of ΣRg and Sg are given in eqns. (42) and (43), respectively.  
Equation (51) is called the Diffusion Equation --  this will be the starting point for much of the 
introductory steady-state nuclear reactor theory discussed as part of this series of Lecture Notes. 
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It should be noted that Fick's Law is only an approximation.  In particular, it is not strictly valid 

a. in a medium that strongly absorbs neutrons (i.e. near control rods),  

b. within a few mean free paths of either a neutron source or the exterior surface of a medium 
(the neutron flux has a strong angular dependence in these regions), and  

c. when the scattering of neutrons is strongly anisotropic (has a strong angular dependence).  

In general, when the angular dependence is not extreme, then Fick's Law represents a good 
approximation for relating the neutron current and neutron flux, and the diffusion equation 
becomes a reasonable mathematical representation of the neutron behavior within the system of 
interest.  The validity of Fick’s Law often weakens as one approaches the core periphery and 
shield regions, but even in these situations it gives a rough estimation of neutron attenuation.  For 
core physics studies, diffusion theory is used almost exclusively for modeling multidimensional 
systems for routine analysis.  On the other hand, transport theory is usually used for modeling 
cell and assembly configurations in cross section collapsing codes, and in treating shielding 
analysis problems.  The angular dependence of the neutron flux is usually a key consideration in 
these applications.  However, in large homogenized core regions, where the isotropic fission 
source is the dominant source of neutrons, the diffusion equation (and Fick's Law) is an adequate 
approximation. 

Before moving on, the diffusion coefficient, which appears in the definition of Fick's Law, needs 
some further clarification.  The diffusion coefficient appears as a proportionality constant in an 
approximate expression for the neutron current in terms of the neutron flux.  Using transport 
theory methods, one can compute φg and Jg directly, and then determine appropriate values for 
Dg.  This procedure has been performed many times and it has shown that a good approximation 
to Dg is 

g
trg

1D
3

=
Σ

          (52) 

where 

trg tg 0 sgΣ = Σ −µ Σ           (53) 

where Σtrg is the transport cross section for group g.  The transport cross section is a derived 
quantity which is written in terms of the total cross section and the scattering cross section.  
Recall that 0µ  is the average value of the scattering angle in the laboratory system for isotropic 
scattering in the center-of-mass (CM) system (see Refs. 1 and 2). 

The diffusion coefficient is written in this fashion primarily because it gives reasonable results 
compared to transport theory.  There are more elaborate ways of computing Dg, but eqn. (52) is 
the most popular method for introductory studies.  In few group cross section libraries, σtrg (note 
that Σtrg = Nσtrg) is usually tabulated with the other basic data (σag, σfg, etc.). 

Note that eqn. (53) can be written as trg ag 0 sg(1 )Σ = Σ + −µ Σ  and for ag 0 sg(1 )Σ −µ Σ , this 
becomes trg 0 sg(1 )Σ = −µ Σ .  Reference 1 writes Σtrg in this fashion, although eqn. (53) is more 
accurate.  Finally, one should also note that the units of Dg are cm (since Σtrg has units of cm-1), 
where this definition assures that each term in the diffusion equation has consistent units. 
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Boundary Conditions 
Before we can actually solve the diffusion equation, one must address what happens at the 
boundaries of the system.  The diffusion equation is a second-order differential equation in the 
spatial variable (because of the leakage term, g gD−∇ ∇φ

 

 ).  Therefore, it requires two boundary 
conditions to obtain the complete solution for a particular problem situation.  Although no 
explicit solutions are addressed here, we will briefly identify several of the most common 
boundary conditions  --  as preparation for further work that explicitly addresses the solution of 
the Diffusion Equation for different scenarios. 

There are three types of conditions discussed here: 

General Boundary Conditions 
1. The neutron flux must be real and non-negative.  

2. The flux must be finite (except at artificial singular points of a source distribution).  

3. The neutron current is zero at symmetry boundaries (no net current across boundary).  

Interface Boundary Conditions (between two different or similar media) 

1. Continuity of Flux  --  the flux must be continuous across a material interface.  

For 1-D Cartesian geometry, this can be written as 

o o
lim lim(x ) (x )0 0φ − ε = φ + εε→ ε→        (54) 

2. Continuity of Current  --  the current must be continuous across a material interface.  

For 1-D Cartesian geometry, this can be expressed as 

o o
lim limJ(x ) J(x )0 0− ε = + εε→ ε→        (55) 

where xo is the location of the material interface.   

Note that although the neutron current and flux are continuous across material boundaries, the 
flux slope or gradient can be discontinuous if the diffusion coefficient is different on each side of 
the material interface (since J = −D dφ/dx).   
These concepts are illustrated nicely in the sketch shown 
on the right (from Introductory Nuclear Reactor 
Statics by Ott and Bezella  --  see Ref. 3), where the flux 
and current continuity and the possible discontinuity in 
the flux gradient are highlighted at the interface between 
two materials.  Using the subscript 1 to denote medium 1 
and 2 to refer to medium 2, eqn. (55) says that 

o o

1 2
x (from left) x (from right)

d dD D
dx dx

− φ = − φ  

Thus, if D1 ≠ D2, then clearly there must be a 
discontinuity in the slope of the flux at the interface. 
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External (or Vacuum) Boundary Conditions 
First we note that Fick's Law is not really valid in this situation.  The true vacuum boundary 
condition is one which specifies that there are no reentrant neutrons.  For example, using 1-D 
Cartesian geometry again, this condition can be written mathematically as 

o
g x x

ˆ ˆ(x, ) 0 for > 0 for left boundary
=

φ Ω = Ω      (56) 

Now if we desire to use Fick's Law, one can modify 
this condition such that the diffusion theory flux 
approximates the more exact transport theory result.  
At an external boundary, this is done by assuming that 
the diffusion theory flux vanishes at some small 
distance, d, beyond the external surface, where d is 
referred to as the extrapolation distance.  This is 
illustrated nicely in the diagram (from Ref. 3 again), 
where the solid line represents the flux computed from 
transport theory, the dashed line corresponds to the 
diffusion theory flux, and the dotted-dashed line 
represents the extrapolation of the diffusion theory flux 
to zero at a distance d beyond the physical boundary. 

Using transport theory as the correct solution, one can show that a good approximation for the 
extrapolation length (for 1-D Cartesian geometry) is 

tr
tr

0.71d 0.71 0.71(3D) 2.13D= λ = = =
Σ

      (57) 

and approximate values of the thermal diffusion coefficient for some common moderators are: 

       Dwater =  0.16 cm,       Dheavy water = 0.87 cm,       DBe = 0.50 cm,       Dgraphite = 0.84 cm   

Therefore, we see that the extrapolation distance, d, is on the order of only a few centimeters or 
less  (note that, for fast neutrons, D will be somewhat larger than illustrated here).  However, for 
large power reactors, d is usually small compared to realistic reactor dimensions (and can often 
be ignored).  For small bare critical systems, d cannot be neglected. 

With the above discussion, we can write the vacuum boundary condition for use in diffusion 
theory as (again, we use 1-D Cartesian geometry to simplify the notation), 

o
g x x d
(x) 0

= ±
φ =          (58) 

or 

o
g ox x
(x) 0 for x d

=
φ =         (59) 

where xo is the location of the external boundary of the system and xo ± d is referred to as the 
extrapolated boundary (the plus sign is used for a right boundary and the negative sign is used on 
the left side).  Therefore, we see that the standard vacuum boundary condition in diffusion theory 
is that the flux goes to zero at the extrapolated boundary [this is expressed as eqn. (58)].  When 
the extrapolation distance is small compared to the dimensions of the system, then it may be 
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appropriate to simply ignore d and say that the flux goes to zero at the physical boundary [this is 
expressed as eqn. (59)]. 

Operator Form of the Diffusion Equation 
The multigroup diffusion equation is given by the combination of eqn. (51), which gives the 
basic balance relationship, and eqns. (42) and (43), which explicitly define the removal cross 
section and the neutron source terms that appear on the right side of eqn. (51), respectively.  
Although these are not overly complicated, it becomes a little tedious to write out these 
relationships in full detail every time one wants to discuss the basic balance equation.  In 
particular, it certainly would be convenient to be able to write the general steady state diffusion 
equation using some simplified notation.  Towards this goal, let's define the following matrix 
operators, 

I
R S

L D= −∇ ∇+Σ −Σ
 

          (60) 

and 
f

F = χνΣ            (61) 

where 

1 R1

2 R 2

R

G RG

D
D 0 0

D

0 0
D

Σ   
   Σ
   

= Σ =   
   
   

Σ   

 

 

 

  (62a) 

2 1 3 1 G 1

1 2 3 2 G 2I
1 3 2 3 G 3S

1 G 2 G 3 G

0
0

0

0

→ → →

→ → →

→ → →

→ → →

Σ Σ Σ 
 Σ Σ Σ
 Σ = Σ Σ Σ
 
 Σ Σ Σ 











      (62b) 

 
1

f1 f 2 f 3 fg
2

f1 f 2 f 3 fG

f1 f 2 f 3 fGf

f1 f 2 f 3 fG
G

0

0

χ  νΣ νΣ νΣ νΣ  χ  νΣ νΣ νΣ νΣ   χ = νΣ = νΣ νΣ νΣ νΣ        νΣ νΣ νΣ νΣ  χ 

















 (62c) 

 
Finally, defining the group flux vector, φ , and external source vector, Q , as 

1 1

2 2

G G

Q
Qand Q

Q

φ   
   φφ = =   
   φ   
 

      (63) 
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one can write the operator form of the diffusion equation as 

( )L F Q− φ =           (64) 

or 
I

R S f
D Q  −∇ ∇+Σ −Σ φ − χνΣ φ =   

 

       (65) 

Recall that a matrix times a vector can be written as b Ax= , where each element of b  is given 
as 

i ij j
j

b a x=∑            (66) 

Applying this definition of matrix multiplication, one sees that eqn. (64) is just a simplified form 
of the multigroup equations.   

To see that these definitions really work, let's look at the specific case of the 2-group problem.  
Consider the multigroup diffusion equation in eqn. (51) as the starting point, with full expansion 
of ΣRg and Sg via eqns. (42) and (43).  For the group 1 equation, let g = 1 and vary g' = 1,2 
accordingly.  For the group 2 equation, simply let g = 2 and again vary g' over all appropriate 
groups.  Expanding fully, one has 

( ) ( )1 1 a1 1 2 1 2 1 2 1 f1 1 f 2 2 1D Q→ →−∇ ∇φ + Σ +Σ φ −Σ φ −χ νΣ φ + νΣ φ =
 

    (67) 

( ) ( )2 2 a2 2 1 2 1 2 1 2 f1 1 f 2 2 2D Q→ →−∇ ∇φ + Σ +Σ φ −Σ φ −χ νΣ φ + νΣ φ =
 

    (68) 

Now, putting these two equations into matrix form gives 

a1 1 2 2 11 1 1 1

2 a2 2 1 2 1 2 22

0 0D 0
0 00 D

→ →

→ →

  Σ + Σ Σ−∇ ∇ φ φ φ        + −          φ Σ + Σ φ Σ φ−∇ ∇          

 



 



 

1 f1 f 2 1 1

2 f1 f 2 2 2

0 Q
0 Q
χ νΣ νΣ φ       − =       χ νΣ νΣ φ       

  (69) 

For most 2-group thermal reactor problems, χ1 = 1.0 and χ2 = 0.0 (that is, there is no fission 
source in group 2) and upscatter is usually negligible (i.e. Σ2→1 = 0).  With these conditions, the 
above expressions become ( )L F Q− φ = , where 

a1 1 21

1 2a22

0D 0 0 0L 000 D
→

→

  Σ + Σ−∇ ∇    = + −     ΣΣ−∇ ∇    

 



 



 

or 1 R1

1 2 2 a2

D 0L
D→

 −∇ ∇+Σ=  −Σ −∇ ∇+Σ 

 



 



      (70a) 

and f1 f 2F 0 0
νΣ νΣ =   

         (70b) 
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Thus, we see that the use of the expression ( )L F Q− φ =  is simply a matter of convenience, as 
long as one understands the significance and precise meaning of the individual terms.  Finally, it 
should also be noted that in much of the literature, even the formal matrix (two underlines) and 
vector (one underline) notation is dropped; again simply as a matter of convenience.  Thus, many 
times one will see the diffusion equation simply written as 

( )L F Q− φ =           (71) 

which is certainly much easier to write than all the above expressions  --  assuming, of course, 
that one understands the shorthand notation. 

Overview of Typical Applications 
The above development and notation for the steady state multigroup diffusion equation is quite 
general.  For any specific application, however, only the applicable terms are used.  In most 
cases of interest, one of the following three situations arise: 

1. Subcritical non-multiplying systems (no fission source):   Lφ = Q 

2. Subcritical multiplying systems (has both fission and external sources):   (L - F)φ = Q 

3. Critical systems (no external sources):   (L - λF)φ = 0 

The first case is applicable primarily in shield design applications (and possibly for non-
multiplying fusion blanket design).  This situation represents a subcritical geometry with no 
fission source.  The neutron balance equation for this case states that leakage + removal − 
inscatter = external source.  Using our condensed notation, this can be written as Lφ = Q. 

The second case must be considered in situations where both the fixed source and fission source 
are important.  This is given in equation form as (L - F)φ = Q.  The most common situation 
where this arises is during reactor startup and shutdown periods.  Clearly, a reactor core has a 
substantial fission potential, but it may be arranged in a subcritical configuration (either by 
having some assemblies missing or by having large amounts of control inserted).  Without an 
external source, there would be no steady state flux in this subcritical arrangement.  However, in 
most fuel (especially fuel that has a substantial amount of burnup), there is an inherent neutron 
source due to the spontaneous fission and (α,n) reactions that are associated with the higher 
actinides.  The neutrons emitted from these reactions, or from an externally applied fixed source, 
undergo subcritical multiplication (they cause fission in the fuel material) and give rise to a 
steady state neutron distribution throughout the system. 

Subcritical systems (both multiplying and non-multiplying) with external sources are not 
particularly difficult to analyze.  They are fixed-source problems.  In simple cases, one can 
construct a general solution as a linear combination of homogeneous and particular solutions to 
the defining equations.  In computer computations, one solves the equations using some 
numerical approximation (finite difference methods, for example).  The only consideration here 
is that without the source, the system must be subcritical for the problem to converge properly 
(that is, leakage and absorption must dominate neutron production from fission). 

The third and probably most important class of problems that arises is the critical reactor 
problem.  In this situation, the leakage and absorption rates exactly balance the neutron 
production from fission, and any inherent neutron source that may be present in the fuel is totally 
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dominated by the fission source.  Since the fixed source is negligible, it is simply dropped from 
the defining equations. 

We know from the above discussion that, for a steady state critical system, there has to be a very 
precise balance between the neutron production and loss rates.  Any arbitrary mixture of fuel, 
moderator, structure, and control will not satisfy this constraint.  This situation is consistent with 
the basic nature of the defining equation for a critical system [i.e. eqn. (71) with Q = 0].  This is a 
homogeneous eigenvalue problem.  To emphasize this, one usually includes a mathematical 
eigenvalue (denoted as λ) before the fission source, 

( )L F 0−λ φ =           (72) 

In a critical operating reactor, λ is unity.  In design analysis, however, we often want to know if a 
particular combination of materials will give a critical reactor.  Thus, for any given material 
distribution, λ is computed as part of the solution procedure.  It is allowed to vary from unity so 
that the equation can be balanced mathematically (i.e. λ * production = loss).  This allows 
considerable insight to be gained from any given reactor material distribution and geometry 
combination.  It should be emphasized, however, that in an operating critical system, λ must be 
unity. 

To see the significance of λ, let's integrate eqn. (72) over all space and energy, giving 

L F 0φ −λ φ =  

or 

L loss rate
F production rate
φ

λ = =
φ

        (73) 

The term < Fφ > represents the total neutron production rate from fission.  Also, when 
performing integration over all energy, the inscatter and outscatter components within the < Lφ > 
term exactly cancel.  Therefore, < Lφ > represents the total loss rate (leakage + absorption).  
From the definition of the multiplication factor, k,  

eff
production ratek

loss rate
=         (74) 

we see that 

eff

1
k

λ =           (75) 

Thus, we see that the addition of the eigenvalue within the defining equation is quite justifiable.  
At steady state operating conditions, keff = 1/λ = 1.0.  For any given material configuration, the 
calculated keff may not be unity, but this, in fact, tells the designer how far from critical the 
configuration is, and that some modification is required (control in or out, more or less fuel is 
required, etc.).   
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The above discussion and the usefulness of this approach to solving the critical balance equation 
will become clear as one gains some experience with a variety of simple hand calculations and 
with the use of various design tools for reactor analysis.  However, the discussion of actual 
solutions for a variety of example problems that involve the three types of applications presented 
above will have to wait for another day, since our goal in this set of Lecture Notes  --  the 
development and interpretation of the Multigroup Neutron Balance Equation  --  is now 
complete!!!   

Summary 
This lecture focused on the development of the multigroup neutron balance equation, with 
special emphasis on the diffusion theory approximation.  It first identified all the neutron 
production and loss mechanisms that can occur within a nuclear system, and then put these 
together to give the desired steady state neutron balance relationship.  A formal notation was 
developed that allowed one to rigorously define all the important components of the resultant 
balance equation.  In addition, in the last subsection, a shorthand operator notation was also 
introduced and utilized to overview the three primary classes of problems that can be addressed 
using the equations developed here.   

It should be noted, however, that this material only represents a foundation for further study, 
since no solutions or example analyses were attempted.  The goal here was to develop a strong 
base to support further work in reactor theory and, hopefully, we were successful in achieving 
that result.  The material from this lecture will be used as a theoretical base for most of the 
remaining reactor physics topics covered in this course  --  so make sure you have a good 
foundation here before venturing too far into unknown territory… 
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