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Setup and solve the 2-group diffusion equation for bare critical 

systems. 

Develop formal expressions for the 2-group keff and fast-to-thermal 

flux ratio for bare critical systems. 

Reduce the finite reactor expressions for keff and 1/2 to be 

applicable for an infinite system (k and 1/2 are very useful 

material properties). 

Define each term within the 4-factor formula in words and in 

symbols. 

Show the equivalency of the 4-factor formula for k and the 

expression derived formally from the 2-group diffusion equation. 

Develop an approximate expression for keff for bare homogeneous 

systems and, with proper definition of the fast and thermal non-

leakage probabilities, develop the so-called 6-factor formula. 
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Explain the neutron life cycle within a thermal system in terms of 

the elements of the 6-factor formula. 

Convert the 6-factor formula into the modified 1-group theory 

expression for keff. 

Explain the approximations associated with the assumption of a 

“dilute homogeneous system”. 

Define the term reflector savings and explain how this is used to 

determine the “effective core size” of a reflected thermal reactor. 

Perform modified 1-g theory critical size and critical composition 

calculations for bare homogeneous systems and simple core-

reflector systems via hand calculations and with the use of the 

diluteh_gui code. 

2-Grp Theory for Critical Systems  
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For the two-group approximation to multigroup diffusion theory, 

one usually assumes no upscatter (21 = 0) and no fission 

source in group 2 (1 = 1.0 and 2 = 0.0 ).  

With these specifications, the group 1 and 2 diffusion equations 

for a critical homogeneous system become  

 

 

 

Solution of these equations for the general case is quite 

complicated (and beyond our current scope --  note the fully 

coupled-structure of the two ODEs). 

 2
1 1 R1 1 f1 1 f 2 2D 0             

2
2 2 a2 2 1 2 1D 0        
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2-Grp Theory for Critical Systems  
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However, for a 1-region bare homogeneous reactor, a number of 

simplifying assumptions lead to a system that is easy to solve 

and interpret.   

This procedure leads to formal expressions for keff and the fast-

to-thermal flux ratio in bare critical systems. 

Also, with the assumption of a large region, we get expressions 

for k and 1/2 for the material of interest (these neutronic 

material properties are very important in the design and analysis 

of real thermal reactor systems). 

Bare Homogeneous Systems  
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To develop the desired formulations, we restrict our analysis to 

the case of a bare homogeneous 1-region critical system.   

In addition, we argue that the extrapolation distance in each 

energy group is the same (recall that dg  2.13 Dg, so the 

extrapolation distance is really energy dependent).   

This latter approximation can be justified by the fact that the 

diffusion coefficient is not a strong function of energy, and that 

d is often small compared to the reactor dimensions anyway.  

Thus, the minor variation of d with energy is usually negligible. 

With this assumption, for the group 1 and group 2 equations to 

be valid at every point in the reactor, the spatial forms of          

and          must be identical.   

This is easy to see when the leakage term is small, since all the 

other terms simply have constant coefficients.  

1(r)

2(r)
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From 1-group theory, we know that the flux curvature,        , is 

proportional to the flux shape  --  that is                    , where B2 is a 

constant.   

Thus, the spatial profile of the flux is the same for each energy 

group, and the full solution to the group 1 and group 2 equations 

can be written as 

 

where         satisfies an equation of the form 

 

In these expressions,        (without a group subscript) represents 

only the spatial distribution of the flux, and                       (with a 

group subscript) represents the full space-energy solution.   

These relationships assume space-energy separability!!! 

Bare Homogeneous Systems  (cont.) 

(Oct. 2016) 

(r)

(r)

1 1 2 2(r) c (r) and (r) c (r)     

2 2 2 2
(r) B (r) 0 or (r) B (r)         

2 
2 2

B    

g g(r) c (r)  
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assumes 

space-energy 

separability 
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In addition, since        represents the spatial profile from a          

1-group bare system, we already know this distribution function 

for all the common bare reactor geometries.  

Thus, our challenge reduces to finding the discrete energy 

dependence of the flux (i.e. the c1 and c2 values). 

Now, with the above separability assumption, substituting  

 

into the matrix form of the 2-group balance equation gives 

 

 

 

where the spatial flux profile,        , has canceled from the 

expression since we have a homogeneous system of equations. 

Bare Homogeneous Systems  (cont.) 

(Oct. 2016) 

(r)

2
1 R1 f 1 f 2 1

2
21 2 2 a2

D B c 0

c 0D B

         
     

       

(r)

g g(r) c (r)  
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This set of homogeneous algebraic equations will have a non-

trivial solution if and only if the determinant of the coefficient 

matrix vanishes (i.e. the matrix must be singular).   

This is the criticality condition for the 2-group bare homogeneous 

problem.  

Forcing the determinant of the 22 matrix to zero gives 

 

 

and, separating out the terms containing the eigenvalue , gives   

Bare Homogeneous Systems  (cont.) 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 8:  The Critical Reactor III 

   2 2
1 R1 f1 2 a2 f 2 1 2D B D B 0         

     2 2 2
1 R1 2 a2 f1 2 a2 f 2 1 2D B D B D B 0

             
 

Bare Homogeneous Systems  (cont.) 
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Solving this last expression for the eigenvalue , gives 

 

 

where the n subscript denotes that there are an infinite number   

of       ’s that satisfy the critical bare reactor problem. 

Now, recalling that                , for the fundamental mode (i.e. n = 1), 

we have  

   
 

2 2
1 n R1 2 n a2

n 2
f 1 2 n a2 f 2 1 2

D B D B

D B 

   
 

     

2
nB

eff1 k 

 
   

2
f 1 2 a2 f 2 1 2

eff 2 2
1 R1 2 a2

D B
k

D B D B

     


   

2-group keff for a bare 

homogeneous ‘critical’ system 
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Recall also that the geometric buckling, B2, is inversely 

proportional to the square of the characteristic dimension for 

the system of interest.  

Thus, as the system becomes large, B2 approaches zero and, in 

the limit of an infinite system, we have  

 

 

 

Also recall that the two-group fluxes only differ by a constant 

factor, which is usually denoted by the fast-to-thermal flux ratio. 

f 1 a2 f 2 1 2

R1 a2

k 


    


 

2-group k is a very 

important material property 

Bare Homogeneous Systems  (cont.) 
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Thus, from the matrix representation given previously, we have 

 

 

For an infinite system this can be written as a simple ratio of cross 

sections, or 

 

This ratio is a good indicator of the general flux spectrum in a 

thermal system. 

Finally, to complete this problem, we need to normalize the spatial 

flux distribution to the reactor power, or 

2
2 a21 1 f 2

2
2 2 1 21 R1 f 1

D Bc

c D B 

  
  

    

a21

2 1 2




 

fg g

g

P (r) (r)dr   

another very important 

material property 

fast-to-thermal 

flux ratio 
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However,                       and, for a homogeneous system, the cross 

sections are spatially independent.  Therefore, we can write the 

power as  

 

Letting c2 = A, we have  

 
Thus, the power expression becomes  

 

                                                       

and the flux normalization is given by 

Bare Homogeneous Systems  (cont.) 

g g(r) c (r)  
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   1 f1 2 f 2P c c r dr     

1 1
1 2

2 2

c
(r) A (r) A (r) and (r) A (r)

c


       



 1
f1 f 2

2

P A r dr
 

      
 



 1
f 1 f 2

2

P
A

r dr


 

     
 



flux 

normalization  
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This development is now complete.  Although relatively brief, 

there is a lot of meat here!   

We have seen that the flux shape in a 2-group model of a bare 

reactor is the same as the 1-group profile for each geometry of 

interest.  

However, the expressions for the 2-group keff and k are quite 

different from their 1-group counterparts, since they take into 

account the production and loss of neutrons in both the fast 

and thermal groups.   

In addition, we introduced the fast-to-thermal flux ratio and saw 

that this quantity is needed to define the fast flux, and that it 

enters into consideration in the computation of the 

normalization.   
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If the cross section data are available for a particular system, 

these expressions are relatively easy to use to compute the 

following quantities: 

  critical size (given the material composition) 

  critical composition (given the reactor geometry) 

  keff for a specific material-geometry combination  

  maximum value of the flux for a given power level 

  etc.   

There is actually a lot of information that can be obtained here… 

Bare Homogeneous Systems  (cont.) 
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The above development of 2-group theory represents a formal 

treatment of this subject for bare homogeneous systems.   

However, in many situations, the detailed cross section data 

needed to evaluate the above formal expressions are not readily 

available.   

The difficulty here often lies with determining the fast cross 

sections for the fuel (primarily f1 and a1 which are associated 

with fast fission and resonance absorption effects, respectively).   

Although these quantities can be computed accurately with 

sophisticated cross section processing codes, it would be nice 

to have an alternative, relatively simple approach for performing 

preliminary analyses.   
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In addition, there is NOT a lot of physical insight that can be 

gained from the formal expressions. 

To address these concerns, we will introduce the four-factor and 

six-factor formulas and the basic ideas behind modified 1-group 

theory. 

These concepts will give us some simple 2-group computational 

capability and provide additional insight and understanding of 

the neutron life cycle in thermal systems. 

Fission neutrons are born at high energy, they slow 

down via elastic and inelastic neutron scattering, and 

then, as thermal neutrons, they cause additional 

fissions to continue the cycle, but we also must 

consider both fast and thermal parasitic absorption, 

fast fission, and leakage from the system of interest… 

Four Factor Formula 
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Let’s focus on an infinite system for the moment.   

In such systems, of course, there is no leakage, so the only 

ultimate loss term is absorption.   

In the fast group, neutrons can get absorbed (primarily in the fuel 

and structure resonances) or scatter to thermal.   

At thermal, all the neutrons that have scattered from group 1 get 

absorbed, where some of the absorptions involve fission in the 

fuel.   

The fissions that occur (at both fast and thermal energies) 

produce neutrons at high energy, which start the neutron life 

cycle all over again.   

To describe this process in a quantitative manner, let’s define a 

number of terms (see next few slides): 
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f 2T f 2 f
T FF

2 aFa2a
T

   
   

  

thermal 

reproduction factor 

T

total neutrons emitted from thermal fission
reproduction factor

thermal neutrons absorbed in fuel
  

thermal absorption rate in fuel
thermal utilization f

total thermal absorption rate
 

 

F
a2 2 aF 2 aF aF

aF aM aaF aM 2a2 2

dr
f

dr

     
   

       





thermal 

utilization 

- - - - - - - - - - 

Four Factor Formula  (cont.) 
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total neutrons emitted from fission (fast and thermal)
fast fission factor

neutrons emitted from thermal fission
  

f 1 1 f 2 2 f1 1 2 f 2

f 2 2 f 2

         
  

  

resonance escape probability that a fission neutron is not
p

probability absorbed while slowing down
 

1 2 1 1 2

a1 1 1 2 1 a1 1 2

p
 

 

  
 

       

fast fission 

factor 

resonance escape 

probability 

- - - - - - - - - - 
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Now let’s define the thermal absorption rate as 

 

where        represents the absorption cross section in the 

moderator, coolant, structure, etc. (includes everything but fuel). 

With these definitions, we can write explicit expressions for the 

following quantities that help describe the neutron life cycle: 

   # of thermal neutrons absorbed in reactor  =   

   # of thermal neutrons absorbed in fuel  =   

   # of neutrons emitted from thermal fission  =   

   # of neutrons emitted from all fission  = 

   # of thermal neutrons in next generation  =     

 a2 2 a2 2 a 2 aF aM 2thermal absorption rate dr             

aM

a 2 a T    

a Tf  

T a Tf  

T a Tf  

T a Tp f  

Four Factor Formula  (cont.) 
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Thus, we see that these terms can indeed be used to help define 

the overall neutron balance in a 2-group infinite system.  

With the above parameters, we can also develop a simple 

expression for k. 

In particular, since that the downscatter rate is equal to the 

thermal absorption rate, the infinite multiplication factor can be 

written as  

 

 

From the definition of the resonance escape probability, the 

denominator of this expression can be written as 

T a T T a T

a1 1 a T a1 1 1 2 1

f fproduction rate
k

loss rate




     
  

         

1 2 1

a1 1 1 2 1
p
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Four Factor Formula  (cont.) 
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Thus, the expression for k is simply  

 

 

Thus, the so-called four factor formula is just a simple expression 

for the multiplication factor in an infinite system 

  
This is an important property that characterizes the reactivity 

potential of a given material composition. 

It is also very instructive to show that the two expressions for k 

are identical [derived from formal 2-group theory and the 4-factor 

formula].   

 

T a T T a T

T

1 2 1 a T

f p f p
k f p



     
    

   

Tk f p    k is an important 

material property 

To show this, we expand the expression for                     in terms of 

the four factors written in full detail, or  

 

 

and, cancelling the common factors contained in both the 

numerator and denominator, gives  

 

 

But, in an infinite system, the downscatter rate from the fast group 

is equal to the thermal absorption rate.  Thus, the above 

expression reduces to 

Four Factor Formula  (cont.) 

Tk f p   
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1 2 1 f 1f 2 2

f 2 2

F
a2 1 f 2 2

a2 2 R1 1

2

F
a2 2

k




             
       

           

 

  

 


 

1 2 1

a2 2

f 1 1 f 2 2

R1 1

k




       
    

  

 

 

 
 

 
 

f 1 a2 1 2 f 2f1 1 2 f 2f1 1 f 2 2

R1 1 R1 1 2 R1 a2 1 2

k
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or 

 

where we have used the expression for the fast-to-thermal flux 

ratio in an infinite system in the last manipulation step. 

Therefore, with the proper definition of the individual terms, the 

four factor formula is identical to the expression derived from 

formal 2-group theory for infinite homogeneous systems.  

Either expression for the 2-group k can be used as appropriate: 

 

 

Four Factor Formula  (cont.) 
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f 1 a2 f 2 1 2

R1 a2

k 


    


 

This form is used when 

detailed cross section 

data are available 

This form is used when estimates 

of the four factors are available or 

when trying to explain the neutron 

life cycle in an infinite system 

This is identical to the 

formal equation derived 

from 2-group theory 

f 1 a2 f 2 1 2

R1 a2

k 


    


 
Tk f p   

6-Factor Formula & Modified 1-Grp Theory  

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 8:  The Critical Reactor III 

Using the terms from the four factor formula to rewrite the 2-grp 

diffusion model slightly, we can also develop an alternate 

expression for keff for a finite system.   

To do this we will follow the procedure from Lamarsh.   

In particular, we start with the formal 2-group neutron balance 

equation with the following changes/assumptions: 

1.  Rewrite the fission source term as  

 

2.  Make the assumption that the fast absorption cross section is 

small compared to the downscatter cross section, or  

 

 fission
f1 1 f 2 2 T a2 2 a2 2

k
S f

p

              

R1 a1 1 2 1 2       
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6-Factor Formula & Modified 1-Grp Theory  
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3.  Modify the downscatter source to account for the above 

assumption  --  since the fast flux will be somewhat high due 

to the elimination of the fast absorption term, we reduce the 

downscatter rate by the resonance escape probability, or  

 

With these modifications, the fast and thermal balance equations 

become 

 

 

Now, with these equations, we can follow the same procedure as 

before to derive an expression for keff for the system of interest.  

downscatter
1 2 1 1 2 1S p      

2
1 1 1 2 1 a2 2

k
D 0

p


          

2
2 2 a2 2 1 2 1D p 0         
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Again we let                         where the spatial solution is given by 

an equation of the form                        (i.e. the 1-group critical 

reactor equation).   

Then, upon substitution and putting the resultant algebraic 

equations into matrix form, we have  

 

 

 

Again the determinant of the coefficient matrix must be zero for a 

non-trivial solution, or 

 

g g(r) c (r)  
2 2

B 0   

2
1 1 2 a2 1

22
1 2 2 a2

k
D B c 0

p
c 0

p D B






 
        

       
     

6-Factor Formula & Modified 1-Grp Theory  

   2 2
1 1 2 2 a2 1 2 a2D B D B k 0          
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2
f 1 2 a2 f 2 1 2

eff 2 2
1 R1 2 a2

D B
k

D B D B
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and solving for  

 

or 

 

 

This expression should be compared to the expression given 

previously  --  derived from formal 2-group theory with minimal 

approximations,   

   2 2
1 1 2 2 a2

1 2 a2

D B D B

k



 

   
 

 

   
1 2 a2

eff 2 2
1 1 2 2 a2

k1
k

D B D B

 



 
 
    

2-group theory with 

approximations 

from Lamarsh 

formal 2-group 

diffusion theory  

6-Factor Formula & Modified 1-Grp Theory  
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The current development (from Lamarsh) has some additional  

assumptions and, therefore, it is only an approximation to the 

formal 2-group result.   

However, for preliminary estimates of keff, this approximate result 

is often much easier to apply because a formal set of 2-group 

macroscopic cross sections are not required. 

To see this more clearly, recall the definitions of the thermal 

neutron age, T , and thermal diffusion area,      , where  

 

 

Using these definitions, the approximate keff expression becomes 

2
TL

21 2
T T

1 2 a2

D D
and L



  
 

eff 2 2 2
T T

1 1
k k

1 B 1 L B


  
   

    

6-Factor Formula & Modified 1-Grp Theory  

obtained by 

manipulating the 

12a2  factor  

2-group keff for a bare 

homogeneous system 
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Note that the two factors in parentheses are formal expressions 

for the fast and thermal non-leakage probabilities in the system, 

where 

 

 

and 

 
Thus, with these definitions, the expression for the multiplication 

factor in a bare homogeneous reactor can be written as  

 

This is called the six factor formula  --  and it is often easier to 

estimate the terms within this expression.  

1 2 1

F 22
T1 1 1 2 1

downscatter rate 1
P

total loss rate 1 BD B





 
  

    

a2 2

T 2 22
T2 2 a2 2

absorption rate 1
P

total loss rate 1 L BD B

 
  

   

eff T F T F Tk k P P fp P P    six factor formula 

6-Factor Formula & Modified 1-Grp Theory  
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The 6-factor formula is quite important when performing 

preliminary computations of critical size or critical composition, 

and it is also quite useful in describing the life cycle of neutrons 

in a thermal reactor. 

To illustrate its usefulness for describing the neutron life cycle, 

consider the following example that comes directly from the DOE 

handbook (see next slide)… 

 

6-Factor Formula & Modified 1-Grp Theory  

Be sure you are very 

comfortable with this example!!! 
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o F T T
eff T F T

o

N P pP f
k fp P P

N
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Let’s start with No fast neutrons 

from thermal fission, then 

 No total fast neutrons 

 NoPFp neutrons make it to thermal 

 NoPFpPTf  n’s get absorbed in fuel 

 NoPFpPTfT fission n’s produced 

   in next generation from thermal    

x fission 

The multiplication factor is the 

ratio of neutrons in one 

generation to the neutrons in the 

previous generation at some 

common point in the life cycle, 

or   

eff T F T

T F T

k fp P P

fp 1.000

  

   L L

(from DOE Handbook) 

6-Factor Formula & Modified 1-Grp Theory  
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Now, as a final task in our development of 2-group theory, we can 

also put the 6-factor formula into a form similar to 1-group theory  

--  that is, we want to develop the so-called modified 1-group 

theory formula for keff.   

First we recall the 1-group expression  

 
where PNL is the non-leakage probability and k = f. 

Now, for 2-group theory, let’s expand the denominator of the PF 

and PT terms, or 

 

actual 1-group theory 
eff NL2 2

k
k k P

1 L B


 



     
eff 2 2 2 2 2 2 4

T T T T T T

k k
k

1 L B 1 B 1 L B L B

  
       

6-Factor Formula & Modified 1-Grp Theory  
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For a large system, B2 is quite small and B4 is very small.   

In this case,  

 

and we can write the following “modified 1-group theory” critical 

condition as 

 

 

where                         is called the migration area . 

 2 4 2 2
T T T TL B L B   

 
eff 2 22 2

TT T

k k
k

1 M B1 L B

  
  

modified          

1-group theory 

2 2
T T TM L  

6-Factor Formula & Modified 1-Grp Theory  

Note that the name “modified1-group theory” is 

somewhat misleading since this is really a specific 

approximation to a 2-group problem  --  it just 

happens to “look like” the 1-group formula… 

Critical Size and Composition 
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The previous development is used in preliminary analyses for the 

critical size and critical composition of bare core geometries.   

In addition, the same basic techniques can also be used for 

reflected cores, if some information about the reflector savings, 

, is known (see below).   

The hand computations rely on a number of assumptions that 

allow one to readily estimate the parameters within the modified 

1-group theory expression for keff.  

In particular, the assumption of a dilute homogeneous system is 

key to resolving a lot of the necessary data for the calculations  --  

where the word “dilute” implies that the fuel composition is only 

a small component of the overall homogeneous mixture.  
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Critical Size and Composition (cont.) 
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For example, for a two-component dilute homogeneous system 

(consisting of only fuel and moderator  --  where the “moderator” 

here is everything but fuel), the macroscopic cross sections for 

the mixture can be approximated as follows: 

The transport cross section is given as 

 

But, although the microscopic data are on the same order of 

magnitude (i.e.        is of the same order as       ), the dilute nature 

of the mixture tells us that NM >> NF.   

Thus, the expression for the transport cross section reduces to  

 

F M F F M M
tr tr tr tr trN N        

M M M
tr tr trN    

F
tr M

tr

Critical Size and Composition (cont.) 
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and the diffusion coefficient for the mixture becomes  

 

Similarly, for the downscatter cross section, we make the same 

set of assumptions, giving 

 

Thus, we can write the thermal neutron age as 

 

 

Also, for a homogeneous system, the basic definition of the 

thermal utilization gives  

MM
tr tr

1 1
D D

3 3
  

 

F M M
1 2 1 2 1 2 1 2         

M
1 1

T TMM
1 2 1 2

D D
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where we have defined z as the ratio of the fuel and moderator 

thermal absorption cross sections (this is done simply for 

convenience in subsequent manipulations), or 

 

With this definition of z and f, we can write an expression for the 

thermal diffusion area as 

 
and, noting that                                         we have   

Critical Size and Composition (cont.) 
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For dilute homogeneous 

systems,    
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Note that appropriate 

density and temperature 

corrections must be 

applied within all these 

formulas, as needed. 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 8:  The Critical Reactor III 

One final assumption, concerns the resonance escape probability 

and the fast fission factor.   

In dilute homogeneous systems, the resonance escape 

probability, p, is slightly less than unity and the fast fission factor, 

, is slightly greater than unity.   

However, it is not easy to get a good quantitative estimate for 

either of these quantities (not without a fair amount of effort).   

Thus, for preliminary calculations, it is often assumed that the 

product of these two factors is approximately unity, or  

                                         p  1.0 

Now, with some background on the various approximations 

involved and the above expressions for several of the needed 

intermediate quantities, we are ready to outline the actual 

computations required in typical analyses...  

For dilute homogeneous 

systems,  p  1.0 

Critical Size and Composition (cont.) 
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In particular, the problem solution scheme is somewhat different 

for the two usual cases of interest here, as follows: 

1.  Given the Material Composition, Compute the ‘Critical’ Size  

This is the easier of the two cases.  Here, with the fuel and 

moderator compositions known, one can obtain cross section 

data for the fuel and moderator and compute the values of          

k  f(1.0)  and                       . 

We then solve the modified 1-group equation for the buckling, 

                           →    

and compute the desired critical dimension. 

2 2
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Let’s do an example!!! 
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2. Given the Core Size, Compute the ‘Critical’ Fuel Composition  

For this case, we can immediately compute the buckling from the 

known core dimensions.   

However, since we don’t know the fuel composition, NF, or                     

x                 , we simply write the expression for keff in terms of 

one of these quantities, and then solve for this unknown quantity.  

Doing this for a given keff with z as the desired quantity gives 

 

 

 

and, solving this for z (see the Lecture Notes for details), gives 
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This expression for the fuel composition is used for simple hand 

computations when the geometry is known (i.e. B2 is known) and 

one needs to compute the critical composition.  Once z has been 

determined via the above equation, then 

 

which is the usual desired result from a “critical composition 

calculation”.  

The Parametric Approach  

The methodology described above is based on Lamarsh…   

An easier, and possibly more useful approach, would be to simply 

compute keff for a given geometry and material combination  --  

and, with this ability, one can easily perform a parametric study for 

any parameter of interest.   

M
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Critical Size and Composition (cont.) 

Let’s do an example!!! 

For the Case 1 scenario, one holds the composition fixed and 

varies the core size, each time computing a different keff .   

Then, a simple plot of keff vs. core size will easily show the critical 

core size (i.e. when keff = 1.0) as well as show how rapidly the 

multiplication factor changes with the core dimensions.   

Similarly, for the Case 2 situation, one holds the core size fixed 

and varies the fuel composition  --  giving information on how keff 

varies with the fuel loading as well as the critical composition.   

This parametric approach is actually more intuitive!!!   

One simply puts the computed values of B2, k  f(1.0), and        

into the modified 1-group formula and computes keff directly for 

the given geometry and materials combination  --  this is a much 

more straightforward approach to the problem. 

This parametric approach is the basis of the diluteh_gui code… 

2
TM
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The diluteh_gui Interface 
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How about 

a demo??? 

Parametric Study: keff vs. Core Size 
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Reflected Core Calculations 
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As a final note, we should emphasize that the above analyses are 

only directly applicable for the solution of bare homogeneous 

critical core problems, since the modified 1-group formula for keff 

was derived explicitly for this situation.   

However, it is possible to view a core-reflector system as a bare 

core with an “effective core size” that is increased to account for 

the effect of the reflector on the system.   

In particular, the reflector savings, , is defined as the difference 

in the critical dimension of the bare and reflected systems.   

Clearly, since the reflector reduces the net core leakage, the 

critical size of a reflected core will be smaller than the size of a 

bare critical core.   

Or, from a different perspective, if a bare core with a given keff is 

surrounded by an infinite reflector, then the system multiplication 

factor will increase. 

Reflected Core Calculations  (cont.) 
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With this simple rationalization, one can estimate keff for the 

reflected system by effectively increasing the physical core size 

by the reflector savings and then use modified 1-group theory 

for a hypothetical bare core with the increased “effective core 

size”.   

In particular, Lamarsh gives approximate correlations for 

estimating the reflector savings in thermal systems, where  

 

and 

 

Now, with a known , the effective size of a reflected reactor 

becomes  ao + 2, or R + , etc., and this increased dimension 

would then be used to compute the effective buckling for the 

reflected system. 
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Reflected Core Calculations  (cont.) 
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For example, the effective buckling for a reflected parallelepiped 

reactor becomes 

 

where a, b, and c are the real core dimensions, and a + 2, b + 2, 

and c + 2 are the effective dimensions used to account for the 

reduced leakage that will occur in the reflected system.   

With this simple change, the above modified 1-group theory for 

bare cores can also be easily applied to reflected systems. 

This simple “effective core size” approach for reflected systems 

has been implemented into the diluteh_gui code so that 

approximate critical size and composition calculations can be 

made for both bare and reflected systems. 

You should definitely explore the capabilities of diluteh_gui… 
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In this Lesson we have briefly discussed the following subjects: 

The setup and solution of the 2-group diffusion equation for bare 

critical systems. 

The formal expressions for the 2-group keff and fast-to-thermal flux 

ratio for bare critical systems. 

How to reduce the finite reactor expressions for keff and 1/2 to be 

applicable for an infinite system (k and 1/2 are very useful 

material properties). 

The definition of each term within the 4-factor formula in words 

and in symbols. 

The equivalency of the 4-factor formula for k and the expression 

derived formally from the 2-group diffusion equation. 

How to develop an approximate 6-factor formula for keff for bare 

homogeneous systems. 
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Lesson 8 Summary  (cont.) 
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How to explain the neutron life cycle within a thermal system in 

terms of the elements of the 6-factor formula. 

The conversion of the 6-factor formula into the modified 1-group 

theory expression for keff. 

The approximations associated with the assumption of a “dilute 

homogeneous system”. 

The term reflector savings and how this is used to determine the 

“effective core size” of a reflected thermal reactor. 

How to perform modified 1-group theory critical size and critical 

composition calculations for bare homogeneous systems and 

simple core-reflector systems via hand calculations and with the 

use of the diluteh_gui code. 


