
2-Group Diffusion Theory for Critical Systems 
 

Introduction 
For the two-group approximation to multigroup diffusion theory,1 one usually assumes no 
upscatter (Σ2→1 = 0) and no fission source in group 2 (χ1 = 1.0 and χ2 = 0.0).  With these 
specifications, the group 1 and 2 diffusion equations for a critical homogeneous system become 

 ( )2
1 1 R1 1 f1 1 f 2 2D 0− ∇ f +Σ f −λ νΣ f + νΣ f =       (1) 

 2
2 2 a2 2 1 2 1D 0→− ∇ φ +Σ φ −Σ φ =        (2) 

where the 1 subscript refers to the fast group and the 2 represents the thermal group. 

Solution of these equations for a general multidimensional, multi-region system is quite 
complicated (and beyond the scope of these notes).  However, for the case of a 1-region bare 
homogeneous reactor, we can make a number of simplifying assumptions that lead to a system 
that is easy to solve and interpret.  In particular, this procedure leads to formal expressions for 
keff and the fast-to-thermal flux ratio in bare critical systems  --  and, with the assumption of a 
large region, we get expressions for k∞ and f1/f2 for the particular material of interest.  In the 
latter case, these neutronic material properties are very important in the design and analysis of 
thermal reactor systems. 

Bare Homogeneous Reactors 
To develop the desired formulations we restrict our analysis to the case of a bare homogeneous  
1-region critical system.  In addition, we argue that the extrapolation distance in each energy 
group is the same (recall that d ≈ 2.13 D, so the extrapolation distance is really energy 
dependent).  This latter approximation can be justified by the fact that the diffusion coefficient is 
not a strong function of energy, and that, in many cases, d is small compared to the reactor 
dimensions anyway.  Thus, the minor variation of d with energy is usually negligible. 

With the above assumption, we can argue that, for eqns. (1) and (2) to be valid at every point in 
the reactor, the spatial forms of 1(r)φ

 and 2 (r)φ
 must be identical.  This is easy to see in the case 

where the leakage term is small, since all the other terms simply have constant coefficients.  
However, from our study of 1-group theory, we also know that the flux curvature, 2∇ φ , is just 
proportional to the flux shape  --  that is 2 2B∇ φ = − φ , where B2 is a constant.  Thus, the spatial 
profile of the flux is indeed the same for each energy group, and the full solution to eqns. (1) and 
(2) can be written as 

 1 1 2 2(r) c (r) and (r) c (r)φ = φφ  = φ
dddd          (3) 

where (r)φ
  satisfies an equation of the form 

 2 2 2 2(r) B (r) 0 or (r) B (r)∇ φ + φ = ∇ φ = − φ
         (4) 

In these expressions, (r)φ
 (without a group subscript) represents only the spatial distribution of 

the flux, and g g(r) c (r)φ = φ
   (with a group subscript) represents the full space-energy solution.  

Note that this rationalization and the above summary mathematical relationships essentially 
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represent the assumption of space-energy separability in the system.  In addition, since (r)φ
  

represents the spatial profile from a 1-group bare system, we already know the distribution for all 
the common bare reactor geometries (see Refs. 2 - 4).  Thus, once we specify the geometry, (r)φ

  
is known and our challenge reduces to finding the discrete energy dependence of the flux (i.e. the 
c1 and c2 values). 

Now, with the above separability assumption, substituting eqns. (3) and (4) into the matrix form 
of (1) and (2) gives 

 
2

1 R1 f1 f 2 1
2

21 2 2 a2

D B c 0
c 0D B→

 + Σ −λνΣ −λνΣ    =     −Σ + Σ    
     (5) 

where the flux distribution, (r)φ
 , has canceled from the expression since we have a 

homogeneous system of equations. 

The set of homogeneous algebraic equations will have a non-trivial solution if and only if the 
determinant of the coefficient matrix vanishes (i.e. the matrix must be singular).  This is the 
criticality condition for the 2-group problem.  Forcing the determinant of the 2×2 matrix to zero 
gives 

 ( )( )2 2
1 R1 f1 2 a2 f 2 1 2D B D B 0→+Σ −λνΣ +Σ −λνΣ Σ =  

and, separating out the terms containing the eigenvalue λ, gives 

 ( )( ) ( )2 2 2
1 R1 2 a2 f1 2 a2 f 2 1 2D B D B D B 0→

 + Σ +Σ −λ νΣ +Σ + νΣ Σ =   

or 
( )( )

( )
2 2

1 n R1 2 n a2
n 2

f1 2 n a2 f 2 1 2

D B D B

D B →

+Σ +Σ
λ =

nΣ +Σ + nΣ Σ
       (6) 

where the n subscript denotes that there are an infinite number of 2
nB ’s that satisfy the critical 

bare reactor problem described by eqn. (4).2-4 

Now, recalling that eff1 kλ =  for the fundamental mode (i.e. n = 1), we have  

 
( )

( )( )
2

f1 2 a2 f 2 1 2
eff 2 2

1 R1 2 a2

D B
k

D B D B
→νΣ +Σ + νΣ Σ

=
+Σ +Σ

       (7) 

Recall also that the geometric buckling, B2, is inversely proportional to the square of the 
characteristic dimension for the system of interest.  Therefore, as the system becomes large, B2 
approaches zero.  Thus, in the limit of an infinite system, we have 

 f1 a2 f 2 1 2

R1 a2
k →
∞

νΣ Σ + νΣ Σ
=

Σ Σ
        (8) 

where we note that this is a material property that characterizes the overall neutronic behavior 
[i.e. reactivity, (k 1) / k∞ ∞ ∞ρ = − ] of the material  --  a very important parameter indeed! 
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Also, from eqn. (3) we see that the two-group fluxes only differ by a constant, which is usually 
denoted by the fast-to-thermal flux ratio.  From the matrix representation given in eqn. (5), we 
have 

 
2

2 a21 1 f 2
2

2 2 1 21 R1 f1

D Bc
c D B →

+Σf λνΣ
= = =

f Σ+Σ −λνΣ
     (9) 

and for an infinite system this can be written as a simple ratio of cross sections, or 

 a21

2 1 2→∞

Σφ
=

φ Σ
          (10) 

This ratio is a good indicator of the general flux spectrum in a thermal system  --  a somewhat 
softer spectrum will have a smaller f1/f2 value and a harder spectrum will have a larger fast-to-
thermal flux ratio. 

To complete this problem we need to normalize the spatial flux distribution to the reactor power 

 fg g
g

P (r) (r)dr= κ Σ f∑∫
ddd           (11) 

However, g g(r) c (r)φ = φ
   and, for a homogeneous system, the cross sections are spatially 

independent.  Therefore, we can write the power as 

 ( ) ( )1 f1 2 f 2P c c r dr= κ Σ + Σ f∫
dd         (12) 

Letting c2 = A, we have 

 1 1
1 2

2 2

c(r) A (r) A (r) and (r) A (r)
c

φ
φ = φ = φφ  = φ

φ
ddddd         (13) 

Thus, the power expression becomes 

 ( )1
f1 f 2

2
P A r dr

 f
= κ Σ +Σ f f 

∫
dd         (14) 

or 
( )1

f1 f 2
2

PA
r dr

=
 f

κ Σ +Σ f f 
∫

dd

       (15) 

In these expressions, A is the overall flux normalization, f1/f2 is the fast-to-thermal flux ratio as 
given in eqn. (9), and the integral of the flux distribution has already been discussed for several 
simple reactor geometries (see Ref. 2 - 4). 

This development is now complete.  Although brief, there is a lot of meat here!  We have seen 
that the flux shape in a 2-group model of a bare reactor is the same as the 1-group profile for 
each geometry of interest.2-4  However, the expressions for the 2-group keff and k∞ are quite 
different [see eqns. (7) and (8)] from their 1-group counterparts, since they take into account the 
production and loss of neutrons in both the fast and thermal groups.  In addition, we introduced 
the fast-to-thermal flux ratio [eqn. (9)] and saw that this quantity is needed to define the fast flux, 
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and that it enters into consideration in the computation of the normalization.  If the cross section 
data are available for a particular system, these expressions are relatively easy to use to compute 
critical size, critical composition, the value of keff for a specific material-geometry combination, 
the maximum value of the flux for a given power level, etc.  --  there is actually a lot of 
information that can be obtained here. 

The Four Factor Formula 
The above development of 2-group theory represents a formal treatment of this subject for bare 
systems.  However, in many situations, the detailed cross section data needed to evaluate the 
above formal expressions are not readily available.  The difficulty here often lies with 
determining the fast cross sections for the fuel (primarily Σf1 and Σa1 which are associated with 
fast fission and resonance absorption effects, respectively).  Although these quantities can be 
computed accurately with sophisticated cross section processing codes, it would be nice to have 
an alternative, relatively simple approach for performing preliminary analyses.  Towards this 
end, we will introduce the so-called four factor formula in this subsection and the basic ideas 
behind modified 1-group theory in the next subsection to give us some approximate 2-group 
computational capability without putting too much effort into generating formal values for Σf1 
and Σa1.  
In particular, let’s focus on an infinite system for a moment.  In such systems, of course, there is 
no leakage, so the only ultimate loss term is absorption.  In the fast group, neutrons can get 
absorbed (primarily in the fuel and structure resonances) or scatter to thermal.  At thermal, all the 
neutrons that have scattered from group 1 get absorbed, where some of the absorptions involve 
fission in the fuel.  The fissions that occur (at both fast and thermal energies) produce neutrons at 
high energy, which starts the neutron life cycle all over again.   

To describe this process in a quantitative manner, let’s define a number of terms, as follows: 

 thermal absorption rate in fuelthermal utilization f
total thermal absorption rate

= =  

  ( )
F
a2 2 aF 2 aF aF

aF aM aaF aM 2a2 2

dr
f

dr

Σ f Σ f Σ Σ
= = = =

Σ +Σ ΣΣ +Σ fΣ f
∫
∫

d

d

   (16) 

 T
total neutrons emitted from thermal fissionreproduction factor

thermal neutrons absorbed in fuel
= h =  

  
( ) ( ) ( )

( ) ( )
aF aFT T

T
aFaF TT

E E E dE

E E dE

η Σ φ ηΣ φ
η = =

Σ φΣ φ
∫
∫

 

or  f 2T f 2 f
T FF

2 aFa2a T

νΣ f fνΣ νΣ
η = = =

f ΣΣΣ f
      (17) 

 total neutrons emitted from all fission (fast and thermal)fast fission factor
neutrons emitted from thermal fission

= e =  
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  f1 1 f 2 2 f1 1 2 f 2

f 2 2 f 2

νΣ f + νΣ f νΣ f f + νΣ
ε = =

νΣ f νΣ
    (18) 

 resonance escape probability that a fission neutron is notpprobability absorbed while slowing down= =  

  1 2 1 1 2

a1 1 1 2 1 a1 1 2
p → →

→ →

Σ φ Σ
= =

Σ φ + Σ φ Σ +Σ
      (19) 

To put these four terms to good use, let’s define the thermal absorption rate as 

 ( )a2 2 a2 2 a 2 aF aM 2thermal absorption rate dr= Σ φ = Σ φ = Σ φ = Σ +Σ φ∫
d  (20) 

where aMΣ  represents the absorption cross section in the moderator, coolant, structure, etc. 
(includes everything but fuel). 

Now, we write several explicit expressions for the following quantities that describe the neutron 
life cycle: 

1. number of thermal neutrons absorbed in reactor  =  a 2 a TΣ φ = Σ φ  

2. number of thermal neutrons absorbed in fuel  =  a Tf Σ f  

3. number of neutrons emitted from thermal fission  =  T a Tfη Σ f  

4. number of neutrons emitted from all fission  =  T a Tfεη Σ f  

5. number of neutrons that make it to thermal in the next generation  =  T a Tp fεη Σ f  

Thus, we see that these terms can be used to help define the overall neutron balance in a 2-group 
infinite system.  In particular, noting that the downscatter rate from group 1 to group 2,  

1 2 1→Σ φ , is equal to the thermal absorption rate, a2 2Σ φ , we can write an expression for the 
infinite multiplication factor as 

 T a T T a T

a1 1 a T a1 1 1 2 1

f fproduction ratek
loss rate∞

→

eη Σ f eη Σ f
= = =

Σ f +Σ f Σ f +Σ f
   (21) 

But, from eqn. (19), we see that the denominator of this expression can be written in terms of the 
resonance escape probability as 

 1 2 1
a1 1 1 2 1 p

→
→

Σ φ
Σ φ + Σ φ =  

Thus, the expression for k∞ is simply 

 T a T T a T
T

1 2 1 a T

f p f p
k f p∞

→

εη Σ f εη Σ f
= = = ηε

Σ f Σ f
     (22) 

 



 

Lecture Notes:  2-Group Diffusion Theory for Critical Systems 
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (Dec. 2016) 

6 

Thus, the so-called four factor formula is just a simple expression for the multiplication factor in 
an infinite system, Tk f p∞ = ηε  .  This is an important result  --  k∞ is a material property that 
characterizes the reactivity potential of a particular material composition. 

It is also very instructive to show that our two expressions for k∞ are identical [that is, that eqn. 
(8) and eqn. (22) give the same value].  To show this, we expand the expression for Tk f p∞ = ηε   
in terms of the four factors written in full detail, or 

 
F
a2 2 1 2 1f 2 2 f1 1 f 2 2

F
a2 2 R1 1 f 2 2a2 2

k →
∞

   Σ f    Σ fνΣ f νΣ f + νΣ f   =    Σ f Σ f νΣ f   Σ f       
 

and, cancelling the factors contained in both the numerator and denominator, gives 

 1 2 1f1 1 f 2 2

a2 2 R1 1
k →
∞

   Σ fνΣ f + νΣ f
=    Σ f Σ f  

 

But, we have already noted that, in an infinite system, the downscatter rate from the fast group, 
1 2 1→Σ φ , is equal to the thermal absorption rate, a2 2Σ φ .  Thus, the above expression reduces 

to 

( )
( )

( )
( )

f1 a2 1 2 f 2f1 1 f 2 2 f1 1 2 f 2

R1 1 R1 1 2 R1 a2 1 2
k →
∞

→

νΣ Σ Σ + νΣνΣ f + νΣ f νΣ f f + νΣ
= = =

Σ f Σ f f Σ Σ Σ
 

or f1 a2 f 2 1 2

R1 a2
k →
∞

νΣ Σ + νΣ Σ
=

Σ Σ
 

where we have used the expression for the fast-to-thermal flux ratio in an infinite system from 
eqn. (10) in the last manipulation step.  This last expression is identical to the formal statement 
given in eqn. (8). 

Therefore, with the proper definition of the individual terms, the four factor formula is identical 
to the expression derived from formal 2-group theory for infinite homogeneous systems.  Either 
expression for the 2-group k∞ can be used as desired, where 

 
( )

f1 a2 f 2 1 2

a1 1 2 a2
k →
∞

→

νΣ Σ + νΣ Σ
=

Σ +Σ Σ
        or        Tk f p∞ = ηε   

The Six Factor Formula and Modified 1-Group Theory 
Using the terms from the four factor formula to rewrite the 2-group diffusion model slightly, we 
can also develop an alternate expression for keff.  To do this we will follow the procedure from 
Lamarsh.4  In particular, we start with the formal 2-group neutron balance equation given in 
eqns. (1) and (2), with the following changes/assumptions: 

1. Rewrite the fission source term as 

 ( )fission
f1 1 f 2 2 T a2 2 a2 2

kS f
p
∞= λ nS f + nS f = λεηS  f = λ S f  (no approximations here) 
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2. Make the assumption that the fast absorption cross section is small compared to the 
downscatter cross section, or 

 R1 a1 1 2 1 2→ →Σ = Σ +Σ ≈ Σ      (assumes a1 1 2→Σ << Σ ) 

3. Modify the downscatter source to account for the above assumption  --  since the fast flux 
will be somewhat high due to the elimination of the fast absorption term, we reduce the 
downscatter rate by the resonance escape probability, or 

downscatter
1 2 1 1 2 1S p→ →= Sφ  ⇒ Sφ            (tries to correct for setting a1 1 0Σ φ = ) 

With these modifications, the fast and thermal balance equations become 

 2
1 1 1 2 1 a2 2

kD 0
p
∞

→− ∇ φ +Σ φ −λ Σ φ =        (23) 

 2
2 2 a2 2 1 2 1D p 0→− ∇ φ +Σ φ − Σ φ =        (24) 

Now, using eqns. (23) and (24), we can follow the same procedure as before to derive an 
expression for keff for the system of interest.  Again we let g g(r) c (r)φ = φ

   where the spatial 

solution is given by an equation of the form 2 2B 0∇ φ+ φ =   (i.e. the 1-group critical reactor 
equation).  Then, upon substitution and putting the resultant algebraic equations into matrix 
form, we have 

 
2

1 1 2 a2 1

22
1 2 2 a2

kD B c 0p c 0
p D B

∞
→

→

 + Σ −λ Σ      =       − Σ + Σ  

      (25) 

Again the determinant of the coefficient matrix must be zero for a non-trivial solution, or 

 ( )( )2 2
1 1 2 2 a2 1 2 a2D B D B k 0→ ∞ →+Σ +Σ −λ Σ Σ =  

and solving for λ gives 

 
( )( )2 2

1 1 2 2 a2

1 2 a2

D B D B

k
→

∞ →

+Σ +Σ
λ =

Σ Σ
 

or 
( )( )

1 2 a2
eff 2 2

1 1 2 2 a2

k1k
D B D B

∞ →

→

Σ Σ
= =
λ +Σ +Σ

      (26) 

This expression should be compared to that given in eqn. (7)  --  which was derived from formal 
2-group theory with minimal approximations.  Equation (26), on the other hand, has several 
additional assumptions and, therefore, it is only an approximation to the result given by eqn. (7).  
However, for preliminary estimates of keff, eqn. (26) is often much easier to apply because a 
formal set of 2-group macroscopic cross sections are not required.  To see this more clearly, 
recall the definitions of the thermal neutron age, τT, and thermal diffusion area, 2

TL , where 
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1
T

1 2

D

→

τ =
Σ

         and         2 2
T

a2

DL =
Σ

 

Using these definitions, we see that division of the numerator and denominator of eqn. (26) by 
Σ1→2Σa2 directly leads to  

 eff 2 2 2
T T

1 1k k
1 B 1 L B∞

  
=   

+ τ +  
       (27) 

where the two factors in parentheses are formal expressions for the fast and thermal non-leakage 
probabilities in the system.  In particular, for the fast group, neutrons can either leak out of the 
system or downscatter to the thermal group (recall we are assuming that a1 1 2→Σ << Σ ).  Thus, the 
fast non-leakage probability (or fast removal probability) is given by 

 1 2 1
F 22

T1 1 1 2 1

1P
1 BD B

→

→

Σ φ
= =

+ τφ + Σ φ
       (28) 

Using similar arguments for the thermal group leads to an expression for the thermal non-leakage 
probability, or  

 a2 2
T 2 22

T2 2 a2 2

1P
1 L BD B

Σ φ
= =

+φ + Σ φ
       (29) 

Thus, with these definitions, the expression for the multiplication factor in a bare homogeneous 
reactor can be written as 

 eff T Fk k P P∞=            (30) 

Since Tk fp∞ = ηε   (i.e. the 4-factor formula), the expression for keff in eqn. (30)  is often called 
the six factor formula  --  that is eff T F Tk fp P P= η e   --  and it is often easier to estimate the terms 
within this expression than to determine the formal 2-group macroscopic cross sections needed 
for eqn. (7).  Thus, the 6-factor formula is quite important when performing preliminary 
computations of critical size or critical composition, and it is also quite useful in describing the 
life cycle of neutrons in a thermal reactor. 

Within the life-cycle context, Fig. 1 gives a specific example that illustrates how the elements of 
the 6-factor formula can be used to identify the neutron population at several stages within its life 
cycle.  Note that numerical values for the six factors are given that lead to keff = 1.000 (see Fig. 1 
for the specific values).  The demo starts with 1000 neutrons that are born from thermal fission 
(this is No in the sketch).  This neutron population is increased by a factor of e to account for the 
fast fissions that can occur.  These fast neutrons, Noe, can either leak out of the finite system, be 
absorbed as fast neutrons, or scatter down to the thermal group.  Since PF gives the fast non-
leakage probability, and p gives the resonance escape probability, then (Noe)PFp, gives the 
number of neutrons that do indeed downscatter to thermal energies.   

At thermal, the neutrons can either leak out of the system or be absorbed, with a fraction of the 
absorptions taking place in the fuel material.  Since PT is the thermal non-leakage probability and 
f is the fraction of absorptions that take place in the fuel, then (NoePFp)PTf thermal neutrons 
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Fig. 1   Neutron life cycle with keff = 1.000  (directly from Ref. 5). 
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actually get absorbed in the fuel material.  Finally, since hT gives the neutrons emitted from 
thermal absorption in the fuel, then (NoePFpPTf)hT fission neutrons will be produced in the next 
generation from thermal fission  --  and since eff T F T T F Tk fp P P fp 1.000= η e = η e =L L  in this 
example, then the original number of No neutrons are emitted from thermal fission to start a new 
life cycle (note that Fig. 1 uses LF and LT to denote the fast and thermal non-leakage probabilities 
and we have been using PF and PT for these quantities  --  clearly these are equivalent terms, 
where LF = PF and LT = PT). 

Now, as a final task for this subsection, we will also put eqn. (27) or (30) into a form similar to  
1-group theory  --  that is, we want to develop the so-called modified 1-group formula for keff.  
First we recall the 1-group expressions (see Ref. 2), 

eff NL2 2
kk k P

1 L B
∞

∞= =
+

        (31) 

where PNL is the non-leakage probability and k f∞ = η  (note that k f∞ = η  is sometimes referred 
to as the 2-factor formula and eff NL NLk k P fP∞= = η  is often called the 3-factor formula  --  both 
these are associated with the 1-group approximation). 

Getting back to the 2-group problem, let’s expand the denominator of the criticality condition 
given in eqn. (27), 

 
( )( ) ( )eff 2 2 2 2 2 2 4

T T T T T T

k kk
1 L B 1 B 1 L B L B

∞ ∞= =
+ + τ + + τ + τ

 

For a large system, B2 is quite small and B4 is very small.  In this case, the following inequality 
is often valid 

 ( )2 4 2 2
T T T TL B L Bτ << + τ  

and we can write the following “modified 1-group theory” critical condition as 

 
( )eff 2 22 2

TT T

k kk
1 M B1 L B

∞ ∞= =
++ + τ

       (32) 

where 2 2
T T TM L= + τ  is the thermal migration area.   

Equation (32) is the desired expression for so-called modified 1-group theory.  It is an estimate 
of the multiplication factor for the 2-group approximation to multigroup diffusion theory in bare 
homogeneous systems.  Note, however, that this expression looks very similar to the 1-group 
representation given in eqn. (31) and it is used in a similar manner.  Thus, eqn. (32) is called the 
“modified” 1-group formula simply because it resembles the 1-group expression  --  however, 
always remember that it is associated with 2-group theory. 

Critical Size and Critical Composition Calculations (for dilute homogeneous systems) 
The above development is used in preliminary computations for the critical size and critical 
composition of simple homogeneous bare core configurations.  In addition, the same basic 
techniques can also be used for reflected cores, if some information about the reflector savings, 
δ, is known.  The hand computations rely on a number of assumptions that allow one to readily 
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estimate the parameters within the modified 1-group theory expression for keff as given in       
eqn. (32).  In particular, the assumption of a dilute homogeneous system is key to resolving a 
lot of the necessary data for the calculations  --  where the word “dilute” implies that the fuel 
composition is only a small component of the overall homogeneous mixture.   

For example, for a two-component dilute homogeneous system (consisting of only fuel and 
moderator  --  where the “moderator” here is everything but fuel), the macroscopic cross sections 
for the mixture can be approximated as follows: 

The transport cross section is given as 

 F M F F M M
tr tr tr tr trN NΣ = Σ +Σ = σ + σ  

But, although the microscopic data are on the same order of magnitude (i.e. F
trσ  is of the same 

order as M
trσ ), the dilute nature of the mixture tells us that M FN N>> .  Because of this condition, 

the expression for the transport cross section reduces to 
M M M

tr tr trNΣ ≈ σ ≈ Σ  

and the diffusion coefficient for the mixture becomes  

 MM
tr tr

1 1D D
3 3

= ≈ =
Σ Σ

        (33) 

Thus, the diffusion coefficient of the moderator can usually be used to approximate the diffusion 
coefficient for the overall mixture. 

Similarly, for the downscatter cross section, we make the same set of assumptions, giving 

 F M M
1 2 1 2 1 2 1 2→ → → →Σ = Σ +Σ ≈ Σ         (34) 

and with the approximations in eqns. (33) and (34), we can write the thermal neutron age as 
M

1 1
T M

1 2 1 2

D D

→ →

τ = ≈
Σ Σ

 or T TMτ = τ       (35) 

For a homogeneous system, the basic definition of the thermal utilization gives 

 
F F F M
a a a a

F M F M
a a a a a

zf
z 11

Σ Σ Σ Σ
= = = =
Σ +Σ +Σ Σ Σ +

      (36) 

where we have defined F M
a az = Σ Σ  as the ratio of the fuel and moderator thermal absorption 

cross sections (this is done simply for convenience in subsequent manipulations). 

With this definition of f, we can write an expression for the thermal diffusion area as 
M 2

2 M a2 M M TM
T F M F M

a2 a a a a a

DD D D LL
z 11

Σ
= ≈ = = =
Σ Σ +Σ +Σ Σ Σ +

 

and, noting that 
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 z 11 f 1
z 1 z 1

− = − =
+ +

 

we have  

 ( )2 2
T TML 1 f L= −          (37) 

Note that, if the temperature or the moderator density are different from nominal conditions (i.e. 
20 oC and nominal density), then all the cross sections used in the above expressions need to be 
temperature and density corrected, as appropriate.  The reader should see Refs. 4 or 6 for further 
information on this “correction” procedure. 

One final, but very important assumption, concerns the resonance escape probability and the 
fast fission factor.  In dilute homogeneous systems, the resonance escape probability, p, is 
slightly less than unity and the fast fission factor, e, is slightly greater than unity.  However, 
beyond these simple qualitative statements, it is not easy to get a good quantitative estimate for 
either of these quantities (not without a fair amount of effort).  Thus, in preliminary calculations, 
it is often assumed that the product of these two factors is approximately unity, or  

pe ≈ 1.0      (for dilute homogeneous systems)     (38) 

Now, with some background on the various approximations involved and the above expressions 
for several of the needed intermediate quantities, we are ready to outline the actual computations 
required in typical analyses.  In particular, the problem solution scheme is somewhat different for 
the two cases of interest here, as follows: 

1. Given the Material Composition, Compute the Critical Size  
This is the easier of the two cases.  Here, with the fuel and moderator compositions known, one 
can obtain cross section data for the fuel and moderator (from the various data tables in Ref. 4 or 
from the cross_sections_gui program as discussed in Ref. 6, for example) and compute the 
values of k∞ ≈ hf and MT

2 = LT
2 + τT.  Then, setting keff = 1 for the critical case, we can solve 

eqn. (32) for the buckling, 

2
2
T

k 1B
M
∞ −=           (39) 

and compute the desired critical dimension  --  recall that the core size and geometric buckling 
are simply related for each of the simple core geometries often treated in preliminary 
computations (see Refs. 2 - 4, for example).   

2. Given the Core Size, Compute the Critical Fuel Composition  
For this case, we can immediately compute the buckling from the known core dimensions.  
However, since we don’t know the fuel composition, NF, or F F

aN σ , or F M
a az = Σ Σ , we simply 

write the expression for keff in terms of one of these quantities, and then solve for this unknown 
quantity (the expression for z is often used for convenience).   

Thus, using eqns. (36) and (37) within eqn. (32) for the critical case gives 
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 ( )T
eff 2

2 TM
TM

z z 1
k 1

L1 B
z 1

η +
= =

 
+ + τ + 

       (40) 

Now we simply solve this expression for z in terms of the material properties hT, 2
TML , and τTM 

and the geometric buckling, B2.  Doing the algebra gives 

 
( )

T T

2 2 22
2 TM TMTM

TM

z z
z 1 z 11

z 1 B L B z 1L z 11 B
z 1 z 1 z 1

ηη
+ += =

  + + + τ ++
+ + τ + + + 

 

 T
2 2 2 2

TM TM TM

z1
z B z 1 B L B

η
=

+ τ + + + τ
 

 ( ) ( )2 2 2
T TM TM TMz z 1 B 1 B Lη = + τ + + + τ  

 ( ) ( )2 2 2
T TM TM TM1 B z 1 B L η − + τ = + + τ   

and finally we get 

 
( )2 2

TM TM
2

T TM

1 B L
z

1 B

+ + τ
=

η − − τ
        (41) 

This expression is used for simple hand computations when the geometry is known (i.e. B2 is 
known) and one needs to compute the critical composition (i.e. for keff = 1.000).  Once z has 
been determined via eqn. (41), then 

 F M
a azΣ = Σ         and        

M
a

F M F
a

N z N σ
=

σ
      (42) 

which is the usual desired result from a “critical composition calculation.”   

The diluteh_gui Code 
The methodology described in the previous subsection is based on the approach used in Lamarsh 
(Ref. 4).  An easier, and possibly more useful technique would be to simply compute keff for the 
given geometry and material combination.  One can, for example, compute keff directly for each 
combination of fuel composition (i.e. known z or f) and core size (i.e. known B2).  With this 
ability, one can easily perform a parametric study for any parameter of interest.  For the Case 1 
scenario, one holds the composition fixed and varies the core size, each time computing keff for 
the given core size.  Then, a simple plot of keff vs. core size will easily show the critical core size 
(i.e. when keff = 1.000) as well as show how rapidly the multiplication factor changes with the 
core dimensions.  Similarly, for the Case 2 situation, one holds the core size fixed and varies the 
fuel composition  --  again leading to information on how keff varies with the fuel loading as well 
as the specific critical fuel composition.  This approach is actually more intuitive (i.e. performing 
a simple parametric study) and it bypasses the intermediate steps and algebra that lead to        
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eqn. (41).  Instead, one simply puts the computed values of B2, k∞ ≈ hf, and MT
2 = LT

2 + τT into 
the modified 1-group formula in eqn. (32) and computes keff directly for the given geometry and 
materials combination  --  this is a much more straightforward approach to the problem. 
This more direct parametric approach has been implemented into the diluteh_gui code.  This 
Matlab program simply provides a user-friendly interface for performing the modified 1-group 
theory computations identified in this set of Lecture Notes.  The code is set up to handle both 
bare and reflected systems (see below) and to allow a variety of core geometries and material 
compositions.  The cross sections needed for the calculations are built into the code and the user 
interface, as shown in Fig. 2, is similar in construction to the cross_sections_gui code discussed 
previously (see Ref. 6).  Of course, the diluteh_gui code also allows the user to specify the 
geometry parameters as well as the material composition.  In addition, the code automatically 
varies the core dimensions and produces a parametric plot of keff vs. core size, as illustrated in 
Fig. 3.  Finally, we note that a data file containing many of the intermediate results of the overall 
calculation is available via the Save Data/Results button in the center of the GUI window.  For 
reference, a sample data file corresponding to the case illustrated in Figs. 2 and 3 is included in 
Table 1.  This type of information can be very useful for checking hand calculations and for 
gaining a good understanding of exactly what the code is doing. 

 

 
Fig. 2   The diluteh_gui interface. 
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Fig. 3   Parametric study for keff vs. core size. 

 

Table 1   Sample data file from the diluteh_gui code. 
 
      Computation of Kinf for a dilute homogeneous   Bare Reactor     
 
  Material Description for Problem  
    Fuel Material:                   U235/U238  
    Fuel Density (g/cc):              1.450e-002  
    Fissile Enrichment (w/o):        100.000  
    Moderator Material:              H20   
    Moderator Density (g/cc):         1.000  
    Temperature of fuel/mod mix (C): 20.000  
 
  Calculated Parameters for Kinf  
    kinf =  1.092  
    eta  =  2.065  
    f    =  0.529  
    pe   =  1.000  
 
  Some Additional Material Data  
    Sffiss (1/cm) =    1.886e-002  
    Safiss (1/cm) =    2.212e-002  
    Safert (1/cm) =    0.000e+000  
    SaF    (1/cm) =    2.212e-002  
    SaM    (1/cm) =    1.970e-002  
    DM     (cm)   =    1.600e-001  
    LT2M   (cm^2) =    8.122e+000  
    TAUM   (cm^2) =    2.697e+001  
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    MT2    (cm^2) =    3.079e+001  
    DR     (cm)   =    0.000e+000  
    LT2R   (cm^2) =    0.000e+000  
 
 
      Computation of Keff for above   Bare Reactor    System  
 
 
  System Description  
    Geometry Type:          Cylindrical Geometry (RZ)  
    Core Dimensions (cm):   53.70 97.70  
    Core Vol (cc):           8.851e+005  
    Fuel Mass (kg):          1.283e+001  
    Reflector Savings (cm):  0.000e+000  
    Buckling (1/cm^2):       3.000e-003  
 
  Calculated Parameters  
    Non-Leakage Probability:  0.915  
    Keff:                     1.000 
 
 
Overall, the diluteh_gui code is easy to use and it saves considerable time and effort when 
analyses of this type are needed  --  and the reader is certainly encouraged to give it a try… 

Reflected Core Calculations 
As a final note, we should emphasize that the above computations are only directly applicable for 
the solution of bare homogeneous critical core problems, since the modified 1-group formula for 
keff was derived explicitly for this situation.  However, Ref. 4 discusses how to view a core-
reflector system as a bare core with an effective core size that is increased to account for the 
effect of the reflector on the system.  In particular, the reflector savings, δ, is defined as the 
difference in the critical dimension of the bare and reflected systems.  Clearly, since the reflector 
reduces the net leakage, the critical size of a reflected core will be smaller than the size of a bare 
critical core.  Or, from a different perspective, if a bare core with a given keff is surrounded by an 
infinite reflector, then the system multiplication factor will increase. 

With the above simple rationalization, one can estimate keff for the reflected system by simply 
increasing the physical core size by the reflector savings and then use the above methodology for 
a hypothetical bare core with the increased “effective core size”.  In particular, Lamarsh (Ref. 4) 
gives approximate correlations for estimating the reflector savings in thermal systems, where 

c
Tr

r

D L (for all but water systems)
D

δ ≈       (43) 

and 

( )2
T7.2 0.10 M 40.0 (for water moderated and reflected systems)d ≈ + −  (44) 

With a known δ, the effective buckling for a reflected parallelepiped reactor, for example, 
becomes 

2 2 2
2B

a 2 b 2 c 2
π π π     = + +     + δ + δ + δ     

      (45) 



 

Lecture Notes:  2-Group Diffusion Theory for Critical Systems 
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (Dec. 2016) 

17 

where a, b, and c are the real core dimensions, and a + 2δ, b + 2δ, and c + 2δ are the effective 
dimensions used to account for the reduced leakage that will occur in the reflected system.  With 
this simple change, the above modified 1-group methodology for bare cores can also be easily 
applied to reflected systems. 

This simple “effective core size” approach for reflected systems has been implemented into the 
diluteh_gui code so that approximate critical size and composition calculations can be made for 
both bare and reflected systems… 

Summary 
This set of Lecture Notes has developed a set of formal expressions for performing 2-group 
analytical computations for bare and reflected core configurations.  Several variants, including 
formal 2-group theory, the 4-factor and 6-factor formulas, and a more approximate modified      
1-group theory formulation, have been developed and discussed, and the reader should now have 
a better understanding of this methodology and its application for computing the critical size and 
composition of thermal reactor systems.  These techniques are actually quite useful for obtaining 
preliminary estimates of various criticality parameters, and the terminology and insight gained 
here are essential tools for understanding and interpreting more complicated systems  --  and the 
diluteh_gui code makes it really easy to actually do these types of analyses.  Overall, the 
background gained here will definitely be useful in the future, and it makes a significant addition 
to your fundamental knowledge and understanding of basic reactor theory  --  since the concepts 
introduced here will indeed be useful in the core design process, in reload design analyses, in 
discussing reactor operations, etc., etc… 
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