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Setup and solve the 1-group diffusion equation for the 2-D bare 

critical finite cylindrical reactor. 

Explain the basic idea behind the Separation of Variables 

method for solving relatively simple PDEs. 

Recognize the standard form of Bessel’s equations and write the 

general solution to ODEs of this form. 

Perform integration and differentiation involving Bessel 

functions (to compute the normalization constant and to find the 

neutron current or leakage). 

Describe the basic functional behavior of the flux and current 

profiles for the bare finite cylindrical reactor. 
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Consider the bare finite cylindrical 

reactor with extrapolated dimensions R 

and H, where R = Ro + d and H = Ho + 2d.  

The coordinate system is such that r = 0 

and  z = 0 is in the center of the reactor. 

The 1-group critical reactor model for 

this two dimensional (2-D) system is  

 

 

and the Laplacian in cylindrical 

coordinates is given as  
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Thus, for azimuthal symmetry, the balance equation becomes 

 

 

We will use the Method of Separation of Variables to develop a 

solution to this 2-D PDE problem.   

The method assumes that the flux is separable in the two spatial 

dimensions, r and z.   

Although this separability assumption is not valid in most 

situations, for the simple bare homogeneous reactor, it is indeed 

valid (we would run into problems during the derivation if our 

assumption was incorrect).   
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this is a PDE with two 

independent variables, r and z 
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Therefore, we write (r,z) as a product of two functions: one that 

is only a function of r and the other only dependent on z.   

This gives 

 

Substituting this assumed form of the solution into the original 

PDE and dividing by   = XY, gives 

 

 

Analysis of this last expression indicates that the first term is 

only a function of r, the second term is only a function of z, and 

the third term is a constant.   

(r,z) X(r)Y(z) 
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In order to satisfy this expression for all values of r and z, the 

first two terms must separately equal some constant (usually 

called the separation constant).  

Doing this gives the following three expressions, 

 
and 

 

The above procedure gives a separate second-order differential 

equation in each direction  --  it converts the original partial 

differential equation (PDE) into two ordinary differential 

equations (ODEs).  
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The negative signs are 

needed to satisfy the 

BCs for the problem. 

This is the basic idea behind the 

Separation of Variables method. 
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Axial Direction 

Addressing the axial direction first, we require the solution to 

 
Noting that this is just the 1-D bare slab reactor problem from 

previous work, we have 

 

Because of the separability assumption, we can evaluate the 

boundary conditions in each direction without the interaction of 

the other direction.   

In the z-direction, the appropriate boundary conditions are 

symmetry at  z = 0 and the flux goes to zero at z = H/2.   

2
2
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d Y
Y 0

dz
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1 2Y(z) A cos z A sin z   
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Axial Direction (cont.) 

Imposing these conditions gives 

 

 

 

 

or 

2

z 0

dY(z)
0 implies that A    0

dz 

 

 
H/2

Y(z) 0 impliesthat cos H / 2    0  

n n n

(2n 1)
Y (z) cos( z) where for  n   1,  2,  3,  

H

 
     

This is the same result that we have already seen for 

the 1-D Cartesian geometry bare reactor problem. 
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Radial Direction 

In the radial direction, we have a little more work to do since the 

defining ODE is not a simple constant coefficient equation.   

The ODE of interest here is 

 
Expanding the first term of this equation gives  

 
and multiplication by r2 gives 
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Radial Direction (cont.) 

As shown in the special set of Lecture Notes on Bessel 

Functions, this form of the diffusion equation for 1-D cylindrical 

geometry is of the form of an ordinary Bessel equation with order 

 = 0.   

Since the subject of Bessel functions may be new to many 

students, it makes sense to give a brief overview of this subject 

before continuing with the given problem…  

 

See the next few slides!!! 
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In particular, the standard form of Bessel's equation is usually 

written as  

 

with the general solution given as 

 

where the functions J(αx) and Y(αx) are called ordinary Bessel 

functions of the first and second kind, respectively, of order .   

Note also that the sign before the α2x2y term in the defining 

equation is positive.   

This form is consistent with the critical reactor problem. 

2 2 2 2
x y'' xy' ( x )y 0     

1 2y(x) C J ( x) C Y ( x)    
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For subcritical regions, the sign of this term is negative, and we 

have a form of the modified Bessel's equation which is generally 

written as 

 

with the general solution given as 

 

where I(αx) and K(αx) are modified Bessel functions of order  

of the first and second kind. 

Comparing to previous work, we note that the ordinary Bessel 

functions behave similar to the oscillatory trigonometric 

functions and the modified Bessel functions have exponential-

like behavior similar to the hyperbolic functions.   

1 2y(x) C I ( x) C K ( x)    

2 2 2 2
x y'' xy' ( x )y 0     
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The similarities and 

differences can be 

seen in the selected 

plots of the first two 

integer-order Bessel 

functions.  
 

One should also note 

the behavior as x  0 

and as x  , since 

these are useful 

when applying BCs 

to Bessel’s equation. 

Radial Direction (cont.) 

Now, comparing the diffusion equation in the radial direction to 

Bessel’s equation, we see that the general solution can be 

written in terms of zero-order ordinary Bessel functions, 

 

For the radial direction, the appropriate boundary conditions are 

that the flux must remain finite at r = 0 and that the flux at r = R is 

zero.   

The first condition forces C2 to be zero, since the Y0(βr) function 

goes to -∞ as r → 0.   

Thus, the general solution reduces to  
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1 0 2 0X(r) C J ( r) C Y ( r)   
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Radial Direction (cont.) 

At the outer boundary, we have 

 

where  m  =  mth zero of J0(x) for m = 1, 2, 3, …  

Thus,  

 

0 0 mJ ( R) 0 J ( )   

Note that : 

1  2.4048, 2  5.5201, …  

m 0 m m mX (r) J ( r) where / R  for m 1,  2,  3,        
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General Solution 

Finally, combining the radial solution with the axial solution gives 

the desired general solution for a bare finite cylindrical reactor, 

 

With the geometric buckling given by  

 
As we have seen before, there are an infinite number of 

eigenvalues and eigenfunctions that satisfy the defining ODE     

(n refers to the axial mode shape and m represents the radial 

mode profile).   

mn 0 m n(r,z) AJ ( r)cos( z)   

22

2 2 2 m
mn n m

(2n 1)
B

H R

    
        

   
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General Solution (cont.) 

However, for the same reasons as before (i.e. higher modes 

vanish at SS), we immediately set m = n = 1 to obtain the 

fundamental mode solution, 

 

 

where the first zero of the J0(x) Bessel function occurs at            

1 = 2.4048. 

Power Normalization 

To complete the solution for this problem we must find the 

normalization constant A.  Using the total reactor power, P, we 

have 

2 2

2
0

2.4048 2.4048
(r,z) AJ r cos z and B

R H H R

        
          

       

f fP dr (r,z)2 rdrdz         
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Power Normalization (cont.) 

or 

 

The integral over the axial direction gives  

 
The integral over the radial direction is obtained using the 

following steps:   

First note the following integral relationship involving the J0 

Bessel function, 

0 o

o

R H /2

f 00 H /2

2.4048r z
P 2 A r J dr cos dz

R H

 
    

 
 

o
o

o
o

H /2
H /2

o o o

H /2
H /2

H H Hz H z H 2H
cos dz sin sin sin sin

H H 2H 2H 2H


     
       



0 1xJ (x)dx xJ (x)
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Power Normalization (cont.) 

Now, to do the integral, we let x = 2.4048r/R, which gives  

 
and, upon substitution, the radial component of the integral 

power becomes 

 

 

 

 

o o

o

2
R 2.4048R R

0 00 0

2
2.4048R R

1 0

2

o o
1

o o
1

2.4048r R
rJ dr xJ (x)dx

R 2.4048

R
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2.4048R 2.4048RR
J

2.4048 R R

R R 2.4048R
J

2.4048 R

   
   

   

 
     
 

  
   
   

 
  

 

 

Rx Rdx
r and  dr
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 
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Power Normalization (cont.) 

Putting these results (axial and radial integrals) into the power 

equation gives 

 

 

Now, for the case where the extrapolation distance, d, is small 

relative to the reactor dimensions, we have R  Ro and H  Ho. 

Noting that the reactor volume is V = Ro
2 Ho, for this situation 

the normalization constant reduces to 

 
where the last equality simply evaluates the first coefficient to be 

3.638 (using Matlab to evaluate the J1 Bessel function).  

1 f f

2.4048 P 3.638P
A

4J (2.4048) V V


 

 

f o o 1 o

2.4048 P
A

4 R RH sin( H 2H) J (2.4048R / R)




        
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Criticality Condition 

To complete this problem, we write the formal criticality condition 

here as  

 
where, as noted before, this relationship is valid for any 1-group 

1-region system.   

The only unique aspect is that the buckling used here is specific 

for the bare finite cylindrical reactor, or 

f
eff NL2 2 2

a

k
k k P

DB 1 L B





  

  

2 2

2 2.4048
B

H R

   
    
   
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Visualization of the Flux and Current Distributions  

A short Matlab program, bare1g_rz.m, was written to evaluate 

and display the flux and current profiles in various formats for 

the bare finite cylindrical reactor. 

In the simulations, the extrapolation distance is assumed to be 

small and the flux magnitude is set to unity.   

Also, for convenience, the diffusion coefficient, D, is set to unity.   

The geometry is assumed to be a right circular cylinder where 

the height, H, is twice the diameter  --  thus,  H = 2(2R) = 4R.   

Also, for specificity in the plots, we set R = 1 m.  

The goal here is simply to be able to visualize the 

shape of the flux and current profile in a 2-D system. 
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Visualization of the Flux and Current Distributions (cont.)  

The profiles plotted are: 

   Flux Distribution:  

   Current Distribution:  

where the radial and axial components of the current are given 

by 

 

0

2.4048
(r,z) AJ r cos z

R H

   
     

   

r r z zJ(r,z) J (r,z)a J (r,z)a 

r 0 1

2.4048 2.4048 2.4048
J (r,z) DA J r cos z DAJ r cos z

r R H R R H

          
          

         

z 0 0

2.4048 2.4048
J (r,z) DA J r cos z DAJ r sin z

z R H H R H

           
          

         
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Visualization of the Flux and Current Distributions (cont.) 

where we used the following derivative expression for the J0 

Bessel function 

 
and, via the chain rule, we get 

 

 

to formally do the above Jr(r,z) calculation (with x = 2.4048r/R).  

0 1

d
J (x) J (x)

dx
 

0 0 1

d d dx 2.4048 2.4048
J (x) J (x) J r

dr dx dr R R

   
     

   
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A set of summary plots is displayed here and on the next several 

slides, and you are encouraged to study these profiles carefully 

to try to really visualize the flux and current distributions obtained 

for this simple 2-D reactor model  --  hopefully the variety of plots 

displayed here is sufficient to accomplish this goal… 

Surface Plots of the Normalized Flux Distribution  
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Surface Plots of the z-directed Current Distribution  

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 7:  The Critical Reactor II 



15 

Surface Plots of the Current Magnitude 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 7:  The Critical Reactor II 

      Contours and Directions for the Current  

     in the Bare Critical RZ Reactor 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 7:  The Critical Reactor II 



16 

Lesson 7 Summary 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 7:  The Critical Reactor II 

In this Lesson we have briefly discussed the following subjects: 

How to setup and solve the 1-group diffusion equation for the    

2-D bare critical finite cylindrical reactor. 

The basic idea behind the Separation of Variables method for 

solving relatively simple PDEs. 

The standard form of Bessel’s equations and how to write the 

general solution to ODEs of this form. 

How to perform integration and differentiation involving Bessel 

functions (to compute the normalization constant and to find the 

neutron current or leakage). 

The basic functional behavior of the flux and current profiles for 

the bare finite cylindrical reactor. 


