

But, for graphite, $1/\sqrt{\tau_T}>1/L_T$, which says that $e^{-r/\sqrt{\tau_T}}$ decreases faster than e^{-r/L_T} . Thus, as $r\to\infty$, we have						
$\lim_{r\to\infty}\frac{e^{-r/\sqrt{\tau_{T}}}}{e^{-r/L_{T}}-e^{-r/\sqrt{\tau_{T}}}}\to 0$			and	$\left.\frac{\boldsymbol{\phi}_1}{\boldsymbol{\phi}_T}\right _{\boldsymbol{\infty}} \approx 0$	infinite graphite medium	
Material/Property	D ₁ (cm)	$ au_{T}$ (cm ²)	$\frac{1}{\sqrt{\tau_{\rm T}}}$ (cm ⁻¹)	D ₂ (cm)	L_T^2 (cm ²)	1/L _T (cm ⁻¹)
water	1.13	27	0.192	0.16	8.1	0.351
oraphite	1.02	368	0.052	0.84	3500	0.017

ENGY.4340 Nuclear Reactor Theory Lesson 5: Neutron Diffusion in Moderating Media II

(Sept. 2016)

