
The Bare Critical Finite Cylindrical Reactor  
 

Introduction 
Up to this point we have found the analytical solution to several 1-D problems involving both 
critical reactors and systems containing only moderating materials (i.e. the source driven 
problem).1-6  However, extension to 2-D geometries is not straightforward  --  since analytical 
solutions to general multidimensional problems are not available for most systems.  Thus, in 
most cases, we need to use numerical methods to solve the 2-D and/or 3-D diffusion equation for 
the geometries of interest in realistic reactor configurations.  One exception, however, is the bare 
homogeneous 1-region reactor problem, and our goal here is to illustrate the basic solution 
technique and the resultant flux and current profiles for the case of the bare critical 2-D finite 
cylindrical reactor, where the quantities of interest here are φ(r,z) and J(r, z)



.   

It should be emphasized that a bare reactor system is clearly not a realistic reactor configuration  
–  all real systems have nearly infinite reflectors on all sides of the reactor to improve the neutron 
economy within the core and to reduce the radiation environment outside the reactor.  However, 
as we have seen before, solution of the bare reactor problem can give us a lot of insight and, for 
multidimensional problems, even the simple core-reflector problem cannot be solved analytically 
(when reflected on all sides).  Thus, we will use the 2-D bare reactor model as an illustrative 
example of multidimensional systems, and gain as much understanding as possible  --  we will 
defer discussion of more complex reactor geometries for a later lesson…  

Model Development 
Consider a bare finite cylindrical reactor with 
extrapolated dimensions R and H, where R =    
Ro + d and H = Ho + 2d, as shown in the sketch.  
The 1-group critical reactor model for this two 
dimensional (2-D) system is  

 2 2(r, z) B (r, z) 0∇ φ + φ =   (1) 

The Laplacian in cylindrical coordinates7 is 
given as  

     
2 2

2
2 2 2

1 1(r, , z) r
r r r r z
∂ ∂φ ∂ φ ∂ φ ∇ φ θ = + + ∂ ∂ ∂θ ∂ 

 

Thus, for azimuthal symmetry, eqn. (1) 
becomes 

 
2

2
2

1 r B 0
r r r z
∂ ∂φ ∂ φ  + + φ = ∂ ∂ ∂ 

  (2) 

We will use the Method of Separation of Variables to develop a solution to this 2-D problem.  
The method assumes that the flux is separable in the two spatial dimensions, r and z.  Although 
this separability assumption is not valid in most situations, for the simple bare homogeneous 
reactor, it is indeed valid (we would run into problems during the derivation if our assumption 
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was incorrect).  Therefore, we start by letting φ(r,z) be written as a product of two functions; one 
that is only a function of r and the other only dependent on z.  This gives 

 (r, z) X(r)Y(z)φ =          (3) 

Substituting this assumed form of the solution into eqn. (2) and dividing by φ = XY, gives 

 
2

2
2

1 1 d dX 1 d Yr B 0
X r dr dr Y dz
   + + =    

       (4) 

Analysis of eqn. (4) indicates that the first term is only a function of r, the second term is only a 
function of z, and the third term is a constant.  In order to satisfy this expression for all values of 
r and z, the first two terms in eqn. (4) must separately equal some constant (usually called the 
separation constant).  Doing this gives the following three expressions, 

 
2

2
2

1 d Y
Y dz

= −α           (5) 

 21 1 d dXr
X r dr dr
   = −β    

        (6) 

and 

 2 2 2B = α +β           (7) 

The above procedure gives rise to a separate second-order differential equation in each direction  
--  it converts the original partial differential equation (PDE) into two ordinary differential 
equations (ODEs).   

Axial Direction 

Addressing the axial direction first, we require the solution to 

 
2

2
2

d Y Y 0
dz

+α =          (8) 

Noting that this is just the 1-D bare slab reactor problem from previous work, we have 

 1 2Y(z) A cos z A sin z= α + α         (9) 

Because of the separability assumption, we can evaluate the boundary conditions in each 
direction without the interaction (or knowledge) of the other direction.  In the z-direction, the 
appropriate boundary conditions are symmetry at z = 0 (center of the reactor in the axial 
direction) and the flux goes to zero at z = H/2.  Imposing these conditions gives 

1. 
z 0

dY(z) 0
dz =

=   implies that  A2  =  0 

2. H/2Y(z) 0=   implies that cos (αH/2)  =  0 

or 
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 n
(2n 1)

H
− π

α =  for    n  =  1, 2, 3, …      (10) 

and n nY (z) cos( z)= α          (11) 

This solution is identical to that derived in Ref. 6 for the 1-D bare critical slab reactor. 

Radial Direction 

In the radial direction, we have a little more work to do since the defining ODE is not a simple 
constant coefficient equation (and no simple substitution technique will simplify things as for the 
spherical reactor case).  The expression of interest here is derived from eqn. (6) as 

 21 d dXr X 0
r dr dr

  +β = 
 

        (12) 

Expanding the first term of this equation gives  

 
2

2
2

d X 1 dX X 0
r drdr

+ +β =  

and multiplication by r2 gives 

 2 2 2r X '' rX ' ( r 0)X 0+ + β − =         (13) 

As shown as part of the solution method for the 1-group 1-D critical cylindrical reactor (see   
Ref. 6) and also in Lamarsh and in the Lecture Notes on Bessel Function (see Refs. 7 and 8, 
respectively), this form of the diffusion equation for the radial direction is of the form of an 
ordinary Bessel equation with order ν = 0.  In particular, from our previous discussion 
concerning the 1-D cylindrical reactor in Ref. 6, we already know that the general solution to 
eqn. (13) can be written in terms of zero-order ordinary Bessel functions, 

 1 0 2 0X(r) C J ( r) C Y ( r)= β + β         (14) 

where J0(βr) and Y0(βr) are ordinary Bessel functions of the first and second kind, respectively, 
and they represent two linearly independent solutions to the given 2nd order ODE.  A linear 
combination of these two independent functions gives the general solution to the radial problem 
described via eqn. (12) or (13). 

For the radial direction, the appropriate boundary conditions are that the flux must remain finite 
at r = 0 and that the flux at r = R is zero.  The first condition forces C2 to be zero in eqn. (14), 
since the Y0(βr) function goes to -∞ as r → 0.  At the outer boundary, we have 

 0 0 mJ ( R) 0 J ( )β = = η  

or 

 m m / Rβ = η  where   ηm  =  mth zero of J0(x) for m = 1, 2, 3, …   (15) 

and 

 m 0 mX (r) J ( r)= β          (16) 
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And, as expected, this solution is identical to that derived in Ref. 6 for the 1-D bare critical 
cylindrical reactor. 

General Solution 

Finally, combining the radial solution [eqns. (15) and (16)] with the axial solution [eqns. (10) 
and (11)] gives the desired general solution for a bare finite cylindrical reactor, 

 mn 0 m n(r, z) AJ ( r) cos( z)φ = β α        (17) 

where 

 2 2 2
mn n mB = α +β          (18) 

As we have seen before (see Ref. 6), there are an infinite number of eigenvalues and eigen-
functions that satisfy the defining ODE.  However, for the same reasons as before (i.e. the higher 
modes decay away for the steady state case), we immediately set m = n = 1 to obtain the 
fundamental mode steady state solution for this problem. 

Noting that the first zero of the J0(x) Bessel function occurs at η = 2.4048, we can write the 
fundamental mode solution as 

 0
2.4048(r, z) AJ r cos z

R H
π   φ =    

   
       (19) 

where the fundamental mode geometric buckling for this 1-group 2-D problem is  

 
2 2

2 2 2 2.4048B
R H

π   = α +β = +   
   

       (20) 

Power Normalization 

As done in Ref. 6, to complete the solution for this problem we must find the normalization 
constant A.  Using the total reactor power, P, as the desired normalization gives 

 f fP dr (r, z) 2 rdrdz= κ Σ f = κ Σ f π∫ ∫
d        (21) 

 o o

o

R H /2
f 00 H /2

2.4048r zP 2 A r J dr cos dz
R H−

  π   = κΣ π         
∫ ∫     (22) 

The integral over the axial direction gives 

 
o

o

o
o

H /2
H /2 o o o
H /2

H /2

H H Hz H z H 2Hcos dz sin sin sin sin
H H 2H 2H 2H−

−

π −π ππ π  = = − = π π π ∫  

The integral over the radial direction is obtained as follows.  First note that from Refs. 7 and 8, 
we have the integral relationship 

 0 1xJ (x)dx xJ (x)=∫          (23) 

Therefore, letting x = 2.4048r/R, we have r = Rx/2.4048  and  dr = Rdx/2.4048, and the radial 
component of eqn. (22) becomes 
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[ ]o o o

2 2
R 2.4048R R 2.4048R R

0 0 1 00 0

2
o o o o

1 1

2.4048r R RrJ dr xJ (x)dx xJ (x)
R 2.4048 2.4048

2.4048R 2.4048R R R 2.4048RR J J
2.4048 R R 2.4048 R

     = =     
     

    = =     
     

∫ ∫
 

Putting these results into eqn. (22) gives  

[ ][ ]f o o 1 o

2.4048 PA
4 R RH sin H 2H J (2.4048R / R)

π
=

κΣ π π
     (24) 

Now, for the case where the extrapolation distance, d, is small relative to the reactor dimensions, 
we have R ≈ Ro and H ≈ Ho.  Noting that the reactor volume is V = πRo

2Ho, for this situation eqn. 
(24) reduces to 

 
1 f f

2.4048 P 3.638PA
4J (2.4048) V V

π
= =

κΣ κΣ
       (25) 

where the last equality simply evaluates the first coefficient to be 3.638 (this was evaluated using 
Matlab and it agrees approximately with the result given in Table 6.2 in Ref. 7). 

Criticality Condition 

To complete this problem, we write the formal criticality condition here as  

f
eff NL2 2 2

a

kk k P
DB 1 L B

∞
∞

νΣ
= = =

+Σ +
       (26) 

where we noted before that this relationship is valid for any 1-group 1-region system.  The only 
unique aspect here is that, for the finite bare cylinder, the buckling used in this expression is 
given by eqn. (20). 

Visualization of the Flux and Current Distributions 
The above development formally solves the 1-group finite cylindrical bare critical reactor 
problem.  All the pertinent equations are given and, except for the introduction of the Separation 
of Variables Method to convert the original PDE into two ODEs, the overall solution procedure 
was identical to the methods discussed previously for various 1-D reactor geometries (see       
Ref. 6).  However, in two dimensions it is a little more difficult to visualize the resultant flux and 
current distributions.  To address this concern, a short Matlab program was written to display 
these profiles in various formats to help in the visualization process.  The Matlab code, 
bare1g_rz.m, is given in Table 1 (at the end of this set of Lecture Notes). 

In the simulations, the extrapolation distance is assumed to be small and the flux magnitude is set 
to unity.  Also, for convenience, the diffusion coefficient, D, is set to 1 cm.  The geometry is 
assumed to be a right circular cylinder where the height, H, is twice the diameter  --  thus,           
H = 2(2R) = 4R.  For specificity in the plots, we set R = 1 m. 

Figures 1 - 6 detail a number of different views for the flux and current in the critical bare finite 
cylindrical reactor.  The profiles plotted are 
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   Flux Distribution:  0
2.4048(r, z) AJ r cos z

R H
π   φ =    

   
 

   Current Distribution: r r z zJ(r, z) J (r, z) a J (r, z) a= +


   

where    r 0 1
2.4048 2.4048 2.4048J (r, z) DA J r cos z DA J r cos z

r R H R R H
∂  π  π       = − =        ∂         

 

and    z 0 0
2.4048 2.4048J (r, z) DA J r cos z DA J r sin z

z R H H R H
∂  π  π π       = − =        ∂         

 

where we used the expression 0 1
d J (x) J (x)

dx
= −  from Ref. 8 and the chain rule [for example, 

0 0
d d dxJ (x) J (x)
dr dx dr

= ] to do the above derivative calculations. 

The student is encouraged to study these profiles carefully and to try to really visualize the flux 
and current distributions obtained for this simple 2-D reactor model  --  hopefully the variety of 
plots displayed here is sufficient to accomplish this goal…   

 

 

 

 

Fig. 1  Separate normalized radial and axial flux profiles. 
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Fig. 2  Various surface plots of the normalized flux distribution. 
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Fig. 3  Various surface plots of the r-directed current distribution. 
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Fig. 4  Various surface plots of the z-directed current distribution. 
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Fig. 5  Various surface plots for the distribution of current magnitude. 
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Fig. 6  Contours and directions for the current in the critical bare RZ reactor. 

 

 

Table 1  Listing of Matlab code bare1g_rz.m 
 
% 
%   BARE1G_RZ.M   Plot Spatial Flux and Current Distribution  
%                   for a 1-G RZ Bare Cylindrical Reactor  
% 
%   This demo displays the flux and current profiles for a bare homogeneous critical 
%   finite cylindrical reactor.  For convenience, the extrapolation distance is  
%   assumed to be small relative to the reactor geometry.  In addition, the  
%   fundamental mode flux is normalized to a maximum value of unity and the  
%   diffusion coeff in the current equation is also unity.  
% 
%   Code written by J. R. White, UMass-Lowell (Jan. 2015) 
% 
  
      clear all, close all, nfig = 0; 
% 
%   calc normalized fluxes & currents  
%    --> let R = 1 m, then H = 2*Dia = 4R = 4 m 
%    --> let A = 1 in the flux equation  and  let DA = 1 in the current equation  
      R = 1;  H = 4*R;  a = 2.4048;   
      npts = 21;  r = linspace(0,R,npts);   z = linspace(0,H/2,npts); 
      [rr,zz] = meshgrid(r,z); 
      Xr = besselj(0,a*rr/R);  Yz = cos(pi*zz/H);        % radial & axial components 
      flxrz = Xr.*Yz;                                    % flux profile (A = 1) 
      currzr = (a/R)*besselj(1,a*rr/R).*cos(pi*zz/H);    % r-directed current 
      currzz = (pi/H)*besselj(0,a*rr/R).*sin(pi*zz/H);   % z-directed current 
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      mcurrz = sqrt(currzr.*currzr + currzz.*currzz);    % current magnitude (DA = 1) 
% 
%   plot fluxes 
      nfig = nfig+1;     figure(nfig); 
      plot(r,Xr(1,:),'r-','LineWidth',2),grid on 
      title('Normalized Radial Profile in Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Normalized Flux') 
% 
      nfig = nfig+1;     figure(nfig); 
      plot(z,Yz(:,1),'b--','LineWidth',2),grid on 
      title('Normalized Axial Profile in Bare RZ Reactor Model') 
      xlabel('Axial Distance (m)'),ylabel('Normalized Flux') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,flxrz),view(45,30),shading interp, colorbar, axis image 
      title('Fundamental Mode Flux for Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized Flux') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,flxrz),view(2),shading interp, colorbar, axis image 
      title('Fundamental Mode Flux for Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized Flux') 
% 
%   plot currents 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,currzr),view(45,30),shading interp, colorbar, axis image 
      title('r-Directed Current in Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized r-Directed Current') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,currzr),view(2),shading interp, colorbar, axis image 
      title('r-Directed Current in Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized r-Directed Current') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,currzz),view(45,30),shading interp, colorbar, axis image 
      title('z-Directed Current Distribution for RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized z-Directed Current') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,currzz),view(2),shading interp, colorbar, axis image 
      title('z-Directed Current Distribution for RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized z-Directed Current') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,mcurrz),view(45,30),shading interp, colorbar, axis image 
      title('Current Magnitude in Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized Current') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      surf(rr,zz,mcurrz),view(2),shading interp, colorbar, axis image 
      title('Current Magnitude in Bare RZ Reactor Model') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
      zlabel('Normalized Current') 
% 
      nfig = nfig+1;     h = figure(nfig);  set(h,'Renderer','Zbuffer') 
      vc = [.3 .5 .7 .8 1.0 1.2 1.3 1.38]; 
      [c,h] = contour(rr,zz,mcurrz,vc); clabel(c); hold on 
      set(h,'Linewidth',2) 
      quiver(rr,zz,currzr,currzz), hold off, axis image 
      title('Current Contour Lines & Directions (RZ Model)') 
      xlabel('Radial Distance (m)'),ylabel('Axial Distance (m)') 
% 
%   end of simulation 
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