
A Note Concerning the Flux Spectrum in Thermal Systems 
 

Introduction 
This short note is simply to elaborate somewhat on the shape of the expected flux distribution in 
a thermal system.  The additional treatment here was prompted by the different views that are 
often given and the fact that these can indeed be quite confusing if not labeled properly.  Thus, 
the goal here is simply to try to minimize (or eliminate) this potential confusion. 

To illustrate the dilemma that often occurs, consider the typical fast and thermal reactor spectra 
illustrated in the figure below.  This figure is reproduced from page 34 of Module 2 of the DOE 
Handbook on Nuclear Physics and Reactor Theory (DOE-HDBK-1019).  The two curves 
contrast the typical spectrum for a thermal system and the energy dependence of the flux for a 
fast breeder reactor.  This comparison is exactly as one might expect, with the fast reactor having 
essentially no thermal neutrons  --  since it has no moderator to slow down the original fission 
neutrons.  Therefore, as expected, the spectrum in a fast reactor is indeed much harder than that 
observed in a thermal reactor.  In addition, for the composite thermal spectrum, we observe 
something that resembles a rough fission spectrum at high energies and a profile that looks 
Maxwellian in nature at the low end of the energy spectrum.  Thus, these profiles seem quite 
reasonable!!! 

 

However, the text following the figure in the DOE Handbook goes on to explain the thermal flux 
profile as follows:  “In the thermal reactor, the flux in the intermediate energy region (1 eV to 0.1 
MeV) has approximately a 1/E dependence.  That is, if the energy (E) is halved, the flux doubles.  
This 1/E dependence is caused by the slowing down process …”. 
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Now, although this description is completely correct, it can indeed be very confusing  --  since 
the flux in the roughly 1 eV to 0.1 MeV range in the figure appears to be nearly constant (or even 
has a slightly positive slope) instead of a slope of about -1.  Since this picture is clearly not 
consistent with the above discussion, the obvious question is “What gives --  that is, what is 
wrong with this picture?”.  Well, in fact, everything is okay with the plot except that the y-axis 
label in the figure really should indicate that the curves show the flux density with units of 
neutrons/cm2-s per unit lethargy.  Unfortunately, many authors neglect to include this useful 
piece of information, and this can indeed be confusing to the student just learning about these 
concepts. 

An Example  --  Various Views of the Approximate Flux Profile in a Thermal System 
In an attempt to shed some light on the above discussion, we will actually evaluate and plot, in a 
variety of ways, a rough estimate of the expected flux profile in a thermal system  --  to illustrate 
the different views that are often presented.  As we have already discussed, a very rough 
approximation for the neutron flux spectrum in an infinite homogeneous critical reactor with 
little resonance absorption is given by a fission spectrum at high energy, a 1/ΣtE behavior at 
intermediate energies, and a thermal Maxwellian at low energies.  In particular, these basic 
profiles, assuming that Σt(E) is roughly constant in the intermediate region, lead to the following 
composite spectrum: 
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where we note that the thermal spectrum function, φ3(E), is a product of n(E) and v(E) in the 
thermal region  --  where the product of the E  dependence in each of these separate functions 
leads to the E dependence given here [the exponential part is from the Maxwellian n(E) 
component].  In these expressions, E is given in MeV and the Boltzmann constant is 8.617×10-11 
MeV/K. 

To actually plot this functional dependence we need to specify the normalization factors, c1, c2, 
and c3, and the specific 3-region energy boundaries, E1, E2, and E3.  Varying these quantities lead 
to considerably different spectra, so we need to specify a reasonable set of constraints and 
conditions if we hope to get something that resembles the flux spectrum in an actual thermal 
system.  In doing this, we first determine the normalization coefficients by forcing continuity in 
the composite spectrum at E2 and E3 and by setting an overall (arbitrary) normalization of 1012 
neutrons/cm2-s.  Doing this gives 

   Continuity at E2:   1 2 2 2(E ) (E )φ = φ       (2a) 

   Continuity at E3:   2 3 3 3(E ) (E )φ = φ       (2b) 

   Overall normalization: 1E 12
20

neutrons(E)dE 1 10
cm s

φ = ×
−∫     (2c) 

These three conditions give three equations with three unknowns and, if written in matrix form, 
we have 
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and, for a given set of energy boundaries and a given temperature, we can evaluate the matrix 
elements and solve the resultant equation for the desired normalization coefficients (Matlab’s 
quadl routine, for example, could be used to perform the required integrals). 

For the energy boundaries, we set E1 = 10 MeV.  This is a convenient choice for generating the 
desired plots and it represents a sufficiently high energy level such that essentially all the 
neutrons born in the fission process exist below this energy.  For E2 and E3, these were changed 
somewhat arbitrarily to give a fast-to-thermal flux ratio in the range of 2.5 to 3.5 (since this ratio 
in the UMLRR is in this range).  In doing this we defined the fast-to-thermal flux ratio as 
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Thus, the procedure followed was to make a reasonable guess for E2 and E3, solve eqn. (3) for 
the normalization coefficients, and then evaluate eqn. (4) to determine φfast/φthermal.  This was 
done several times with various choices of E2 and E3 until a suitable value of φfast/φthermal was 
obtained.  This process eventually lead to the selection of E2 = 0.05 MeV and E3 = 2×10-7 MeV 
which gives a fast-to-thermal flux ratio of about 3.35 for T = 20 C (and this is a typical value for 
a fuel-structure-water mixture in a research reactor operating near room temperature). 

With the selection of all the free variables in eqn. (1) for the composite flux spectrum φ(E), we 
can now turn our attention to the original goal of plotting this function in a variety of ways.  
However, it should be emphasized that our resultant φ(E) is only a very rough approximation to 
reality, since many simplifying assumptions were made in this development.  Nevertheless, 
although the approach taken here is very simplistic, the resultant profile is quite reasonable and, 
more importantly for this exercise, it is certainly reasonable enough for illustration of how the 
various plotting techniques affect our visualization of the flux spectrum. 

The most common visualization techniques include plotting φ(E) vs. E, φg vs. E, and φ(u) vs. E, 
where φ(E) is the flux per unit energy, φg is the group flux (energy integrated flux over the 
particular energy interval associated with group g), and φ(u) is the flux per unit lethargy, with 
lethargy defined as 

refEu(E) ln
E

=           (5) 

where Eref is an arbitrarily high reference energy level. 

For plotting φ(E) vs. E, we simply evaluate the composite flux spectrum given by eqn. (1) (as 
described above) and plot it versus energy using logarithmic axes for both φ(E) and E.  The 
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resultant plot, generated by the phiE_thermal.m Matlab code (given at the end of these Notes), 
is shown below. 

 
This flux distribution clearly shows the three distinct spectrum functions that make up the 
composite φ(E) spectrum, with the fission spectrum at high energies, a clearly observable 1/E 
behavior at intermediate energies, and a Maxwellian distribution at low energy.  This 
visualization is clearly more consistent with the above quote from the DOE Handbook for the 
intermediate regions, but it is also clearly different from the thermal spectrum given in the 
Introduction section. 

To plot φg vs. E, we first must create a fine-group energy grid, compute the discrete φg values, 
and then plot these values versus energy using a histogram-type plot that shows a constant group 
flux in each energy bin, with discontinuous changes at the group boundaries.  For the energy 
grid, it is common to have roughly equal lethargy intervals.  Thus, for plotting over a range of 
10-10 MeV to 10 MeV, the total change in lethargy is given by  

11
tot 10

10MeVu ln ln10 25.33
10 MeV−

 
∆ = = = 

 
 

and, for a ∆ug ≈ 0.5, this would lead to about 50 or 51 total groups.  However, since we desire 
that the discrete boundaries for the three spectrum functions are included directly within the 
multigroup specification, we must be sure to compute the fine-group boundaries such that they 
fit evenly within each of the three larger supergroups.  To do this, we first define the change in 
lethargy for group g, ∆ug, and the group boundaries in terms of ∆ug, as 
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and then, using these expressions within a looping structure, we can easily define the fine-group 
energy boundaries and corresponding group fluxes separately for each of the three large energy 
groups, where φg is given by 

g

g 1

E
g E

(E)dE
+

φ = φ∫          (7) 

For example, for the fast region (from E2 to E1), we have 

1
g

2

E1 1 10u ln ln 0.4817 0.5
Ng E 11 .05

   ∆ = = = ≈   
  

 

Thus, Ng = 11 fine groups in the fast region of the full spectrum leads to a change in lethargy per 
group near 0.5 and the energy boundaries are determined via the 2nd part of eqn. (6) with E1 
known.  The logic for creating the energy grid in this fashion and for computing the fine-group 
fluxes using quadl was coded into the phiE_thermal1.m Matlab function file and this code was 
called three times within phiE_thermal.m  --  once for each of the three supergroups.  In 
addition, this function file also expanded the group flux vector and the vector of energy 
boundaries, by repeating each entry such that the resultant plot gives the desired histogram 
structure with use of the usual Matlab plot command (see the code listing at the end of these 
notes for the details). 

Finally, after the processing steps indicated above, the resultant plot of φg vs. E is shown below, 
where we note that this indeed looks quite different from the φ(E) vs. E plot.  In fact, its basic 
structure actually looks quite similar to the thermal spectrum from the DOE Handbook  --  except 
for the discrete versus continuous nature of the overall profile. 
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As a final visualization method, let’s look at a continuous plot of the flux per unit lethargy versus 
energy.  To develop this relationship, we note that both φ(E) and φ(u) are density functions, and 
the total number of neutrons/cm2-s in a given energy interval, dE, or corresponding lethargy 
interval, du, must be the same, or 

2(u)du (E)dE  # neutrons/cm -s in intervalφ = −φ =      (8) 

where the negative sign accounts for the fact that a decrease in energy leads to an increase in 
lethargy.   

Now with the relationship given in eqn. (8) and the definition of u(E) in eqn. (5), the flux per unit 
lethargy is simply given as 

( )dE(u) (E) (E) E E (E) or (u) E (E)
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φ = −φ = −φ − = φ φ = φ    (9) 

and, applying this relationship to the formulae for φ(E) from eqn. (1) for a thermal system, gives 
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A plot of eqn. (10) versus energy, as shown below, gives the desired φ(u) vs. E.  This 
visualization is very similar to that for φg vs. E (for the case where the energy intervals have 
roughly equal lethargy widths), except for the discontinuous versus discrete nature of the two 
profiles.  Also, as implied above, this profile has the same basic structure as the original thermal 
profile from the DOE Handbook.  Thus, from this comparison, it should be clear that the original 
y-axis labeling is not quite correct, since it should really say neutron flux per unit lethargy. 

 



 

Lecture Notes:  A Note Concerning the Flux Spectrum in Thermal Systems  
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (Sept. 2015) 

7 

Well, we have finally completed the task at hand  --  that is, highlighting the differences between 
φ(E), φg, and φ(u), with a focus on thermal systems.  The most common visualizations include 
plots of φ(u) or φg vs. E  (i.e. continuous or discrete representations)  --  and, more often than not, 
the labeling simply indicates that the neutron flux is being plotted (even though one should 
always be very explicit to avoid any possible ambiguities).  However, after studying this 
example, you should be able to distinguish the difference between a plot of φ(E) or φ(u), even if 
the plot is not properly labeled.  For example, it should be clear that the thermal spectrum plot 
from the DOE Handbook is clearly a flux per unit lethargy and, with this knowledge, the quote 
that accompanies the plot also makes perfect sense… 

To conclude this note, we simply list the Matlab code used to generate the plots of φ(E), φg, and 
φ(u) versus energy, since this might prove to be useful in additional plotting exercises that you 
may encounter  --  and remember to always properly label any plots that you may generate (since 
what may be obvious to the author is probably not always as clear to the reader…)… 

 

Listing of Matlab codes phiE_thermal.m and phiE_thermal1.m 

% 
%   phiE_thermal.m   Plots typical phi(E), phi(u), and phig versus energy  
%                        for a thermal system 
% 
%   The purpose of this file is to plot the flux distribution (versus energy) in a 
%   variety of ways  --  specifically comparing the flux density, phi(E), with the 
%   group integrated flux, phig.  A plot of the flux density per unit lethargy, phi(u), 
%   is also given. 
% 
%   Note that the profiles here only give a very rough approximation and the two  
%   energy boundaries where the three regions connect are somewhat arbitrary. However, 
%   the plots still give a good picture of the differences between phi(E) and phig,  
%   and the similarities between phi(u) and phig (especially for the case of nearly  
%   equal lethargy widths). Here, E2 and E3 were chosen to give a fast to thermal 
%   flux ratio somewhere in the range 2.5 - 3.5 (this is typical of a fuel element  
%   in the UMLRR). 
% 
%   File prepared by J. R. White, UMass-Lowell  (Sept. 2015) 
% 
  
      clear all,  close all,  nfig = 0; 
% 
%   define energy boundaries for the 3 different functional relationships (E in MeV) 
      E1 = 10;  E2 = 0.05;  E3 = 2e-7;  E4 = 1e-10; 
% 
%   define anonymous functions for phi(E) over 3 regions 
      kT = (8.617e-11)*293;                            % kT at 20 C for E in MeV 
      phiE1 = @(E) exp(-1.036*E).*sinh(sqrt(2.29*E));  % fission spectrum 
      phiE2 = @(E) 1./E;                               % slowing down spectrum 
      phiE3 = @(E) E.*exp(-E/kT);                      % Maxwellian spectrum 
% 
%   compute coeffs to give continuity and a specified normalization (phi total = 1e12) 
      a11 = phiE1(E2);  a12 = -phiE2(E2); 
      a22 = phiE2(E3);  a23 = -phiE3(E3); 
      a31 = quadl(phiE1,E2,E1); a32 = quadl(phiE2,E3,E2); a33 = quadl(phiE3,0,E3); 
      A = [a11 a12 0; 0 a22 a23; a31 a32 a33];   
      phitot = 1e12;   b = [0;  0;  phitot]; 
      c = A\b;   
      disp('check on solution of A*c = b: '),  berr = A*c-b 
% 
%   plot phi(E) vs E (use log-log scale) 
      Np1 = 100;   e1 = logspace(log10(E2),log10(E1),Np1);  flxE1 = c(1)*phiE1(e1); 
      Np2 = 50;    e2 = logspace(log10(E3),log10(E2),Np2);  flxE2 = c(2)*phiE2(e2); 
      Np3 = 100;   e3 = logspace(log10(E4),log10(E3),Np3);  flxE3 = c(3)*phiE3(e3); 
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      nfig = nfig+1;  figure(nfig) 
      loglog(e1,flxE1,'r',e2,flxE2,'b',e3,flxE3,'g','LineWidth',2),grid      
      rr = axis;  rr(2:4) = [10 1e9 1e19];  axis(rr); 
      title('Typical Spectrum for \phi(E) in a Thermal System') 
      xlabel('Energy (MeV)'),ylabel('Flux Density (neutrons/cm^2-sec-MeV)') 
% 
%   create a discrete energy grid with a lethargy width of roughly 0.5 
%   and compute and plot the group fluxes over each discrete interval 
      Ng1 = 11;  [eb1,flxg1] = phiE_thermal1(phiE1,c(1),E2,E1,Ng1); 
      Ng2 = 25;  [eb2,flxg2] = phiE_thermal1(phiE2,c(2),E3,E2,Ng2); 
      Ng3 = 15;  [eb3,flxg3] = phiE_thermal1(phiE3,c(3),E4,E3,Ng3); 
      nfig = nfig+1;  figure(nfig) 
      loglog(eb1,flxg1,'r',eb2,flxg2,'b',eb3,flxg3,'g','LineWidth',2),grid on 
      hold on 
      loglog([eb1(1) eb1(1)],[flxg2(end) flxg1(1)],'r','LineWidth',2) 
      loglog([eb2(1) eb2(1)],[flxg3(end) flxg2(1)],'g','LineWidth',2) 
      rr = axis;  rr(2) = 10;  axis(rr); 
      title('Typical Spectrum for \phi_g in a Thermal System') 
      xlabel('Energy (MeV)'),ylabel('Group Flux (neutrons/cm^2-sec)') 
      hold off 
%   
%   get a rough measure of the fast to thermal flux ratio 
      fast2thm = (sum(flxg1)+sum(flxg2))/sum(flxg3); 
      disp('rough estimate of fast to thermal flux ratio: '),fast2thm 
% 
%   now we want to generate a plot of phi(u) versus energy, where u = lethargy 
% 
%   define anonymous functions for phi(u) = E*phi(E) over 3 regions 
      phiu1 = @(E) c(1)*E.*exp(-1.036*E).*sinh(sqrt(2.29*E)); % fission spectrum 
      phiu2 = @(E) c(2)*E./E;                                 % slowing down spectrum 
      phiu3 = @(E) c(3)*E.^2.*exp(-E/kT);                     % Maxwellian spectrum 
% 
%   plot phi(u) vs E (log-log scale) 
      flxu1 = phiu1(e1);  flxu2 = phiu2(e2);  flxu3 = phiu3(e3); 
      nfig = nfig+1;  figure(nfig) 
      loglog(e1,flxu1,'r',e2,flxu2,'b',e3,flxu3,'g','LineWidth',2),grid        
      rr = axis;  rr(2) = 10;  axis(rr); 
      title('Typical Spectrum for \phi(u) in a Thermal System') 
      xlabel('Energy (MeV)'),ylabel('Flux Density (neutrons/cm^2-sec-lethargy)') 
% 
%  end of program 
 

 

 

% 
%   phiE_thermal1.m   Creates group flux vector for plotting as histogram  
%                        (for use with phiE_thermal.m) 
% 
%   File prepared by J. R. White, UMass-Lowell  (Sept. 2015) 
% 
      function [x,y] = phiE_thermal1(phi,c,E2,E1,Ng) 
% 
%   create a discrete energy grid with a constant lethargy width  
%   and compute the group fluxes over each discrete interval 
      delu = log(E1/E2)/Ng,   rr = exp(delu); 
      eb = zeros(Ng+1,1);  flxg = zeros(Ng,1); eb(1) = E1; 
      for k = 1:Ng 
        eb(k+1) = eb(k)/rr;  
        flxg(k) = c*quadl(phi,eb(k+1),eb(k)); 
      end 
% 
%   expand group flux vector so it can be plotted as a histogram (constant in the grp) 
      icnt = 0;   x = zeros(2*Ng,1);  y = zeros(2*Ng,1); 
      for k = Ng:-1:1 
        icnt = icnt+1;  x(icnt) = eb(k+1);  y(icnt) = flxg(k);    
        icnt = icnt+1;  x(icnt) = eb(k);    y(icnt) = flxg(k);  
      end   
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