
1-D Bare and Reflected Critical Systems  
Using 1-Group Diffusion Theory 

 

Overview 
Much of the emphasis in our study of reactor physics until now has targeted applications 
involving non-multiplying media (i.e. regions with no fissionable material).  These examples 
focused on how neutrons diffuse/attenuate in moderating media, and they were useful for 
establishing a good understanding of the few-group neutron balance equation, the utility of 
Fick’s law, and the analytical techniques needed for solving the source-driven diffusion equation 
for a variety of simple one-dimensional (1-D) source and geometry configurations.  In addition, a 
series of Matlab GUIs were used to help visualize the flux and current profiles in some of these 
situations, and to highlight the importance of the diffusion length in the overall neutron diffusion 
process (the reader is referred to Refs. 1-9 for a more detailed treatment of these subjects). 

With this background, we are now ready to illustrate the critical reactor problem under a set of 
similar constraints, with focus in this document on a variety of 1-group 1-D bare and reflected 
core geometries.  In particular, this set of Lecture Notes develops the formal theory and 
documents a Matlab graphical user interface called core_refl1g_gui that solves the 1-group 
critical reactor problem for bare and reflected 1-D slab, spherical, and cylindrical geometries.  
The main user interface for the core_refl1g_gui code is shown in Fig. 1.   

 
Fig. 1  User interface for the core_refl1g GUI. 
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The GUI allows the student to easily explore the three different core-reflector geometry options, 
compare bare and reflected systems, and address how size affects keff and the flux magnitude for 
a particular core power level.  For a given set of reactor parameters for a specific reactor model 
(selected from the Reactor Type menu), the user can adjust the core size for both the bare and 
reflected cases where, for the core-reflector system, the reflector material is assumed to be very 
large (infinite) compared to the diffusion length of neutrons within the reflector.  The resultant  
1-group flux profiles are displayed in the plot window on the right side of the GUI and numerical 
values for the core size, multiplication factor, core non-leakage probability, and core buckling 
are tabulated just below the plot area.  The goal here is to obtain a good understanding of the 
basic principles associated with critical systems, and the wealth of information available from the 
GUI should help one achieve this objective. 

The user is encouraged to observe the flux profiles and tabulated information as the core size and 
1-D geometry are changed, for both the bare and reflected core configurations.  This should help 
you to better ‘visualize’ the physical processes that are at work here and to really understand the 
gains associated with a reflected vs. bare system, the similarity of the flux profiles for the three  
1-D geometries, the relationship between core size and multiplication factor, and how the flux 
magnitude varies with power, core size, and the core configuration (bare vs. reflected geometry).   

The remainder of this report documents the underlying theory and the specific equations 
programmed into the core_refl1g_gui code.  The derivations here are quite formal, since the 
development and solution of the diffusion equation for critical systems is quite different from the 
moderating media problems discussed previously in Refs. 3-6 and 9.  We will see that the core 
physics problem is indeed somewhat unique.  For example, we know that, for steady state power 
production, the reactor has to be just critical.  This means that there has to be a precise balance 
between the neutron production and loss rates.  Any arbitrary mixture of fuel, moderator, 
structure, and control will not satisfy this constraint.  We will find that a new restriction, usually 
called the criticality condition, has to be satisfied.  The criticality condition will relate the 
material composition and geometric configuration such that a critical system can be achieved.   

However, for design considerations, it is also important to know if a particular material and 
geometry combination is subcritical or supercritical and by how much.  Thus, during the analysis 
and design phase, we allow the production and loss terms to be artificially balanced by a 
mathematical factor, λ, placed in front of the fission source term.  For a real operating steady 
state critical system, keff = 1/λ must be exactly unity.  However, in a computational analysis, we 
can compute keff for a particular configuration and address whether or not we need to adjust the 
core size, increase the fuel to coolant ratio, add control to the system, etc., etc.  --  allowing the 
engineer to ask and answer a number of “What if ...” questions during the computational phase 
of the design process.   

All these concepts will become clear as we develop the mathematics that describes the core 
physics problem.  In this set of Lecture Notes, we rely exclusively on the 1-group diffusion 
approximation to neutron transport and we use many of the same techniques utilized in our 
previous documentation for the analysis of non-multiplying media. The primary difference in the 
core physics (versus shielding) problem is that now the fission source (rather than a fixed source) 
dominates the neutron production term.  This gives rise to only a subtle change in the defining 
equation, but it leads to a substantial change in the character of the solutions.  Thus, the solution 
to the critical reactor problem will exhibit its own unique character… 
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In the next six subsections we develop the full theory for the bare core and the core-reflector 
two-region problem for each of the three standard 1-D geometries (e.g. using Cartesian, 
spherical, and cylindrical coordinates).  The bare reactor is done first, followed by the two-region 
core-reflector problem for the same geometry  --  this approach highlights the key differences 
between the bare core and reflected core.  This same type of analysis is done for each of the three 
1-D geometries.  Although the basic techniques are similar, there are some unique features 
associated with solution of the diffusion equation in slab, spherical, and cylindrical geometry, so 
we treat each case separately, and explicitly identify the similarities and differences among the 
three geometry cases.  When complete, you should have a good overview of the terminology and 
techniques needed for solving 1-group, 1-D critical systems.  Of course, we still need to extend 
our understanding to the 2-group problem (or general multigroup problem) and to multi-
dimensional geometries, but these can wait for another day… 

1-Group Bare Critical Slab Reactor 
To get started, let's first consider the solution of the         
1-group diffusion equation for a 1-D critical bare slab 
reactor model.  The reactor has finite thickness ao in the x 
direction, but it is infinite in the transverse directions (y 
and z directions).  A rough sketch of the model is shown 
in the diagram to the right.  The “bare” adjective here 
means that the system has vacuum boundaries and we 
will apply the typical vacuum boundary condition at the 
external boundaries of the system.  Also, the coordinate 
system is such that x = 0 is in the center of the reactor, 
and the system is symmetric about this point.  Because of 
symmetry, we will only consider the region 0 ≤ x ≤ ao/2.  

For a 1-group 1-region homogeneous critical slab reactor, 
the general multigroup diffusion equation reduces to 

2
2

2
d (x) B (x) 0

dx
φ + φ =    (1) 

with 2 f aB
D

λνΣ −Σ
=          (2) 

where it is assumed that the buckling, B2, is positive since the production term, fλνΣ f , must be 
greater than the absorption term, aΣ φ , in a finite critical system (k∞ > 1 for a finite system).   

The general solution for this 2nd order linear constant-coefficient homogeneous ODE can be 
written in the form of a simple exponential, φ(x) ≈ eαx and, upon substitution into the defining 
ODE, we obtain the characteristic equation α2 + B2 = 0  with solution α1,2 = ±jB.  These complex 
conjugate roots lead to a general solution that can be written in terms of simple sinusoids, or 

1 2(x) A cos Bx A sin Bxφ = +         (3) 

The proper boundary conditions here are symmetry at x = 0 (the center of the slab) and the fact 
that the flux goes to zero at the extrapolated boundary [at x = (ao+2d)/2, where d is the 
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extrapolation distance].  For convenience, let’s define “a” as the extrapolated thickness of the 
core, where a = (ao+2d). 

Now, applying the symmetry condition gives 

 [ ]1 2 2x 0
x 0

d A Bsin Bx A Bcos Bx A B 0
dx =

=

φ
= − + = =      (4) 

or 2A 0=  

With this information, eqn. (3) reduces to 1(x) A cos Bxφ = . 

At the extrapolated boundary (x = a/2), we have 

 1x a/2
Ba(x) A cos 0
2=

φ = =         (5) 

For a nontrivial solution, A1 must be nonzero.  Thus, we have the condition that cos(Ba/2) = 0. 

This is somewhat of a peculiar situation  --  it is certainly different from the fixed-source 
problem that was solved previously.  In this case, there are multiple solutions  --  in fact, an 
infinite number of possibilities exist.  Since the cosine function is zero when evaluated at odd 
integer multiples of π/2, we have 

(2n 1)cos 0
2
− π  =  

 for  n = 1, 2, ...       (6) 

Comparing this expression to the BC given in eqn. (5) gives 

 nB a (2n 1)
2 2

− π
=  

or n
(2n 1)B

a
− π

=  for  n = 1, 2, ...       (7) 

where we have included the n subscript to indicate that there are an infinite number of values of 
buckling (B1, B2, … Bn, Bn+1, …) that satisfy this expression.  And, with an infinite number of 
different Bn values, we get an infinite number of profiles that satisfy the original ODE and its 
BCs, or 

n n(x) cos B xφ =          (8) 

The essential result from the above development is that the diffusion equation for the critical 
reactor problem gives rise to an eigenvalue problem. The Bn's are the eigenvalues and the φn's 
are the eigenfunctions.  Eigenvalue problems have the characteristic form Ay = λBy, where A 
and B are operators (or matrices), y is a function (vector), and the eigenvalue λ is a constant. For 
discrete systems, where A, B, and y are finite matrices and vectors of order N, there are a total of 
N eigenvalues and N eigenvectors.  For the case of a continuous system, there are an infinite 
number of eigenvalues and eigenfunctions. 

The higher eigenmodes of the diffusion equation are of interest in many areas of reactor theory, 
especially in space-time kinetics work and other more advanced topics.  For now, however, we 
will only work with the fundamental mode eigenfunction and eigenvalue, since all the higher 
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modes decay away leaving only the fundamental mode as the final steady state solution to the 
critical reactor problem.  In this case, n = 1 and the 1-group fundamental mode critical flux 
distribution in a 1-D bare slab reactor is 

2
2

1(x) A cos Bx where B or B
a a
π π φ = = =  

 
     (9) 

where the 1 subscript has been omitted for convenience from the definition of B = B1, since at 
this point we are only interested in the fundamental mode solution. 

Notice that there is still an arbitrary constant, A1, that remains as part of the general solution.  
Again, this is characteristic of eigenvalue problems (i.e. the solution to any homogeneous 
equation is only known to within an arbitrary normalization).  We need an additional constraint 
in order to uniquely define this constant (or normalization).  Notice that this coefficient only 
causes the flux level to be higher or lower  --  it doesn't affect the distribution.  Thus, the 
appropriate condition here is to simply normalize the flux to the reactor power, P, where, for the 
1-D slab problem, this is the power per unit area in the yz plane (since the reactor is infinite in 
this plane).  For the present case, this can be written as 

o o

o o

o

o

a /2 a /2
f f 1a /2 a /2

a /2
o o

f 1 f 1
a /2

of
1

xP (x)dx A cos dx
a

a aa x aA sin A sin sin
a 2a 2a

a2 aA sin
2a

− −

−

π
= κ Σ f = κΣ

π −ππ   = κΣ = κΣ −  π π   

πκΣ
=

π

∫ ∫

    (10a) 

or 1
o

f

PA a2 a sin
2a

π
=

π
κΣ

         (10b) 

Thus, the normalized flux in a 1-D slab reactor can be written as 

o
f

P x(x) cosa a2 a sin
2a

π π
f =

π
κΣ

        (11) 

where, in the above expressions, κ represents the average recoverable energy per fission (recall 
that κ ≈ 200 MeV per fission = 3.204×10-11 J per fission). 
As a final note, when the extrapolation distance d is small compared to the reactor size, then ao/a 
approaches unity, and then sin (πao/2a) → 1.  For this case, eqns. (10b) and (11) reduce to  

1
f o

PA
2 a

π
=

κΣ
        and        

f o o

P x(x) cos
2 a a

π π
f =

κΣ
           (for d << ao)  (12) 

and this is the result for the infinite slab reactor that is usually tabulated in the standard reactor 
physics texts (see Ref. 2, for example). 

We have essentially completed our discussion of the 1-D bare slab reactor problem except for the 
fact that two bucklings have been defined; a material buckling B2

m and a geometric buckling B2
g.  



 

Lecture Notes:  1-D Bare and Reflected Critical Systems Using 1-Group Diffusion Theory 
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (October 2016) 

6 

Recall that B2
m is a simple function of the material properties as given in eqn. (2) and that B2

g is 
the result of forcing the flux distribution to satisfy the appropriate boundary conditions (which 
are a function of the geometry) as shown in eqn. (9) for the fundamental mode solution.  Clearly, 
B2

g = B2
m must be true for a consistent description of a critical reactor.  As noted previously, a 

precise relationship is required between the geometry and material makeup for a just critical 
system.  This relationship is known as the critical condition, and for a 1-group bare 
homogeneous critical reactor, the critical condition is 

B2
g = B2

m   (1-group critical condition)     (13) 

In the development here, we have relaxed this physical constraint slightly by including the 
mathematical eigenvalue λ in our original expression for the material buckling.  Thus the critical 
condition here simply becomes a relationship for λ = 1/keff in terms of the given material and 
geometric configuration.  Combining eqn. (2) with eqn. (13) gives the desired design 
relationships 

2
a

f

DB +Σ
λ =

νΣ
 or f

eff 2
a

k
DB
νΣ

=
+Σ

     (14) 

where, in these expressions, B2 is the geometric buckling (the g subscript is usually omitted).    

Equation (14) is the real critical condition for all 1-group bare homogeneous systems.  It says 
that the multiplication factor is simply the ratio of the production rate to the loss rate (leakage 
plus absorption).  B2 is a function of the geometry and the cross sections are a function of the 
material composition.  When these parameters have just the right combination, then the 
production and loss terms are equal and keff = 1.000  --  giving a critical system.  However, for 
any combination of material composition and geometry, eqn. (14) allows us to compute a value 
of keff to determine the criticality level of the given configuration  --  and this gives the designer 
lots of information about the particular system under study.  Always remember, however, that a 
real operating critical reactor has keff = 1.000. 

Equation (14) is sometimes written in terms of k∞ and the non-leakage probability.  Note that as 
the reactor size gets large, B2 and the leakage component approach zero.  Thus, for a 1-group 
homogeneous system, the infinite multiplication factor is simply 

f

a
k∞

νΣ
=

Σ
          (15) 

Since there are only two loss components in a finite system, the non-leakage probability, PNL, is 
simply the ratio of the absorption rate to the total loss rate, or 

a a
NL 2 2 2 22

a aa

1 1P
DB DB / 1 1 L BDB

Σ φ Σ
= = = =

+Σ Σ + +φ + Σ φ
   (16) 

where L2 = D/Σa is the diffusion area of the core material. 

If the numerator and denominator of eqn. (14) are divided by Σa, one gets 

f a f af
eff NL2 2 2 2

a a

/ /k k P
DB DB / 1 1 L B ∞

νΣ Σ νΣ ΣνΣ
= = = =

+Σ Σ + +
     (17) 
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Thus, keff = k∞PNL is a common way to write the core multiplication factor for 1-group systems. 

Well, there is a lot more that could be said concerning the critical reactor model given here and 
certainly we need to do some numerical examples to highlight some of the relationships 
discussed here (this is where the core_refl1g_gui code can come in handy).  However, for now, 
we have essentially completed the theoretical development for this example, and it is time to 
move on to the core-reflector model for slab geometry and to the other 1-D reactor geometries 
that are discussed in subsequent sections of this set of Lecture Notes.   

1-Group Critical Core-Reflector System in 1-D Slab Geometry 
We study bare reactor problems (as in the above section) because the mathematics involved is 
relatively straightforward and they give considerable insight into the general critical reactor 
problem.  However, it should be clear that a bare reactor is not a practical option, and all 
operating reactor systems have essentially infinite reflectors around the core region (to improve 
upon the neutron economy from the perspective of core physics and to minimize neutron and 
gamma radiation problems outside the core).  In this context, the simplest two-region reflected 
system we can address is the critical core-reflector configuration in 1-D Cartesian (slab) 
geometry using the 1-group diffusion theory approximation.  This section addresses this problem 
in detail, where we have assumed that the reflector region has infinite thickness, as sketched in 
the diagram below. 

 
In the core region of the model, k∞ is greater than unity and, in the reflector region, there is no 
fissionable material.  Thus, this simple two-region system combines the critical reactor problem 
and non-multiplying medium problem into a single system.  As shown in the diagram, the 
composite two-region system is symmetric about x = 0 and as x becomes large the flux must 
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remain finite (in fact, it will decrease towards zero as x → ∞).  At the core-reflector interface 
(i.e. at x = ao/2), the standard continuity of flux and current conditions will apply.   

The basic procedure for solving this problem is to write the 1-group 1-D homogenous form of 
the diffusion equation for each region of the model.  Solving this balance equation within each 
homogeneous region gives a general solution for the flux profile in each zone.  Since the 
diffusion equation is a 2nd order ODE, the general solution within each region will contain two 
arbitrary coefficients and, for the two-region core-reflector problem, this leads to a total of four 
unknown coefficients.  Thus, we need four independent BCs to help specify these four 
coefficients  --  and, as noted above, the four conditions involve symmetry at x = 0, a finite 
solution as x → ∞, and the continuity of flux and current at x = ao/2.   

In the core region, the defining balance equation is identical to the previous critical bare core 
example, 

2
2

c c2
d B 0

dx
φ + φ =  with 2 f a

c
B

D
λνΣ −Σ

=   for  0 ≤ x ≤ ao/2 (18) 

where we use a ‘c’ subscript to denote that the properties and flux profile are only valid for the 
core region.  The general solution is also identical as before and, taking into account the 
symmetry condition at x = 0, the general solution for the core flux profile becomes 

c 1(x) A cos Bxφ =          (19) 

where, at present, A1 is an arbitrary constant. 

In the reflector region, the balance equation for a non-multiplying medium region applies (i.e. no 
fissionable material is present), or  

2

r r2 2
r

d 1 0
dx L

φ − φ =  with 2
r

a r

DL =
Σ

  for  x ≥ ao/2   (20) 

where we have set Q = 0 since there is no external source present in this region and we have used 
the subscript ‘r’ to denote that the flux and material properties are associated with the reflector 
region. 

Since the reflector has infinite thickness, we write the general solution to eqn. (20) as 
r rx/L x/L

r 3 4(x) A e A e−φ = +  

and immediately set A4 to zero to force the flux solution to be finite as x → ∞.  Doing this gives 
rx/L

r 3(x) A e−φ =          (21) 

At this point, we have used two BCs to reduce the general solutions for the core and reflector 
regions to the expressions given in eqns. (19) and (21), with A1 and A3 yet to be determined.  To 
help find these, we next apply the continuity of flux and current conditions, as follows: 

ooc r x a /2x a /2(x) (x)
==

φ = φ   (continuity of flux) 

or o ra /(2L )o
1 3

BaA cos A e 0
2

−− =         (22) 
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ooc r x a /2x a /2J (x) J (x)
==

=   (continuity of current) 

or o ra /(2L )o 3
c 1 r

r

Ba AD A Bsin D e 0
2 L

−  − − + − =  
   

     (23) 

Writing these two homogeneous equations in matrix form gives 

o r

o r

a /(2L )o

1
a /(2L )o r 3

c
r

Bacos e
A 02

Ba D A 0D Bsin e
2 L

−

−

 −     =        −
  

      (24) 

Now, before continuing, we should reflect a little upon the current state of the development.  
Thus far we have developed the proper general solutions and have applied the four BCs in a 
formal mathematical sense.  Two of the BCs for this particular case lead to zero coefficients (A2 
and A4 have already been set to zero), which reduced, for this 1-group 2-region case, a 4-
equation model to a 2-equation model, as given in eqn. (24)  --  with the solution to eqn. (24) 
giving the remaining coefficients needed to precisely define φc(x) and φr(x).  

However, eqn. (24) is a homogeneous equation which, for a non-trivial solution, requires a 
singular coefficient matrix  --  which means that the determinant of the coefficient matrix must 
be zero.  In addition to this constraint, we also know that the solution to a homogeneous equation 
is only known to within an arbitrary constant.   This means that, even with a singular coefficient 
matrix, we can’t solve eqn. (24) explicitly for both A1 and A3  --  the best we can do is to write 
A3 in terms of A1, and let A1 be the arbitrary normalization factor. 

Well, the two issues noted here are really not unexpected, since they refer to exactly the same 
situations we saw for the bare critical reactor discussed in the previous subsection of these 
Lecture Notes.  In particular, because of the precise balance between the material composition 
and geometry that is required for a critical system, we needed to impose a criticality condition 
on the problem.  For the bare reactor problem, we forced the material and geometric bucklings to 
be identical, which allowed us to compute the multiplication factor in terms of the composition 
(i.e. macroscopic cross sections) and the geometry (i.e. core size)  --  which lead to eqn. (14) as 
the criticality condition for the 1-group bare slab reactor problem.   

Now, for the current problem, we do essentially the same thing  --  that is, set B2
m = B2

g  --  but 
now the geometric buckling is determined from the statement that the determinant of the 
coefficient matrix must be zero.  Recalling that B2

m contains the eigenvalue λ (which is just 
1/keff), we see that this condition gives the expected relationship for keff in terms of the material 
properties of both the core and reflector and the core-reflector geometry.  This relationship is a 
little more complicated than before, but we now have a two-region system (instead of a simple  
1-region bare critical reactor), so this should be expected.  This general form of the criticality 
condition is robust enough to apply here and in more general, multigroup, multi-region systems.  

Now, for the current problem, the determinant of a 2×2 matrix is simply the product of the main 
diagonal elements minus the product of the other diagonal terms, or 
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( )o r o ra /(2L ) a /(2L )o or
c

r

Ba BaDcos e D Bsin e 0
2 L 2

− − 
− − − = 
 

 

or o or
c

r

Ba BaD cos D Bsin 0
L 2 2

− + =  

or o r c

r

Ba L D Bf (B) cot 0
2 D

= − =         (25) 

When written in this form, it is easy to see that the criticality condition can be cast as a classical 
root finding problem (i.e. given the core size, ao, and the material properties, Dc, Lr, and Dr, what 
is the value of B such that f(B) = 0?).  And, once B (or B2) is found from eqn. (25), we can use 
the definition of B2 in eqn. (18) to get the value of keff, or 

2 f a fc
eff 2

c c ac

1B or k
D D B

λνΣ −Σ νΣ
= = =

λ +Σ
     (26) 

This is the same relationship as the 1-group bare reactor problem, but now the value of the 
buckling, B2, is obtained from the solution of eqn. (25) instead of the simple relationship given in 
eqn. (9).  Note, in particular, that B2 for the core-reflector problem is NOT equal to (π/ao)2  --  
in fact, as shown below, B2 for a reflected core is less than that for the bare core (since, with 
some neutrons being scattered or reflected back into the core region when a reflector is present, 
there will be less net neutron flow in the outward direction in the reflected system).  

To help fully understand some of these statements and to better visualize the relationship given 
in eqn. (25), let’s re-write this expression as  

 o r c

r

Ba L D Bcot
2 D

=  

and let p = Bao/2.  Now, upon substitution, we have 

 r c o r c

r o r o

L D Ba / 2 2L Dcot p p
D a / 2 D a

= =        (27) 

The left hand side (LHS) of this relationship is just the familiar cotangent function and the RHS 
is a simple linear function of p (with a positive slope and zero intercept).  The points where these 
two functions intersect represent the roots of this nonlinear equation.  Note that, with p known, 
one can compute B, and then keff via the above relationships… 

Figure 2 illustrates this relationship in graphical form.  The plot shows a simple cot (p) function 
over the range 0 ≤ p ≤ 5π and a straight line with a small positive slope.  All the intersections of 
these two curves represent the values of p that satisfy the so-called criticality condition for this 
simple core-reflector problem.  Note that, since the cotangent function is periodic, if the plot is 
extended for larger values of p, there will be an infinite number of roots (or eigenvalues) as          
p → ∞.  This is exactly what we saw for the bare slab problem!  However, as we also argued in 
the previous situation, only the first or fundamental mode eigenvalue contributes to the steady 
state solution  --  thus, for our current emphasis, we will only focus on the first nontrivial root.   
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Fig. 2  Illustration showing the criticality condition for the 1-group  

        1-D core-reflector problem in Cartesian geometry. 
 

As apparent in Fig. 2, the first root occurs for p ≤ π/2.  Thus, we can write  
2

2o

o o

Bap or B or B
2 2 a a

 ppp 
= ≤ ≤ ≤  

 
    (28) 

and this tells us that B2
reflected  ≤  B2

bare (since the buckling in a bare slab of thickness ao is about 
π/ao).  Also, since the DB2 term in the neutron balance equation and in the expression for the 
multiplication factor is associated with the leakage term, we see that adding a reflector decreases 
the net core leakage.  And, decreasing the leakage increases the non-leakage probability and the 
effective core multiplication factor [see eqns. (16) and (17)]. 

Now, with the fundamental mode value for B from eqn. (25) or eqn. (27), the determinant of the 
coefficient matrix in eqn. (24) is indeed zero, and we can proceed to actually solve this equation 
for the unknown values of A1 and A3.  Expanding the first equation and solving for A3 gives 

o ra /(2L )o
3 1

BaA A cos e
2

=         (29) 

and putting this result into eqns. (19) and (21) gives 

c 1(x) A cos Bxφ =    for   0 ≤ x ≤ ao/2    (30a) 

and ( )o rx a /2 /Lo
r 1

Ba(x) A cos e
2

− −φ =  for   x ≥ ao/2     (30b) 
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as the formal solution for the core and reflector flux profiles. 

Now, the only unresolved quantity in these expressions is the normalization factor A1 and, as 
before, this quantity is determined by the power constraint on the system.  In general, the 
expression for the power involves integration over all space.  However, in regions where there is 
no fission, there is no power production (except for a small contribution due to gamma energy 
deposition which we are ignoring in this simplified treatment).  Thus, for the current problem, we 
only need to integrate over the core region, which gives 

o o

o o

o

o

a /2 a /2
f c f 1a /2 a /2

a /2
o of 1

f 1
a /2

of
1

P (x)dx A cos Bx dx

Ba BaA1A sin Bx sin sin
B B 2 2

Ba2A sin
B 2

− −

−

= κ Σ f = κΣ

−κΣ   = κΣ = −     

κΣ
=

∫ ∫

    (31a) 

or 1
o

f

PBA Ba2 sin
2

=
κΣ

         (31b) 

Note that the development of eqns. (31a) and (31b) is nearly identical to the procedure used for 
finding the normalization constant for the bare critical slab reactor [see eqns. (10a) and (10b)].  
There is one subtle, but very important difference, however.  Here we do not have a simple 
analytical expression for B, so we simply carry along the variable B without any formal 
substitution.  For the bare reactor, B = π/a, and this result was used within the development for 
the bare system.  For the core-reflector problem, however, the numerical value of B that goes 
into eqn. (31b) is the smallest root of the nonlinear criticality condition given in eqn. (25). 

We have finally finished the theoretical development of the 1-group core-reflector problem in    
1-D slab geometry.  Clearly, this case was somewhat more difficult than the bare critical reactor 
model from at least an algebraic viewpoint.  However, the basic procedures for the two cases 
were really quite similar, with only subtle differences in the details of working with the criticality 
condition and the power normalization.  Concerning implementation, some added work 
associated with finding B2 and keff for the core-reflector case (i.e. solving the nonlinear criticality 
condition) is certainly necessary but, again, the overall procedures are very similar  --  and we 
will see that this is true for all the 1-group 1-D geometries treated as part of these notes. 

The bare-core and reflected-core models developed in these notes are implemented into the 
core_refl1g_gui code, and you should use this software to compare results for the two cases for 
a variety of reactor types and bare and reflected core sizes (i.e. different values of ao).  With the 
theory developed here and the Matlab GUI to easily visualize the resultant flux profiles, you 
should be able to get a good handle on this subject.  For example, keep an eye on the value of keff 
as you change the value of ao for both the bare and reflected systems  --  does this behave as 
expected? 
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1-Group Bare Critical Spherical Reactor 
The complete development for the slab reactor in 
the previous sections is repeated here for the 
case of spherical geometry.  In this section we 
focus on the bare critical spherical reactor with 
the core size characterized by the radius Ro.  The 
core is homogeneous so that the material 
composition is constant throughout the full 
sphere.  This specification, along with vacuum 
BCs on the outside of the sphere, leads to a 1-D 
problem, with the flux distribution only 
dependent on the radial variable r (i.e. there is no 
dependence on the θ and ψ angular variables).  
A rough sketch of the 1-D bare spherical reactor 
is shown to the right, where r = 0 is in the center of the reactor.  

As before, for a 1-group 1-region homogeneous critical reactor, the general multigroup diffusion 
equation becomes 

2 2B 0∇ φ+ φ =           (32) 

where 

2 f aB
D

λνΣ −Σ
=          (33) 

However, in 1-D spherical geometry, the Laplacian operator can be written as (see Ref. 2 or 4, 
for example) 

2 2
2
1 d dr

dr drr
φ ∇ φ =  

 
         (34) 

and using this expression in eqn. (32) gives 

 2 2
2

1 d dr B 0
dr drr

φ  + φ = 
 

        (35) 

This 2nd order ODE is linear, but the first term has variable coefficients.  However, as discussed 
for the case of a point source in a moderating media (see Ref. 4), a simple substitution of 
variables, φ(r) = ω(r)/r, can convert this expression into a constant coefficient ODE that is much 
easier to solve.  When this substitution is inserted into eqn. (35), the defining equation for ω(r) 
becomes  

 
2

2
2

d B 0
dr
ω
+ ω =          (36) 

and this has the general solution (note that this is of the same form as the bare slab reactor 
problem), 

 1 2(r) A cos Br A sin Brω = +         (37) 
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Now, since φ(r) = ω(r)/r, we can write the general solution for φ(r) in the bare spherical system 
as  

 1 2
cos Br sin Br(r) A A

r r
φ = +         (38) 

As before, we now have to address the BCs for the problem.  In this case, since the cos (Br)/r  
term approaches infinity as r → 0, we must set A1 = 0 to guarantee a finite flux everywhere, 
leaving 

2
sin Br(r) A

r
φ =          (39) 

as the general solution [note that, via L’Hospital’s Rule, sin (Br)/r → B as r → 0]. 

For the 2nd BC, we first define R = Ro+d as the extrapolated core size, and then force the flux to 
go to zero at the extrapolated boundary of the system (i.e. we use the standard diffusion theory 
representation of a vacuum BC), or 

r R(r) 0
=

φ =           (40) 

With this condition, eqn. (39) becomes 

2
sin BR(R) A 0

R
φ = =          (41) 

and, with the fact that the sine function goes to zero at integer multiples of π, we have 

n
nB for n 1,2,...
R
π

= =         (42) 

Focusing on only the fundamental mode solution (since this is the only solution that remains at 
steady state), the buckling for the 1-D bare sphere is 

 
2

2B
R
π =  

 
          (43) 

and the flux becomes 

 2
1 r(r) A sin
r R

π
φ =          (44) 

As before, we define the flux normalization by specifying the power, P, generated in the core.  
Noting that the differential volume element in 1-D spherical geometry is 2dr 4 r dr= π

d , we can 
write the power as 

 o oR R2
f f f 20 0

rP (r)dr 4 r (r)dr 4 A r sin dr
R
π

= κΣ f = πκΣ f = πκΣ∫ ∫ ∫
d    (45) 

Now performing the integral (via table lookup) gives 
oR2

f 2

0

R r rR rP 4 A sin cos
R R

 π π   = πκΣ −    π π     
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2
o o o

f 2
R R R RRP 4 A sin cos
R R

 π π  = πκΣ −    π π     
 

and, solving for the normalization factor, gives 

2 2
o o o

f

PA
R R R RR4 sin cos
R R

=
 π π  πκΣ −    π π     

     (46) 

Also, if the extrapolation distance d is small compared to Ro, then Ro/R → 1 and this rather 
messy expression reduces nicely to 

2 2 2
of o f o

P P 1 rA and (r) sin
r R4 R 4 R

π
= f =

κΣ κΣ
 (for d << Ro)  (47) 

Finally, to complete this development, we note that the criticality condition here is exactly as 
given for the 1-group bare slab problem as described in eqn. (14) with the use of the buckling 
relationship for the bare sphere [from eqn. (43)].  Thus, the multiplication factor for the 1-group 
1-D bare ‘critical’ spherical reactor is 

2
2f

eff 2
a

k with B
RDB

νΣ π = =  + Σ  
      (48) 

Equations (44) and (46)-(48) completely describe the simple 1-group 1-D bare homogeneous 
critical spherical reactor problem, and these equations, along with the 1-D core-reflector model 
in spherical geometry (see below) are implemented for the spherical reactor option within the 
core_refl1g_gui Matlab GUI.   

1-Group Critical Core-Reflector System in 1-D Spherical Geometry 
To continue our formal development of the various 1-group 1-D systems, we now address the 
core-reflector problem in spherical geometry.  Within the above sections that developed the 
theory for the bare slab model, the core-reflector 
slab case, and the bare spherical reactor, we have 
now addressed all the pieces of the puzzle that are 
needed to put together the theory for the two-region 
core-reflector spherical reactor case.  Thus, here we 
will be a little more concise than in the above 
sections, since it is assumed that the reader has 
already reviewed the previous material in some 
detail. 

The geometry of interest has a homogeneous 
spherical core of radius Ro surrounded by an 
infinite region of a non-multiplying medium, as 
shown in the sketch.  The reflector region is used to 
reflect a portion of the neutrons back into the core, 
and to act as a near perfect shield to minimize 
neutron and gamma exposure to the outside environment.   
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The defining equations and general solutions for the core and reflector zones within this 1-group 
1-D two-region system are: 

Core Region 

 2 2c
c2

d1 d r B 0
dr drr

φ  + φ = 
 

 where     2 f a

c
B

D
λνΣ −Σ

=     (49) 

with c 1 2
cos Br sin Br(r) A A

r r
φ = +         (50) 

Also, as before, since the cos (Br)/r term approaches infinity as r → 0, we must set A1 = 0 to 
guarantee a finite flux everywhere, leaving 

c 2
sin Br(r) A

r
φ =          (51) 

Reflector Region 

2 r
r2 2

r

d1 d 1r 0
dr drr L

φ  − φ = 
 

  where     2
r

a r

DL =
Σ

     (52) 

with 
r rr/L r/L

r 3 4
e e(r) A A

r r

−

φ = +         (53) 

Since the reflector has infinite thickness, r can become very large  --  thus, we must set A4 = 0 so 
that the flux remains finite everywhere.  Doing this gives 

rr L

r 3
e(r) A

r

−

φ =          (54) 

At this point, we now apply the continuity of flux and continuity of current conditions at the 
core-reflector interface (i.e. at r = Ro), giving 

ooc r r Rr R(r) (r)
==

φ = φ   (continuity of flux) 

or 
o rR /L

o
2 3

o o

sin BR eA A 0
R R

−

− =         (55) 

ooc r r Rr RJ (r) J (r)
==

=   (continuity of current) 

or 
o r o rR /L R /L

o o
c 2 r 32 2

o o ro o

Bcos BR sin BR e eD A D A 0
R R LR R

− −  
− − + − − =  

   
   (56) 

Writing these two homogeneous equations in matrix form gives 
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o r

o r

R /L
o

o o 2

3R /Lo o
c r2 2

o o ro o

sin BR e
R R A 0

A 0Bcos BR sin BR 1 1D D e
R R LR R

−

−

 
− 

     =          − +    
     

  (57) 

As discussed previously in some detail, to obtain a non-trivial solution to this homogeneous 
system of equations requires that the determinant of the coefficient matrix is zero.  This gives 
the geometric buckling for this critical reactor problem and, as before, B2

m = B2
g is the formal 

criticality condition for this case.   

Thus, expanding the determinant of the 2×2 coefficient matrix in eqn. (57) and setting this to 
zero gives 

o r
o r

R /L
R /Lo o o

r c2 2
o o r o oo o

sin BR Bcos BR sin BR1 1 eD e D 0
R R L R RR R

−
−      

+ − − − =     
      

 

Cancelling the common exponential and 1/Ro
2 terms, and combining the two global negative 

signs in the second term give 

 o
r o c o

r o o

sin BR1 1D sin BR D Bcos BR 0
L R R

   
+ + − =   

   
 

Now, dividing by sin BRo gives 

 r c o
r o o

1 1 1D D Bcot BR 0
L R R

   
+ + − =   

   
 

or c o r
o r o

1 1 1f (B) D Bcot BR D 0
R L R

   
= − + + =   

   
     (58) 

Equation (58) is written in the form of a classical root finding problem (i.e. given the core size, 
Ro, and the material properties, Dc, Lr, and Dr, what is the value of B such that f(B) = 0?).  And, 
once B (or B2) is found from eqn. (58), we can use the definition of B2 in eqn. (49) to get the 
value of keff, or 

2 f a fc
eff 2

c c ac

1B or k
D D B

λνΣ −Σ νΣ
= = =

λ +Σ
     (59) 

which is the same general result as all the other 1-group 1-D cases  --  where the difference for 
each geometry, of course, is the unique definition of the (geometric) buckling term.  For the      
1-group 1-D spherical core-reflector problem, the smallest root of the nonlinear expression given 
in eqn. (58) gives the desired fundamental mode ‘critical’ B2 value.  (Note that, because of the 
cotangent function, there will be an infinite number of B values that satisfy eqn. (58), but the 
solution associated with the smallest root gives the final steady state flux profile). 

Once the proper B2 value is obtained, the final flux solutions in the core and reflector regions are 
given by  
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c 2
sin Br(r) A

r
φ =    for   0 ≤ r ≤ Ro     (60a) 

and 
( )o rr R /L

r 2 o
e(r) A sin BR

r

− −

φ =   for   r ≥ Ro     (60b) 

where A3 in the expression for φr(r) is written in terms of A2 using eqn. (55).   
As for the previous cases, the last step in the theoretical development is to define the flux 
normalization factor, A2, such that the desired power is produced in the reactor.  For this case, 
only the core region has a non-zero fission cross section; thus, the power constraint can be 
written as  

 o oR R2
f c f c f 20 0

P (r)dr 4 r (r)dr 4 A r sin Br dr= κΣ f = πκΣ f = πκΣ∫ ∫ ∫
d   

Performing the integral (via table lookup) gives 
oR

f 2 2
0

1 rP 4 A sin Br cos Br
BB

  = πκΣ −    
 

o
f 2 o o2

R1P 4 A sin BR cos BR
BB

 = πκΣ −  
 

and, solving for the normalization factor, gives 

[ ]
2

2
f o o o

PBA
4 sin BR BR cos BR

=
πκΣ −

      (61) 

This completes the theoretical model development for this case.  Equations (58) – (61) 
completely define the criticality condition (defines B2 and keff), the flux shape, and the flux 
magnitude  --  everything needed to do quantitative analyses for a particular 1-group 1-D critical 
core-reflector system in spherical geometry… 

1-Group Bare Critical 1-D Cylindrical Reactor 
In this section we look at an infinite 1-D cylindrical 
critical reactor model.  In this case, the core is 
assumed to be infinitely long and it has a finite 
radius, Ro.  In addition, the core is homogeneous so 
that the material composition is constant 
throughout the full cylinder.  These specifications, 
along with vacuum BCs on the outside of the 
cylinder, lead to a 1-D problem, with the flux 
distribution only dependent on the radial variable r 
(i.e. there is no dependence on the z or θ variables).  
A rough sketch of the 1-D bare cylindrical reactor 
is shown to the right, where r = 0 is in the center of 
the reactor.  
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As before, for a 1-group 1-region homogeneous critical reactor, the general multigroup diffusion 
equation becomes 

2 2B 0∇ φ+ φ =           (62) 

where 

2 f aB
D

λνΣ −Σ
=          (63) 

However, in 1-D cylindrical geometry, the Laplacian operator can be written as (see Ref. 2, for 
example) 

2 1 d dr
r dr dr

φ ∇ φ =  
 

         (64) 

and using this expression in eqn. (62) gives 

 21 d dr B 0
r dr dr

φ  + φ = 
 

         (65) 

This 2nd order ODE is linear, but the first term has variable coefficients.  Expanding the first term 
of this equation gives  

 
2

2
2

d 1 d B 0
r drdr

φ φ
+ + φ =  

and multiplication by r2 gives 

 2 2 2r '' r ' (B r 0) 0φ + φ + − φ =         (66) 

As shown in the special set of Lecture Notes on Bessel Functions (see Ref. 10), this form of the 
diffusion equation for 1-D cylindrical geometry is of the form of an ordinary Bessel equation 
with order ν = 0.  In fact, since many cylindrical reactor problems can be put into the form of 
Bessel equations, it makes sense to review this subject briefly here before continuing with the 
given problem (however, the reader should certainly consult Ref. 10 and possibly other sources, 
as needed, for further information on this important class of functions).   

In particular, the standard form of Bessel's equation is usually written as  
2 2 2 2x y '' xy ' ( x )y 0+ + α −ν =         (67) 

with the general solution given as 

1 2y(x) C J ( x) C Y ( x)ν ν= α + α         (68) 

where the functions Jν(αx) and Yν(αx) are called ordinary Bessel functions of the first and second 
kind, respectively, of order ν.  Note also that the sign before the last term in the defining 
equation, 2 2 2( x )yα −ν , is positive.  This is the form that is consistent with the critical reactor 
problem. 
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For subcritical regions, the sign of this last term is negative (since the removal term dominates 
the fission term).  In this case, we have a form of the modified Bessel's equation which is 
generally written as 

2 2 2 2x y '' xy ' ( x )y 0+ − α + ν =         (69) 

with the general solution given as 

 1 2y(x) C I ( x) C K ( x)ν ν= α + α         (70) 

where Iν(αx) and Kν(αx) are modified Bessel functions of order ν of the first and second kind, 
respectively. 

By way of comparison to previous work, it should be emphasized that the ordinary Bessel 
functions are somewhat similar to the trigonometric functions [sin (αx) and cos (αx)] and the 
modified Bessel functions are similar in form to the hyperbolic functions [sinh (αx) and cosh 

(αx)].  The similarities and differences can be seen in the plots of the first two integer-order 
Bessel functions given in Fig. 3.   

Fig. 3  Some integer-order ordinary and modified Bessel functions. 
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Before imposing boundary conditions on eqn. (71), we should also look carefully at the general 
nature of the common low-order Bessel functions displayed in Fig. 3.  In addition to the 
oscillatory and exponential behavior noted above, it should also be apparent that both the 
ordinary and modified Bessel functions of the second kind [Yν(x) and Kν(x), respectively] 
diverge to positive or negative infinity as the argument approaches zero.  Also, as seen in Fig. 3, 
the Iν(x) function approaches infinity as x becomes large.  These general trends are important to 
consider when evaluating boundary conditions for specific applications. 

Thus, from the above discussion, we see that the general solution to eqn. (66) can be written in 
terms of zeroth-order ordinary Bessel functions, 

 1 0 2 0(r) A J (Br) A Y (Br)φ = +         (71) 

where J0(Br) and Y0(Br) are ordinary Bessel functions of the first and second kind, respectively, 
and they represent two linearly independent solutions to the given 2nd order ODE.  A linear 
combination of these two independent functions gives the general solution to the 1-D cylindrical 
reactor problem described via eqns. (62) and (63). 

With the above discussion, we can now generate a unique solution to our 1-D cylindrical reactor 
problem.  We will impose the conditions that the flux must remain finite at r = 0 and that the  
flux at r = R is zero (note that R = Ro + d where Ro is the physical dimension and d is the 
extrapolation distance).  The first condition forces A2 to be zero in eqn. (71), since the Y0(Br) 
function goes to -∞ as r → 0.  At the outer boundary, we have 

 0 0 nJ (BR) 0 J ( )= = η          (72a) 

or 

 n nB / R= η  where   ηn  =  nth zero of J0(x) for n = 1, 2, 3, …   (72b) 

where we note, from Fig. 3, that the J0(x) function is oscillatory in nature and has an infinite 
number of zero crossings  --  which leads to an infinite number of eigenvalues, Bn, and 
eigenfunctions, φn(r), where 

 n 0 n(r) J (B r)φ =          (73) 

However, as we have seen before, only the fundamental mode solution is needed for the steady 
state flux profile.  Thus, the fundamental mode flux profile for the critical reactor problem in 1-D 
cylindrical geometry is simply 

 ( )1 0
2.4048(r) A J Br with B

R
φ = =       (74) 

where η1 = 2.4048 ≈ 2.405 is the first zero of the J0(x) Bessel function and the fundamental mode 
geometric buckling is B2 = (2.4048/R)2. 
As before, we define the flux normalization by specifying the power per unit length, P, generated 
in the core.  Noting that the differential volume element in 1-D cylindrical geometry is given by 
dr 2 rdr= π
d , we can write the power per unit length as 

 ( )0R
f f f 1 00

P dr (r) 2 rdr 2 A r J Br dr= κ Σ f = κ Σ f π = κΣ π∫ ∫ ∫
d     (75) 
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The integral over the radial direction is obtained as follows.  First note that from Ref. 10, we 
have the integral relationship 

 0 1xJ (x)dx xJ (x)=∫          (76) 

Now, letting x = Br  and  dx = Bdr, we have 

 ( ) [ ]o o oR BR BR o
0 0 1 1 o2 2 00 0

R1 1rJ Br dr xJ (x)dx xJ (x) J (BR )
BB B

= = =∫ ∫  

Putting this result into eqn. (75) gives  

1
f o 1 o

PB 2.4048A with B
2 R J (BR ) R

= =
πκΣ

     (77) 

Now, for the case where the extrapolation distance, d, is small relative to the reactor dimensions, 
we have R ≈ Ro and eqn. (77) reduces to  

 1 2 2
f o 1 f o

2.4048P 0.7372PA
2 R J (2.4048) R

= =
πκΣ κΣ

      (78) 

where the last equality simply evaluates the numerical coefficients 2.4048/[2πJ1(2.4048)] to be 
0.7372 (this numerical value was obtained by using Matlab's besselj function). 

Finally, to complete this development, we note that the criticality condition here is exactly as 
given for the other 1-group bare reactor geometries as long as we use of the buckling relationship 
specific for the bare cylinder.  Thus, the multiplication factor for the 1-group 1-D bare ‘critical’ 
cylindrical reactor is 

2
2f

eff 2
a

2.4048k with B
RDB

νΣ  = =  + Σ  
      (79) 

Equations (74), (77), and (79) completely describe the simple 1-group 1-D bare homogeneous 
critical cylindrical reactor problem, and these equations, along with the 1-D core-reflector model 
in cylindrical geometry (see below), are implemented for the cylindrical reactor option within the 
core_refl1g_gui Matlab GUI.   

1-Group Critical Core-Reflector System in 1-D Cylindrical Geometry 
Earlier in this set of notes it was indicated that all six 1-D configurations would be worked out in 
detail (i.e. bare and reflected systems in 1-D slab, spherical, and cylindrical geometry).  Well, I 
have changed my mind, since now I have decided not to include the detailed analytical 
development for the 1-D core-reflector model in cylindrical geometry within these Lecture 
Notes.  In fact, having the student work out the details for this model is an excellent test of your 
comprehension of the development for the previous five 1-D 1-group reactor models.  Thus, we 
will purposely leave the theoretical development for the current configuration as an exercise for 
the student  --  it should be instructive as a gauge of how much you have learned from the 
examples given previously…   

However, the summary results that you should obtain have been included in Table 1, and these 
results have been implemented within the core_refl1g_gui program.  Also, just so the notation 
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makes perfect sense, we have included a simple sketch of the 1-D reflected system in the 
diagram below.   

 
Please note that, even if you are not completely successful with your development, the data given 
in Table 1 (on the last page of this document) and the visualization and computational capability 
within the core_refl1g_gui code should be more than sufficient for practical calculations (i.e. 
core size and material composition analyses) involving 1-D reflected reactors in cylindrical 
coordinates.  Thus, you still have all the same analysis capability as for the other 1-D 1-group 
bare and reflected cases… 

Summary 
This document provides a detailed derivation of the 1-group flux profiles in several 1-D bare and 
core-reflector geometries, with particular focus on comparing the bare critical reactor to its 
corresponding critical core-reflector configuration.  Also, a comparison of the three standard 1-D 
geometries is made (slab, spherical, and cylindrical geometries), with a note that all three 
geometries have similar physical behavior, although the mathematical functions that describe the 
flux profiles are quite different for each geometry. 

A summary of the key relationships needed to perform analytical analyses of the three common     
1-group 1-D critical reactor geometries is given in Table 1.  This can be used as a good summary 
reference and the information here clearly documents the equations actually implemented within 
the core_refl1g_gui code. 

Well, have fun using the core_refl1g GUI and the documentation provided in these notes!!!  We 
hope that these educational tools help in the visualization/understanding of the basic processes 
associated with 1-group 1-D critical systems… 
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Table 1  Summary equations and various relationships for several 1-group 1-D critical systems. 

Geometry Configuration Flux Profile Power Normalization Geometric Buckling 

1-D Slab 

Bare Core 1(x) A cosBxφ =  

1
o

f

PBA Ba2 sin
2

=
κΣ

 

2
2B

a
π =  

 
 

Core-Reflector 
c 1(x) A cosBxφ =  

( )o rx a /2 /Lo
r 1

Ba(x) A cos e
2

− −φ =  
o r c

r

Ba L D Bf (B) cot 0
2 D

= − =  

1-D 
Sphere 

Bare Core 2
sin Br(r) A

r
φ =  

[ ]
2

2
f o o o

PBA
4 sin BR BR cosBR

=
πκΣ −

 

2
2B

R
π =  

 
 

Core-Reflector 
c 2

s i n Br(r) A
r

φ =  

( )o rr R /L

r 2 o
e(r) A sin BR

r

− −

φ =  

c o
o

r
r o

1f (B) D Bcot BR
R

1 1D 0
L R

 
= − 

 
 

+ + = 
 

 

1-D 
Cylinder 

Bare Core 1 0(r) A J (Br)φ =  

1
f o 1 o

PBA
2 R J (BR )

=
πκΣ

 

2
2 2.4048B

R
 =  
 

 

Core-Reflector 
c 1 0(r) A J (Br)φ =  

0 o
r 1 0 r

0 o r

J (BR )(r) A K (r / L )
K (R / L )

φ =  

c 1 o 0 o r

r
0 o 1 o r

r

f (B) D BJ (BR )K (R / L )
D J (BR )K (R / L ) 0
L

=

− =
 

Notes: For the bare cores, the extrapolated core size is given by:   a = ao + 2d    or    R = Ro + d 

 The multiplication factor for all the 1-group 1-D critical systems is given by:   fc
eff 2

c ac

k
D B

νΣ
=

+ Σ
 

 For the core-reflector systems, the statement  f(B) = 0  represents a classical root finding problem, where one searches for the smallest value 
of B to obtain the fundamental mode solution. 
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