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Lesson 3 Objectives 

Explain the basic procedure for solving 2nd order, linear, 

constant coefficient, source-driven ODEs. 

Setup and solve the 1-group diffusion equation for a variety of 

moderating media problems (for various geometry and source 

configurations). 

Formulate and evaluate expressions for the absorption and 

leakage rates and validate the neutron balance equation in a 

variety of simple geometries using the 1-group diffusion theory 

approximation.  

Discuss the fundamental difference between Cartesian 

geometry and curvilinear geometries (spherical and cylindrical 

configurations) when interpreting the spatial flux profiles in 

source-driven diffusing media problems. 
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Lesson 3 Objectives  (cont.) 

Define the term diffusion length and describe its importance in 

moderating media problems. 

Explain the procedure for treating multiregion problems and 

configurations containing multiple discrete sources and 

continuously distributed sources. 
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2nd Order Linear Constant Coefficient ODEs 

One goal of this Lesson is to obtain and interpret the solution to 

the 1-group diffusion equation for a variety of simple geometries. 

However, the 1-group steady state diffusion equation is a 2nd 

order (linear) differential equation.   

And, within a single homogeneous region, the Cartesian 

geometry problem reduces to a simple 2nd order linear constant 

coefficient source-driven ODE  --  a problem that is rather easy to 

solve analytically. 

As a review, given the following linear, 2nd order, inhomogeneous 

(i.e. source-driven) system,  

 

the general solution is given as the linear combination of the 

solutions to the homogeneous and particular equations, 

y"(x) ay'(x) b y(x) f (x)  

h py(x) y (x)  y (x)  

ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 3:  Neutron Diffusion in Moderating Media I  
(Sept. 2016) 



3 

2nd Order Linear Constant Coeff. ODEs (cont.) 

yh(x) is the solution to the homogeneous (or complementary) 

equation  

 

and yp(x) is a particular solution to the original source-driven 

ODE.   

The general solution will contain two arbitrary coefficients and 

the unique solution for a specific source-driven problem is 

obtained by satisfying two boundary conditions (which uniquely 

determine the two arbitrary coefficients in the general solution). 

h h hy "(x) ay '(x) by (x) 0  
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2nd Order Linear Constant Coeff. ODEs (cont.) 

Homogeneous Solution: 

The solution to a linear, 2nd order, constant-coeff., homogeneous 

ODE can be written in the form of a simple exponential, yh  erx, 

where r is an unknown constant.   

Putting this assumed solution into the complementary equation 

leads to the characteristic equation for the values of r that satisfy 

the assumed solution: 

 

Referring to r1 and r2 as the two distinct solutions to the 

characteristic equation (the case of repeated roots is a relatively 

uncommon occurrence), the homogeneous solution can be 

written as a linear combination of the individual solutions, or 

 1 2r x r x

h 1 2y (x) c e c e 
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A Special Case:   

Note that for the special case of a = 0 and b = ±α2 (which is 

consistent with the two different forms of the 1-group diffusion 

equation that are commonly encountered), the homogeneous 

equation becomes 

 

with characteristic roots 

 

Thus, the sign of b = ±α2 becomes very important, since two 

completely different forms for the solution can result.  

In particular, when b = α2, the roots are real and distinct and 

yield a solution written in the form of real exponentials  

2nd Order Linear Constant Coeff. ODEs (cont.) 

2
h hy ''(x) y (x) 0  

2 2 2
1,2r 0 or r     
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2

2 2

d 1 Q

Ddx L


   

2
2

2

d
B 0

dx


  

Forms of Interest 

x x
h 1 2y (x) c e c e

  

However, when b = +α2, the roots are still distinct, but now they 

are pure imaginary complex conjugates  --  and these lead to 

solutions in the form of complex exponentials  --  that is, the 

roots to the characteristic equation are r1,2 = ±jα, where i or j is 

the imaginary number                   .  

The complex exponentials are almost always written in terms of 

sinusoids using Euler’s formula,  

 

Thus, for the case of pure imaginary roots, the homogeneous 

solution becomes  

2nd Order Linear Constant Coeff. ODEs (cont.) 

j x j x j x j x
e e e e

sin x & cos x
2j 2

where
      

   

i j 1  

j x
e cos x jsin x
     

   

   

j x j x
h 1 2 1 2

1 2 1 2

1 2

y (x) c e c e c cos x jsin x c cos x jsin x

c c cos x j c c sin x

A cos x A sin x

           

     

   
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2nd Order Linear Constant Coeff. ODEs (cont.) 

Note that, for the case of real exponential solutions (for b = α2), 

one can perform a similar manipulation using hyperbolic 

sinusoids.   

To see this, we first formally define the hyperbolic sine and 

cosine in terms of real exponential functions,    

 

or  

For the case of real distinct roots, r1,2 = ±α, the homogeneous 

solution becomes  

 

 

 

x x x x
e e e e

sinh x and cosh x
2 2

    
   

x
e cosh x sinh x
    

   

   

x x
h 1 2 1 2

1 2 1 2

1 2

y (x) c e c e c cosh x sinh x c cosh x sinh x

c c cosh x c c sinh x

A cosh x A sinh x

          

     

   
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2nd Order Linear Constant Coeff. ODEs (cont.) 

2
y''(x) y(x) 0  

Note that, although the first and last forms of yh(x) are 

equivalent, it is often more convenient to use the exponential 

form for infinite systems and the hyperbolic sinusoids for finite 

systems.  

In summary, the following table collects the various homo-

geneous solutions to the specialized ODE: 

1-group non-multiplying slab problem 1-group critical slab reactor problem 

ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 3:  Neutron Diffusion in Moderating Media I  
(Sept. 2016) 

2

2 2

d 1 Q

Ddx L


   

Actual eqns. 

of interest 

2
2

2

d
B 0

dx


  



6 

2nd Order Linear Constant Coeff. ODEs (cont.) 

Particular Solution: 

For yp(x), we will use the Method of Undetermined Coefficients, 

where one essentially makes an assumption concerning the 

form of yp(x), and then, via substitution of the assumed solution 

into the defining source-driven ODE, determines the unknown 

coefficients within the assumed solution.  

The UC method is easy to apply once a proper form for yp(x) has 

been selected, and this can be done by carefully applying the 

following two rules: 

General Rule:  Choose yp(x) to have the same form as the RHS 

forcing function, f(x), and all its linearly independent derivatives.  

Then evaluate the unknown coefficients within yp(x) by 

substitution into the original inhomogeneous ODE, and equate 

the coefficients of the terms with similar forms on both sides of 

the equation.   
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2nd Order Linear Constant Coeff. ODEs (cont.) 

Special Rule:  If yp(x) via the general rule for a constant 

coefficient linear system contains one or more terms that are 

solutions to the homogeneous equation, one then multiplies 

these terms by xk where k is the smallest integer value that 

makes all the terms in yp(x) independent of the terms in yh(x). 

Note:  The case of repeated roots within the homogenous 

solution and the need for the Special Rule within the UC method 

do not occur very often in practical applications, and we will not 

need to apply either of these special cases in our focused 

treatment of the steady state neutron diffusion equation. 
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Non-Multiplying Source-Driven Systems 

To illustrate the use of the diffusion equation, let’s apply it to 

some simple, but representative, situations.  

As a starting point, we restrict our analyses to the 1-group 

approximation with no fission.   

This situation is appropriate for non-multiplying (diffusing) media 

such as reflector or shield geometries.   

For 1-group theory and no fission the multigroup diffusion 

equation becomes  

 

For a homogeneous region, the macroscopic absorption cross 

section and diffusion coefficient are constants, giving  

                                           or 

aD(r) (r) (r) (r) Q(r)      

2
aD (r) (r) Q(r)       2 a Q(r)

(r) (r)
D D


     

2

2

1 Q(r)
(r) (r)

DL
      This is the starting point for 

the subsequent examples. 
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diffusion area 

L2 = D/Σa 

Planar Source in an Infinite Medium 

Consider a geometry that is centered on the 

infinitesimally thin planar source region at x = 0, 

is infinite in the y-z plane, and where x  ±  to 

create a full infinite moderating medium. 

In this system, the flux will only vary in the x 

direction, and this allows a simple 1-D Cartesian 

geometry (slab) treatment, with a non-zero 

discrete isotropic source only at x = 0.  

Our goal is to formally derive a result for (x) 

assuming 1-group theory, where x is measured 

relative to the planar source location.   

We also desire analytical expressions for the net 

neutron leakage out of the right-half plane at 

some finite location x = H and for the absorption 

rate within this same volume.   where x  ±  
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Planar Source in an Infinite Medium (cont.) 

The 1-group diffusion equation for a homogeneous medium with 

no fission is given by  

 

For 1-D slab geometry, the Laplacian simply becomes the 2nd 

derivative of the flux with respect to x, and since the source is 

only non-zero at the centerline of the block at x = 0, we can write 

this expression as a homogeneous equation for x > 0, or  

 
The general solution to this simple 2nd order constant coefficient 

homogeneous ODE is 

 

To obtain a unique solution to a 2nd order ODE, we must apply 

two boundary conditions  --  one as x   and one as x  0. 

2

2

1 Q

DL
    

2

2 2

d 1
0      x 0

dx L


   

x L x L
1 2(x) C e C e

  
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Planar Source in an Infinite Medium (cont.) 

In the case of the infinite system, where x can become large, we 

require that the flux must remain finite as x  .   

Therefore, the growing exponential term in the general solution 

immediately forces us to set C2 to zero.     

This condition reduces the flux and net current (                ) for 

this case to the following expressions, 

 

 

 

where, for convenience, we will refer to the x-directed current, 

Jx, in all subsequent usage simply as J, since this is the only 

nonzero component for the 1-D slab problem (i.e. Jy = Jz = 0).  

J D  

x L
1(x) C e

 

x L1
x

DCdˆ ˆ ˆJ(x) J (x) i D i e i
dx L


   
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Planar Source in an Infinite Medium (cont.) 

To find an explicit expression for C1, we apply a second 

boundary condition  --  the source condition  --  at x = 0 (i.e. the 

discrete discontinuous source at x = 0 requires that a special 

source condition be applied).  

For 1-D Cartesian geometry, this source condition at x = 0 can 

be written as 

 
In mathematical terms, this statement translates to the following 

equation: 
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x 0

leakage from left leakage from right source contained
lim

side of athin box side of athin box in the thin box 

 
  

 

 
x 0 x 0
lim J(x 0) ( i) J(x 0) (i) lim J(x 0) J(x 0) Q
 

            
 

Planar Source in an Infinite Medium (cont.) 

Or, so we don’t have to treat the x < 0 case, for a symmetric 

geometry we can simply write this condition as 

 
This statement makes perfect sense because only half of the 

original source neutrons enter the right half of the homogeneous 

block centered at x = 0 (because of the isotropic nature of the 

source).  

Using the equation for J(x),  we can apply the above source 

condition to give an explicit expression for C1, or  

 

x 0

Q
lim J(x 0) (for a symmetric block)

2
 
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x L1 1
1

x 0

DC DC Q QL
lim e or C

L L 2 2D





 
   

 
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Planar Source in an Infinite Medium (cont.) 

Finally, substituting this expression for C1 into the equations for 

flux and current, gives  

                                and 
 

Thus, the neutron flux and current decrease with distance from 

the source location in a simple exponential manner.   

However, of note, is that the rate of decrease is directly related 

to the material’s diffusion length, L.   

Clearly, the neutron flux attenuates at a greater rate for a 

material with a smaller diffusion length!!! 

x LQL
(x) e

2D

 
x LQ

J(x) e
2



flux and current due 

to a planar source in 

an infinite medium 
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Planar Source in an Infinite Medium (cont.) 

To address the neutron balance within a portion of the infinite 

slab, we need to compute: 

   1. the leakage out of the right side of a block defined by x = H,  

   2. the absorption rate within this portion of the slab, and then 

   3. add these to show that they sum to the total source within 

       this region.   

Treating these terms individually, we have  

 

  

 

 

 

 

 

H L

A

leakage Q
ˆ J ndA J(H)(1) e

per unit area 2

   

 

H H
x La

a0 0

H
x L H L

0

absorption rate QL
(x)(1)dx e dx

per unit area 2D

Q Q
Le 1 e

2L 2



 


   

    
  

 
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Planar Source in an Infinite Medium (cont.) 

And, for a proper balance, Q/2 = Q/2, as expected!!! 

Overall Neutron Balance 
[leakage + absorption = source]  

H

V 0

source Q
 Q (x)dr Q (x)dx

per unit area 2
     

 H L H LQ Q Q
e 1 e

2 2 2

    
     

   
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Planar Source in a Bare Finite Slab 

Now consider an isotropic planar source 

placed along the centerline of a finite 

slab of moderator of thickness 2H.   

If the external boundary condition for the 

bare slab is such that the flux goes to 

zero at the extrapolated boundary (i.e.    

at H+d), our goal is to formally derive a  

1-group diffusion theory result for (x).  

Again, we desire analytical expressions 

for the net neutron leakage out of the 

right-half of the finite block at x = H and 

for the absorption rate within this same 

volume.   

This system is referred to as a bare finite 

slab of width 2H… 

vacuum vacuum 
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The solution of the balance equation for this case follows the 

same procedure as the infinite slab case.   

However, although the defining balance equation is the same,  

 
it is convenient to write the general solution for a finite geometry 

in terms of hyperbolic sines and cosines [instead of the real 

exponentials as used previously].   

Thus, the general solution for the finite geometry case is usually 

written as 

 

where it should be emphasized that this form is simply better 

suited for finite geometry cases.  

Planar Source in a Bare Slab (cont.) 

2

2 2

d 1
0      x 0

dx L


   

1 2(x) A sinhx L A coshx L  
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Planar Source in a Bare Slab (cont.) 

To find A1 and A2 to give a unique solution, we need to apply two 

independent boundary constraints  --  one at the extrapolated 

boundary of the slab and one at x = 0.  

At the right boundary of the bare slab (i.e. at x = H + d), we say 

that the flux goes to zero at the extrapolated boundary, where d 

is the extrapolation distance (this is the standard vacuum 

boundary condition used in diffusion theory).   

Mathematically this statement is written as 

 

and, from the general solution for (x), we have 

 

or 
 

 H d 0  

1 2A sinh(H d) L A cosh(H d) L 0   

1 2

cosh(H d) L
A A

sinh(H d) L


 


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For the second boundary constraint at x = 0, we apply the same 

source condition as in the previous example.   

For the present case, the net neutron current is given by 

 

or 
 

Thus, evaluating the source condition for this system, 

 

with the above expression for the net neutron current, gives  

 

Planar Source in a Bare Slab (cont.) 

x 0

Q
lim J(x 0) (for a symmetric block)

2
 

 1 2

d Dˆ ˆJ(x) D i A coshx L A sinhx L i
dx L


    

2DA cosh(H d) L
J(x) coshx L sinhx L

L sinh(H d) L

 
    

 

2 2

x 0

DA DAcosh(H d) L cosh(H d) L Q
lim coshx L sinhx L

L sinh(H d) L L sinh(H d) L 2

   
      

   
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Planar Source in a Bare Slab (cont.) 

   

or 
 

Substitution of this expression for A2 into the equation for A1 

gives a simple result for A1, or 

 

Now putting the expressions for A1 and A2 back into the 

expression for (x) gives the flux due to a planar source in a 

finite medium as  

 

1

QL
A

2D
 

QL sinh(H d) L
(x) coshx L sinhx L

2D cosh(H d) L

 
   

 
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2

QL sinh(H d) L
A

2D cosh(H d) L





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Planar Source in a Bare Slab (cont.) 

And, from the definition of the net current, we can also write the 

current due to a planar source in a finite medium as 

 
where, of course, the net current for x > 0 is pointed in the +x 

direction.  

 

Q sinh(H d) L
J(x) coshx L sinhx L

2 cosh(H d) L

 
  

 
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Planar Source in a Bare Slab (cont.) 

H

V 0

source Q
 Q (x)dr Q (x)dx

per unit area 2
     

To address the neutron balance within the finite bare slab, we 

again need to compute the leakage and absorption rates within 

the right half of the block using the flux and current expressions 

given on the previous slide.   

Thus, for the finite geometry case, we have 

 

 A

leakage
ˆ J ndA J(H)(1)

per unit area

Q sinh(H d) L
coshH L sinhH L

2 cosh(H d) L

  

 
  

 


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Planar Source in a Bare Slab (cont.) 

H

a0

H
a

0

H

0

absorption rate
(x)(1)dx

per unit area

QL sinh(H d) L
cosh x L sinhx L dx

2D cosh(H d) L

Q sinh(H d) L
Lsinhx L Lcosh x L

2L cosh(H d) L

Q sinh(H d) L Q
sinh H L cosh H L

2 cosh(H d) L 2

  

  
  

 

 
  

 

 
   

 




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And the overall neutron balance for the right side of the bare 

finite slab gives 

 

 
and, for a proper balance, Q/2 = Q/2, as expected!!! 

Q sinh(H d) L Q sinh(H d) L Q Q
coshH L sinhH L sinhH L coshH L

2 cosh(H d) L 2 cosh(H d) L 2 2

       
          

       

Overall Neutron Balance 
[leakage + absorption = source]  

Planar Source in a Bare Slab (cont.) 

Summary: 

The previous two examples provide a detailed derivation of the   

1-group flux, current, and neutron balance components for the 

case of a planar source in a non-multiplying medium  --  with 

developments for both infinite and finite slab geometries 

centered on the planar source location.  

The resultant equations for both cases have been implemented 

into the slabmm_gui code, which provides an easy-to-use GUI 

where one can explore and contrast the use of different materials 

and slab dimensions. 

This formal development, coupled with a user-friendly computa-

tional tool, should allow the user to get a better understanding of 

the basic physics, and also get a good feel for both the qualitative 

and quantitative aspects of 1-group neutron diffusion in a simple 

1-D Cartesian geometry.  
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slabmm_gui Interface (water) 
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slabmm_gui Interface (graphite) 
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Point Source in an Infinite Medium 

Another classical problem that is often discussed when studying 

typical solutions of the 1-group diffusion equation involves a 

point source of neutrons in a pure moderating medium.  

The solution of this 1-D spherical geometry problem follows a 

similar development as just completed for the 1-D slab geometry, 

so we will not go through all the details in class. 

However, there are two key differences, as follows: 

1.  The 1-D spherical geometry balance equation has variable 

coefficients, but a simple substitution can convert the original 

variable-coefficient ODE into one that has constant coefficients   

--  which can then be solved as done previously. 

2.  The resultant flux profile decreases with distance from the 

source, but now there is a geometric attenuation term in addition 

to the expected neutron diffusion and absorption term. 
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Point Source in an Infinite Medium (cont.) 

To elaborate on the first point, we note that, for 1-D spherical 

geometry, the Laplacian becomes  

 
In addition, since the isotropic point source is only non-zero at   

r = 0, we can write the diffusion equation as a homogeneous 

equation for r > 0, or  

 
Since this is a variable-coefficient ODE, let’s first make the 

substitution  ω = r  to put this into a more manageable form.  

Thus, letting  

 

2 2

2

1 d d
r

dr drr

 
    

 

2

2 2

1 d d 1
r 0 for r 0

dr drr L

 
    

 
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r


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Point Source in an Infinite Medium (cont.) 

gives  

 

and    
 

and, after formal substitution of this latter result into the 

defining ODE, we get the following balance equation for (r),  

 
This ODE now has constant coefficients and it can be solved via 

simple analytical methods (see the Lecture Notes for a complete 

development). 
 

2 2
2

2 2 2 2 2

1 d d 1 d d 1 d d d 1 d
r r r

dr dr dr dr dr dr rr r r dr dr

         
          

     

2

2 2

d 1
0 for r 0

dr L
   
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dr r drr

  
  

Point Source in an Infinite Medium (cont.) 

To address the second key difference, we note that the 

solutions to the infinite-region and finite-region point source 

problems addressed here are: 

 

 

 

 

 

Focusing, in particular, on the infinite medium problem, we 

notice an e-r/L factor that accounts for the neutron diffusion and 

absorption within the medium of interest (as characterized by 

the diffusion length, L)  --  this is similar to the slab geometry 

problem. 

r LQ 1
(r) e

4 D r

 


Q 1 R d r
(r) sinh

4 Dsinh(R d) L r L

  
   

   

flux due to a point source 

in an infinite medium 

flux due to a 

point source in a 

finite medium 
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Point Source in an Infinite Medium (cont.) 

In addition, however, there is also a 1/r term, and this term is a 

result of the spherical geometry, since the surface area 

increases with increasing distance from the source  --  this is 

referred to as the geometric attenuation term. 

Thus, even if the absorption term was very small (so that L is 

very large and e-r/L  1),  the flux will still decrease with distance 

from the source because of the geometric attenuation that is 

inherent in curvilinear geometries (this behavior occurs in 

spherical and cylindrical geometry, but not in Cartesian 

geometry problems).   

Except for the two key differences noted here, the point source 

and planar source problems are solved using similar 

techniques and they give similar results  --  and a Matlab GUI, 

spheremm_gui, is also available to do various material and size 

comparison studies…  
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spheremm_gui Interface (water) 
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spheremm_gui Interface (graphite) 
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Treating Multiregion Problems 

The examples thus far have focused on 1-region configurations. 

However, for problems involving multiple homogeneous regions, 

we can apply the same overall methodology, as follows: 

1.  Write the 1-group diffusion equation for each region, being 

careful to distinguish between the material properties and flux 

solutions that are appropriate to each region. 

2.  Find the general solution applicable to each region  --  there 

will be two arbitrary coefficients within each region. 

3.  In addition to the normal symmetry and outer boundary 

conditions, apply the continuity of flux and continuity of current 

interface conditions at each interface between dissimilar 

materials (you still need to treat a discrete discontinuous source 

as a separate source condition). 
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Treating Multiregion Problems 

4.  Step 3 should lead to 2*N equations for the unknown 

coefficients for a problem containing N regions  --  and solution 

of these gives the desired unique solution throughout the full 

geometry. 

5.  Plot and analyze the solution as usual… 

see the two_regions_gui 

code for a specific example 

ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 3:  Neutron Diffusion in Moderating Media I  
(Sept. 2016) 

two_regions_gui Interface  (water-water) 
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two_regions_gui Interface (water-graphite) 
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Problems with Multiple Discrete Sources 

For problems containing multiple discrete discontinuous 

sources, one simply needs to remember that the neutron flux is a 

scalar quantity and that the neutron current is a vector quantity. 

Thus, the composite flux at a point due to multiple discrete 

sources is simply the scalar addition of the fluxes due to each 

individual source. 

For the net neutron current, the same basic statement is true, but 

vector addition must be performed, where the sign of the vector 

components due to each source may add or subtract, depending 

on the direction of the current due to individual sources. 

 

see the two_planar_sources_gui 

code for a specific example 
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two_planar_sources_gui Interface  (water) 

ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 3:  Neutron Diffusion in Moderating Media I  
(Sept. 2016) 

two_planar_sources_gui Interface (graphite) 
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Problems with Distributed Sources 

If the neutron sources are continuously distributed within a 

given region, then the original problem is usually solved as an 

inhomogeneous ODE with corresponding homogeneous and 

particular solutions (and the particular component is directly 

related to the given source distribution). 

See the HW problems associated with this Lesson 

for an example containing a distributed source. 

In addition, a worked-out 2-group example is        

also given later in Lesson 5. 
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Lesson 3 Summary 

In this Lesson we have briefly discussed the following subjects: 

The basic procedure for solving 2nd order, linear, constant 

coefficient, source-driven ODEs. 

The setup and solution of the 1-group diffusion equation for a 

variety of moderating media problems.  

The appropriate expressions for the absorption and leakage 

rates and how to validate the neutron balance equation in a 

variety of simple geometries using the 1-group diffusion theory 

approximation.  

The fundamental difference between Cartesian geometry and 

curvilinear geometries when interpreting the spatial flux profiles 

in source-driven problems. 
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Lesson 3 Summary  (cont.) 

The term diffusion length and its importance in neutron diffusion 

problems. 

The general procedure for treating multiregion problems and 

configurations containing multiple discrete sources and 

continuously distributed sources. 
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