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Lesson 6:  The Critical Reactor I 
(Oct. 2016) 

Lesson 6 Objectives 

Explain the fundamental differences associated with application 

of the diffusion equation to non-multiplying media problems, 

subcritical systems, and the critical reactor problem. 

Explain the use of the mathematical eigenvalue, , within the 

critical reactor problem. 

Write the 1-group fission source and the expression for the       

1-group multiplication factor, k, in a variety of ways. 

Setup and solve the 1-group 1-D bare critical reactor problem 

for slab, spherical, and cylindrical geometries. 

Discuss the meaning of the criticality condition and the concept 

of material and geometric bucklings. 

Setup and solve the 1-group 1-D 2-region core-reflector critical 

reactor problem for slab, spherical, and cylindrical geometries. 
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Lesson 6 Objectives (cont.) 

Discuss the meaning of the phrase “critical determinant” as 

applied to the core-reflector critical reactor problem. 

Apply a power constraint to determine the flux normalization in 

various geometries. 

Perform critical size and composition calculations for a variety of 

1-D geometries using 1-group theory. 

Explain how the addition of a reflector affects the overall 

multiplication factor. 

Sketch the expected shape of the 1-group flux within a variety of 

1-D configurations. 

Use the core_refl1g_gui program to perform a variety of analyses 

for various 1-D geometries. 
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Typical Applications 

The steady state multigroup diffusion equation is quite general 

and, for any specific application, only the applicable terms are 

used.   

In most cases of interest, one of the following three situations 

arise:  

1. Subcritical non-multiplying system (no fission source):   

L = Q  

2. Subcritical multiplying system (fission & external sources):   

(L - F) = Q  

3. Critical system (no external sources):    

(L - F) = 0  
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Typical Applications  (cont.) 

Subcritical non-multiplying system:   

This first case is applicable primarily in shield design 

applications and for non-multiplying fusion blanket design.   

This situation represents a geometry with no fission source (and 

this was the situation treated in several previous lessons).   

Using 1-group theory for a homogeneous medium, the general 

equation reduces to 
2

aD (r) (r) Q(r)      

2 2

2
a

1 Q(r) D
(r) (r) with L

DL
      


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Typical Applications  (cont.) 

Subcritical multiplying system:   

This second case must be considered in situations where both 

the fixed source and fission source are important.   

The most common situation where this case arises is during 

reactor startup and shutdown periods.   

Using 1-group theory for a homogeneous medium, the general 

balance equation reduces to 

2
a fD (r) (r) (r) Q(r)         

2 a f Q(r)
(r) (r)

D D

  
     
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Typical Applications  (cont.) 

Now, recall that we previously defined the neutron multiplication 

factor as  

 

 

and    

 

Thus, for a subcritical steady-state system with k < 1, we have 

f

2
a

neutron production rate
k

neutron loss rate D

   
 

         

2 2 2 a fQ(r)
(r) (r) with 0

D D

  
         

solution scheme is identical to the 

non-multiplying media problem 
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f f

a a

k

    
 

    

Typical Applications  (cont.) 

Critical system:   

This last problem classification describes the steady state 

operation of a nuclear reactor.   

In this situation, the total leakage and absorption rates exactly 

balance the neutron production from fission, and any inherent 

neutron source that may be present in the fuel is totally 

dominated by the fission source.   

Since the fixed source is negligible, it is simply dropped from the 

defining equations.  

For criticality, there is a very precise balance between the 

neutron production rate from fission and the total loss rate  --  

that is, any arbitrary mixture of materials will not satisfy this 

constraint.   
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Typical Applications  (cont.) 

To emphasize this precise relationship, one usually includes a 

mathematical eigenvalue,  , before the fission source term.  

But, always remember, in an operating critical reactor,  is 

unity!!!   

In design analysis, however, we often want to know if a particular 

combination of materials will give a critical reactor.   

Thus, for any given material distribution,  is computed as part 

of the solution procedure.   

It is allowed to vary from unity so that , for steady state 

operation, the equation can be balanced mathematically (that is, 

loss =  * production).   
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Using 1-group theory for a homogeneous medium, the general 

balance equation for a critical system (with k > 1) reduces to 

 

 

 

 

 

where we note that this equation is homogeneous and that the 

sign of the 2nd term on the LHS is positive (instead of negative 

as in the other two application classes)  --  and these two 

differences lead to some rather interesting physical and 

mathematical behavior… 

Typical Applications  (cont.) 

2
a fD (r) (r) (r) 0         

2 f a(r) (r) 0
D

  
    

2 2 2 f a(r) B (r) 0 where B 0
D

  
      

for an operating 

critical system, 

 = 1.000 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 6:  The Critical Reactor I 



6 

Also, since the 2nd derivative of a function is related to its 

curvature (i.e. the slope of the slope), then B2 is referred to as 

the buckling  --  which is a measure of the curvature of the flux 

profile. 

That is,   

 

Finally, B2 in the above expression is called the material 

buckling since it is only a function of the material properties of 

the core (for  = 1.000), where 

Typical Applications  (cont.) 

2 2
B    

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 6:  The Critical Reactor I 

2 f aB
D

  


To see the significance of , let's integrate the                                

1-group balance equation over all space, giving 

 
 

or 
 

 

From the definition of the multiplication factor, k, 

 
Thus, the addition of the eigenvalue within the defining equation 

is quite justifiable, since at SS operating conditions, keff = 1/ = 

1.000.  

Significance of the Eigenvalue,  

2
a fD 0              

2
a

f

D loss rate

production rate

         
  

   

eff

eff

production rate 1
k or

loss rate k
  

for a 1-region 

homogeneous system 

 

 

 

 

 

f
2

a

f
2

a

f
2

a

k
D

DB

DB

   

         

   

       



 
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However, for any given material configuration, the calculated keff 

may not be unity, but this just tells the designer that a material 

and/or geometry modification is required for criticality  --  and 

this can be a great design tool !!! 

Nevertheless, a SS system with keff  1.000, is not self-

consistent, and can never be achieved in practice --  that is, for 

Q = 0 and  k < 1, the steady state flux is zero and, if k > 1, the flux 

magnitude continually increases without bound… 

Significance of the Eigenvalue,  
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1-Group Expressions for Sfis & keff 

Depending on what data may be available for a given problem, it 

may be convenient to express the 1-group fission source and 

keff equation in various forms. 

To illustrate some of the alternatives, we first recall the 

difference between the definitions of η and , where 

 
and 

 

 

 

average number of neutrons emitted

absorption in the fuel
 

average number of neutrons emitted

fission
 
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1-Group Expressions for Sfis & keff 

With these definitions, one can express the 1-group fission 

source, Sfis, as  

 
 

 

 

Now, we define a new term called the fuel utilization, as 

 

fis f3

neutrons fissions
S

fission cm sec

  
     

  

F
fis a3

neutrons emitted absorptions in fuel
S

absorption in fuel cm -sec

  
     

  
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neutrons absorbed in fuel
f = fuel utilization = 

neutrons absorbed in complete system

And, for a homogeneous 1-region reactor,  f can be written as 

 

  

Now, using these expressions, one also has the following 

equivalent forms for Sfis, 

 

 

where we have used the 1-group k formulation, 

Finally, with these different representations for the fission 

source, we can also write the multiplication factor in various 

ways, as follows, 

 

1-Group Expressions for Sfis & keff 

f ak   

F F F
a a a

a aa

(r) (r)dr
f

(r) (r)dr

      
  

     





F
fis f a a aS f k            

f af

2 2 2 2 2 2 2
a

k f
k

DB 1 L B 1 L B 1 L B

  
   
    

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 6:  The Critical Reactor I 



9 

1-Group 1-D Critical Reactor Cases 

With the above background, we are now ready to formally 

analyze a number of 1-group 1-D critical reactor configurations. 

In particular, the 1-group 1-D bare critical reactor model can be 

solved analytically in slab, spherical, and cylindrical geometries  

--  and these solutions can give significant insight into the 

behavior of general critical systems. 

In addition, a 1-group 2-region core-reflector model can also be 

solved analytically for these same 1-D geometries  --  and this 

problem is clearly more realistic of a real system (i.e. there are 

no bare reactors in existence  --  except for some very early 

experimental facilities such as the Godiva and Jezebel bare 

cores). 
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We will address both the single-region bare 

core and the 2-region core-reflector cases… 

1-Grp 1-D Critical Reactor Cases  (cont.) 

The bare and reflected 1-group 1-D models allow an introduction 

to the solution methodology as well as several new terms and 

concepts needed in analyzing general critical systems  --  and 

they allow some preliminary core size and composition design 

calculations. 

The formal analytical solutions for all six configurations (bare 

and reflected cores in slab, spherical, and cylindrical geometries) 

are treated in detail in the formal Lecture Notes. 

Here, we will discuss only the bare and reflected critical slab 

reactor to highlight the key terminology and procedures 

associated with problems of this type. 

The student can then review the developments for the other 

geometries as independent study and via related HW problems. 
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1-Grp 1-D Critical Reactor Cases  (cont.) 

In addition, a Matlab GUI, core_refl1g_gui, was developed to 

implement the solutions for all six 1-group 1-D configurations.  

This tool should help in the visualization of the resultant flux 

profiles and in performing various comparisons and analytical 

studies (bare vs. reflected systems, variation of keff with core size, 

how the flux level changes with power, core size, and core 

configuration, etc.). 

The combination of the theory and solution capability within the 

Matlab GUI should give you a good understanding of 1-group 1-D 

critical systems  --  and we will build upon this background in 

subsequent lessons to expand your overall knowledge of general 

steady state critical systems… 
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The core_refl1g_gui Interface 
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1-Group Bare Critical Slab Reactor 

Consider the bare slab reactor shown. 

The reactor has finite thickness ao in the x 

direction, but it is infinite in the 

transverse directions (y and z directions).  

The “bare” adjective here means that the 

system has vacuum boundaries and we 

will apply the typical vacuum boundary 

condition at the external boundaries of  

the system.  

Also, the coordinate system is such that  

x = 0 is in the center of the reactor, and 

the system is symmetric about this point.  

Because of symmetry, we will only 

consider the region 0 ≤ x ≤ ao/2.  
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1-Grp Bare Critical Slab Reactor  (cont.) 

For a 1-group 1-region homogeneous critical slab reactor, the 

general multigroup diffusion equation becomes 

                                                      with 

 

where it is assumed that the buckling, B2, is positive since the 

production term,            , must be greater than the absorption 

term,        , in a finite critical system (k > 1 for a finite system).  

The general solution for this 2nd order linear constant-coefficient 

homogeneous ODE can be written in the form of a simple 

exponential, 

  

2
2

2

d
(x) B (x) 0

dx
    2 f aB

D

  


f 

a 

x
(x) e

 
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1-Grp Bare Critical Slab Reactor  (cont.) 

Upon substitution into the defining ODE, we obtain the 

characteristic equation  

 

These complex conjugate roots lead to a general solution written 

in terms of simple sinusoids,  

 

 

The proper boundary conditions here are symmetry at x = 0 (the 

center of the slab) and the fact that the flux goes to zero at the 

extrapolated boundary [at x = (ao+2d)/2, where d is the extrapo-

lation distance].   

For convenience, define “a” as the extrapolated thickness of the 

core, where  a = (ao+2d).  

2 2
1,2B 0  with solution  jB     

1 2(x) A cosBx A sinBx  
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General Solution to the 

Bare Critical Slab Problem 

1-Grp Bare Critical Slab Reactor  (cont.) 

Now, applying the symmetry condition gives  

 
With this information, the general solution reduces to 

   

At the extrapolated boundary (x = a/2), we have  

 
For a nontrivial solution, A1 must be nonzero.   

Thus, we have the condition that  cos(Ba/2) = 0. 

1 2 2 2x 0
x 0

d
A BsinBx A BcosBx A B 0 or A 0

dx 



       

1(x) A cosBx 

1x a/2

Ba
(x) A cos 0

2
  

These could have been 

written directly since 

cos(x) is a symmetric 

even function, and sin(x) 

is an anti-symmetric  

odd function. 
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1-Grp Bare Critical Slab Reactor  (cont.) 

This last condition  --  that is, cos(Ba/2) = 0  --  is somewhat of a 

peculiar situation (and it is certainly different from the fixed-

source problems that were solved previously)!!! 

In this case, there are multiple solutions  --  in fact, an infinite 

number of possibilities exist since the cosine function is zero 

when evaluated at any odd integer multiple of π/2. 

We can write this statement mathematically as 

 

Now, comparing this expression to the BC given above gives  

 

where the n subscript is included to indicate that there are an 

infinite number of values of buckling (B1, B2, …).  

(2n 1)
cos 0 for n  1,  2,  ...

2

  
  

 

n
n

B a (2n 1) (2n 1)
or B for n 1,  2, ...

2 2 a

   
  
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1-Grp Bare Critical Slab Reactor  (cont.) 

Now, with the different Bn values, we get an infinite number of 

profiles that satisfy the original ODE and its BCs, or 

 

The essential result here is that the diffusion equation for the 

critical reactor problem gives rise to an eigenvalue problem.  

The Bn's are the eigenvalues and the n's are the eigenfunctions.  

- - - - - - - - - - - - - - - - - - -  

Eigenvalue problems have the characteristic form Ay = By, 

where A and B are operators (or matrices), y is a function 

(vector), and the eigenvalue  is a constant.  

For discrete systems, where A, B, and y are finite of order N, 

there are a total of N eigenvalues and N eigenvectors.   

For the case of a continuous system, there are an infinite 

number of eigenvalues and eigenfunctions. 

n n(x) cosB x 
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1-Grp Bare Critical Slab Reactor  (cont.) 

The higher eigenmodes of the diffusion equation are of interest 

in many areas of reactor theory, especially in space-time kinetics 

work and other more advanced topics.   

For now, however, we will only work with the fundamental mode 

eigenfunction and eigenvalue, since all the higher modes decay 

away leaving only the fundamental mode as the final steady state 

solution to the critical reactor problem (this is often demonstrated 

in detail in graduate Reactor Physics courses).  

In this case, n = 1 and the 1-group fundamental mode critical flux 

distribution in a 1-D bare slab reactor is 

 
where the 1 subscript has been omitted for convenience from the 

definition of B = B1, since, at this point, we are only interested in 

the fundamental mode solution.  

2

2
1(x) A cosBx where B or B

a a

  
     

 
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1-Grp Bare Critical Slab Reactor  (cont.) 

Notice that there is still an arbitrary constant, A1, that remains as 

part of the general solution.   

This is characteristic of eigenvalue problems (i.e. the solution to 

any homogeneous equation is only known to within an arbitrary 

normalization).   

The appropriate condition here is to normalize the flux to the 

reactor power, P, where, for the semi-infinite 1-D slab problem, P 

is the power per unit area in the yz plane:   

o o

o o

o

o

a /2 a /2

f f 1a /2 a /2

a /2

o o
f 1 f 1

a /2

of
1

x
P (x)dx A cos dx

a

a aa x a
A sin A sin sin

a 2a 2a

a2 a
A sin

2a

 




     

    
          






 
 is the recoverable 

energy per fission 

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 6:  The Critical Reactor I 



15 

1-Grp Bare Critical Slab Reactor  (cont.) 

Solving the last expression for A1 gives 

 

 

Thus, the normalized flux in a 1-D slab reactor can be written as 

 

 

When the extrapolation distance d is small compared to the 

reactor size, then ao/a approaches unity, and sin(ao/2a)  1.  

For this case, the above equations reduce to 

  

 

and this is the result for the infinite slab reactor that is usually 

tabulated in the standard reactor physics texts.  

1
o

f

P
A

a
2 asin

2a







o
f

P x
(x) cos

a a
2 asin

2a

 
 




 1 o

f o f o o

P P x
A and (x) cos for d a

2 a 2 a a

  
   

 

This is the desired 

normalized flux profile.   
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We have nearly completed our discussion of the 1-D bare slab 

reactor problem except for the fact that two bucklings have been 

defined: a material buckling B2
m and a geometric buckling B2

g.   

Recall that B2
m is a simple function of the material properties as 

given from the original balance equation  

 
and that B2

g is the result of forcing the flux distribution to satisfy 

the appropriate boundary conditions (which are a function of the 

geometry) which, for the fundamental mode solution for the 

current geometry, gives 

   

1-Grp Bare Critical Slab Reactor  (cont.) 

2 f a
mB

D

  


2

2
gB

a

 
  
 
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Clearly, B2
g = B2

m must be true for a consistent description of a 

critical reactor, and this is consistent with our previous 

comment that “a precise relationship is required between the 

geometry and material makeup for a just critical system”.   

This general relationship is known as the critical condition for 

the system of interest. 

Equating the two buckling expressions B2 = B2
g = B2

m and 

solving for   or keff gives 

 

 

where, in these expressions, B2 is the geometric buckling. 

This equation is the real critical condition for all 1-group bare 

homogeneous systems. 

1-Grp Bare Critical Slab Reactor  (cont.) 
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2
a f

eff 2
f a

DB
or k

DB

  
  

  

1-Grp Bare Critical Slab Reactor  (cont.) 

It says that the multiplication factor is simply the ratio of the 

production rate to the loss rate where B2 is a function of the 

geometry and the cross sections are a function of the material 

composition. 

When these parameters have just the right combination, then 

the production and loss terms are equal and keff = 1.000  (a 

critical system).  

However, for any combination of material composition and 

geometry, this expression allows us to compute a value of keff to 

determine the criticality level of the given configuration  --  and 

this gives the designer lots of information about the particular 

system under study.   

However, remember that a real operating critical reactor has   

keff = 1.000!!! 
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1-Grp Bare Critical Slab Reactor  (cont.) 

As a final note on this example, recall that the expression for keff 

can be written in a variety of ways. 

In particular, it is often convenient to define a non-leakage 

probability, PNL, and to write keff in terms of this quantity. 

Since there are only two loss components, the non-leakage 

probability for the 1-group model is simply the ratio of the 

absorption rate to the total loss rate, or 

 

 

Now, from the definition of keff for a 1-group 1-region 

homogeneous model, we have 
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1-Grp Bare Critical Slab Reactor  (cont.) 

Thus, keff = kPNL is a common way to write the core multiplication 

factor for 1-group 1-region homogeneous systems. 

Also recall that k = f  (i.e. a 2-factor formula)  --   so the effective 

multiplication factor for a finite core can be written a 

                                             keff = fPNL  

and this is sometimes referred to as the 3-factor formula.  
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We will see similar terminology again  

 --  the 4-factor and 6-factor formulas  --  

when using 2-group theory later in the course… 
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1-Grp 2-Region Critical Slab Reactor 

We study bare reactor problems because the mathematics 

involved is relatively straightforward and they give considerable 

insight into the general critical reactor problem.  

However, a bare reactor is not a practical option, and all 

operating reactor systems have essentially infinite reflectors 

around the core region (to improve upon the neutron economy 

and to minimize neutron and 

 
gamma radiation outside the 

core).  

The simplest two-region 

reflected system is the critical 

core-reflector configuration in   

1-D Cartesian (slab) geometry 

using the 1-group approximation 

(as sketched in the diagram). 
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1-Grp 2-Region Critical Slab (cont.) 

In the core region of the model k∞ > 1 and, in the reflector region, 

there is no fissionable material.   

Thus, this simple two-region system combines the critical 

reactor problem and non-multiplying medium problem into a 

single system. 

The composite two-region system is symmetric about x = 0 and, 

as x becomes large, the flux must remain finite.   

At the core-reflector interface (i.e. at x = ao/2), the standard 

continuity of flux and current conditions will apply.   

These last two statements define the problem boundary 

conditions (BCs).  
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1-Grp 2-Region Critical Slab (cont.) 

The basic solution procedure is as follows (but there will be a 

few twists…): 

1.  Write the 1-group 1-D homogenous form of the diffusion 

equation for each region of the model.   

2.  Solve these equations to get a general solution for the flux 

profile in each zone (there will be four arbitrary coefficients for a 

2-region model).   

3.  Apply the four independent BCs indicated above to help 

specify these four coefficients (the “twists” noted above will 

occur in this step). 
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1-Grp 2-Region Critical Slab (cont.) 

In the core region, the defining balance equation is identical to 

the previous critical bare core example,  

 
where we use a ‘c’ subscript to denote that the properties and 

flux profile are only valid for the core region.   

The general solution is also identical as before and, taking into 

account the symmetry condition at x = 0, the general solution for 

the core flux profile becomes 

2
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1-Grp 2-Region Critical Slab (cont.) 

In the reflector region, the balance equation for a non-multiplying 

medium region applies, or  

 

 

where we have set Q = 0 since there is no external source 

present in this region, and we have used the subscript ‘r’ to 

denote that the flux and material properties are associated with 

the reflector region. 

Since the reflector has infinite thickness, we will write the 

general solution as 

 

and immediately set A4 to zero to force the flux solution to be 

finite as x  .   
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1-Grp 2-Region Critical Slab (cont.) 

Doing this gives 

 

At this point, we have used two BCs to reduce the general 

solutions for the core and reflector regions to only contain two 

arbitrary constants (A1 & A3).  

To help find these, we apply the continuity of flux and current 

conditions at the core-reflector interface,  
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1-Grp 2-Region Critical Slab (cont.) 

Writing these two homogeneous equations in matrix form gives  

 

 

 

This is a homogeneous matrix equation which, for a non-trivial 

solution, requires a singular coefficient matrix  --  which means 

that the determinant of the coefficient matrix must be zero.   

In addition, we also know that the solution to a homogeneous 

equation is only known to within an arbitrary constant.    

This means that, even with a singular coefficient matrix, we can’t 

solve this matrix equation explicitly for both A1 and A3  --  the best 

we can do is to write A3 in terms of A1, and let A1 be the arbitrary 

normalization factor. 
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1-Grp 2-Region Critical Slab (cont.) 

These two issues are not really unexpected, since they refer to 

exactly the same situations we saw for the bare critical reactor. 

In particular, concerning the “critical determinant”, this comes 

about because of the precise balance between the material 

composition and geometry that is required for a critical system  --  

thus, we expected that a “criticality condition” of some form 

would be needed.   

For the bare reactor problem, we forced the material and 

geometric bucklings to be identical, which allowed us to compute 

the multiplication factor in terms of the material composition and 

the geometry. 

Now, for the current problem, we do essentially the same thing  --  

that is, set B2 = B2
m = B2

g  --  but now the geometric buckling is 

determined from the statement that “the determinant of the 

coefficient matrix must be zero”.  
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1-Grp 2-Region Critical Slab (cont.) 

Recalling that B2
m contains the eigenvalue  = 1/keff, we see that 

this condition gives the expected relationship for keff in terms of 

the material properties of both the core and reflector and the 

core-reflector geometry.  

This relationship is indeed the desired criticality condition!!!  

To be explicit, the determinant of a 22 matrix is simply the 

product of the main diagonal elements minus the product of the 

other diagonal terms, or  
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1-Grp 2-Region Critical Slab (cont.) 

and 

 

From this last form, it is easy to see that the criticality condition 

can be cast as a classical root finding problem (i.e. given the core 

size and the material properties, what is the value of B such that 

f(B) = 0? ).   

Once B (or B2) is has been determined, we can use the definition 

of B2 in the core balance equation to get the value of keff, or 
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This is the same result as 

before with a different B2 value. 

This is the criticality 

condition for this problem. 
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1-Grp 2-Region Critical Slab (cont.) 

To better visualize the criticality condition, let’s re-write this 

expression as  

 

and let p = Bao/2.  Now, upon substitution, we have  

 
 

The left hand side (LHS) of this relationship is just the familiar 

cotangent function and the RHS is a simple linear function of p 

(with a positive slope and zero intercept).   

The points where these two functions intersect represent the 

roots of this nonlinear equation  --  that is, the values of p that 

satisfy the criticality condition. 

With p known, one can compute B, and then keff… 
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The graphical solution of 

this nonlinear equation is 

shown on the next slide. 
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1-Grp 2-Region Critical Slab (cont.) 

The first root occurs for p ≤ /2.  Thus, we 

can write  

 

 

and this tells us that B2
reflected ≤ B2

bare  --  

and that decreasing the leakage increases 

the core multiplication factor. 

2

2o

o o

Ba
p or B or B

2 2 a a

   
     

 

Note that there are an 

infinite number of roots. 
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With B known for the fundamental mode, the determinant of the 

coefficient matrix is indeed zero, and we can proceed to actually 

solve this matrix equation for the unknown values of A1 and A3,  

 

 

Expanding the first equation and solving for A3 gives  
 

 

Thus, the solutions for the core and reflector fluxes become 

1-Grp 2-Region Critical Slab (cont.) 
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These are the   

desired flux profiles.   
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1-Grp 2-Region Critical Slab (cont.) 

Now, the only unresolved quantity is the normalization factor A1 

which can be determined by the power constraint on the system.   

Note that the power constraint  involves integration over all space  

--  but, in the non-fuel regions, there is no power production. 

Thus, for the current problem, integrating only over the core 

region, gives 

 

 
 

 

 

and This is the desired 

flux normalization.   
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Note that, since we do 

not have an analytical 

expression for B, we 

simply carry along the 

variable B as part of 

the development.  

(Oct. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 6:  The Critical Reactor I 



25 

Summary Comments 

We have finally finished the theoretical development of the        

1-group critical reactor problem in 1-D slab geometry.   

Clearly, solution of the reflected core model was algebraically 

more difficult than the bare reactor model.  However, the basic 

procedures for the two cases were really quite similar, with only 

subtle differences associated with the criticality condition.   

Concerning implementation, some added work is required to find 

B2 and keff for the core-reflector case (i.e. solving the nonlinear 

criticality condition) but, again, the overall procedures are very 

similar  --  and this is also true for the 1-group 1-D spherical & 

cylindrical core geometries. 

Both bare-core and reflected-core models for all three 1-D 

geometries have been implemented into the core_refl1g_gui 

code, and you should use this software to compare results for a 

variety of situations… 
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Lesson 6 Summary 

In this Lesson we have briefly discussed the following subjects: 

The fundamental differences associated with application of the 

diffusion equation to non-multiplying media problems, 

subcritical systems, and the critical reactor problem. 

The use of the mathematical eigenvalue, , within the critical 

reactor problem. 

Various ways to write the 1-group fission source and the 

expression for the 1-group multiplication factor, k. 

The setup and solution of the 1-group 1-D bare critical reactor 

problem for slab, spherical, and cylindrical geometries. 

The meaning of the criticality condition and the concept of 

material and geometric bucklings. 
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Lesson 6 Summary  (cont.) 

The setup and solution of the 1-group 1-D 2-region core-reflector 

problem for slab, spherical, and cylindrical geometries. 

The meaning of the phrase “critical determinant” as applied to 

the core-reflector critical reactor problem. 

How to apply a power constraint to determine the flux 

normalization in various geometries. 

Critical size and composition calculations for a variety of 1-D 

geometries using 1-group theory. 

How the addition of a reflector affects the overall multiplication 

factor. 

The expected shape of the 1-group flux within a variety of 1-D 

configurations. 

The use of the core_refl1g_gui program to perform a variety of 

analyses for various 1-D geometries. 
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