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Lesson 12:  The Time Dependent Reactor III 

Lesson 12 Objectives 

Describe some of the key processes associated with fuel 

depletion and their affect on reactor operations. 

Explain the difference between saturating and non-saturating 

fission products and sketch a set of typical time-dependent 

profiles. 

Explain why Xe-135 is such an important fission product in 

thermal systems and identify some other important nuclides 

that required special consideration. 

Given basic decay chain information, write the iodine-xenon 

balance equations and explain the typical behavior of the Xe 

reactivity for a number of different scenarios (startup, 

shutdown, power-level changes, etc.) with the use of the 

xenon_gui code. 
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Lesson 12 Objectives  (cont.) 

Perform similar analyses for other important FP chains  

(Pm149  Sm149, Eu157  Gd157, etc.) 

Identify the key reactions and set up the basic matrix form of 

the fuel depletion equations assuming a quasi-static flux 

approximation. 

Sketch a typical kexcess vs. time curve for large power reactors 

and explain the importance of burnable absorbers, soluble 

boron (in PWRs), and the use of external control during the 18-

24 month time span between refueling.  

Explain why a uniform fuel loading leads to a non-optimum 

configuration, why loading of fresh fuel on the core periphery 

is no longer practiced, why BWRs typically have more control 

rods than PWRs, etc… 
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Key Fuel Depletion Processes 

During normal reactor operation several important nuclide 

transformation processes occur that affect the overall neutron 

balance, as follows: 

Fuel Burnup  --  both fission and parasitic capture within fissile 

material reduce the amount of fuel present in the system. 

Fissile Production  --  neutron capture in fertile isotopes 

eventually produce new fissile material, which tends to offset 

some of the fuel loss due to depletion. 

FP Production  --  each fission reaction produces two fission 

products, many of which are radioactive  --  which leads to 

several subsequent parent–daughter sequences (eventually 

producing hundreds of different FPs). 
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Key Fuel Depletion Processes 

Burnable Absorber Depletion  --  most reactors use burnable 

poisons to compensate for some of the initial excess reactivity 

associated with the fresh fuel and, as implied by the terminology, 

these isotopes deplete during the cycle, which tends to flatten 

out the decrease in reactivity versus time. 

Special FP Chains  --  some of the FPs produced, especially in 

thermal systems, have very large absorption cross sections and 

thus these FP chains can have a significant short-term impact on 

reactor operations. 
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Saturating and Non-Saturating FPs 

Aside from the several special FPs in thermal systems that 

have very large a (e.g. Xe-135, Sm-149, Gd-157, etc.), the 

average thermal absorption cross section is roughly 20 – 40 b. 

The several hundred FPs are often separated into two general 

groups  -- saturating and non-saturating isotopes. 

The FPs within the saturating group have decay constants 

and/or absorption cross sections such that they reach 

equilibrium after relatively short operational times. 

In contrast, the non-saturating FPs effectively have no loss 

term (i.e. capture and decay lead to another non-saturating FP) 

and the FP inventory simply grows linearly with the number of 

fissions that have occurred (i.e. increases linearly with burnup). 

Although several key saturating FPs dominate the overall FP 

reactivity loss, the non-saturating FPs can become important at 

high burnup. 
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Saturating and Non-Saturating FPs 

Profiles vs. Time 

Profiles vs. Burnup 
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Special Saturating FPs 

A few FP nuclides play an especially important role in thermal 

systems because of their extremely large thermal absorption 

cross sections (and relatively large equilibrium yields).  

For example,  for Xe-135,  a(Eo) = 2.65106 barns  (eq  0.0663) 

                        for Sm-149, a(Eo) = 41,000 barns  (eq  0.0107) 

                        for Sm-151, a(Eo) = 15,200 barns  (eq  0.0042) 

                        for Gd-157, a(Eo) = 2.4105 barns  (eq  0.00007) 

for a typical fission product, a(Eo)  20 - 40 barns (eq  1.92) 

The time constants associated with the dynamics of the 

important FP chains are on the order of hours to days (not a 

safety concern). 

Here, we highlight the dynamics of the I-Xe chain because of 

the large equilibrium yield and its extremely large thermal a.  
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Dynamics of the I-Xe Chain 

The detailed I-Xe chain can be visualized as follows: 

 

 

 

 

 

But, because Te-135 decays so rapidly and, since the daughter 

products from Xe-135 decay and absorption are not of interest, 

we can simplify the above scheme, as follows: 
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Dynamics of the I-Xe Chain  (cont.) 

Based on the simplified sketch, the basic isotope balance 

equations that define the I-Xe dynamics of interest in thermal 

systems can be written as (accumulation rate = production rate 

– loss rate): 
 

I-135 balance equation:  

 

Xe-135 balance equation:  

 

In these expressions, the thermal neutron flux is directly 

related to the operating power level.   

Thus, a change in power can be treated as a driving force that 

moves the I-135 and Xe-135 densities from their equilibrium or 

steady-state values to some new state. 

I f I

dI
I

dt
     

 I X f X aX

dX
I X

dt
          
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There are several subtle approximations built into the previous 

equations:   

1.  An averaging process has been applied to the spatial 

variable, leading to the spatial independence associated with the 

given equations. 

2.  For the energy dependence, if we interpret the        and         

terms as integrals over energy, then we can accurately account 

for any energy variation within the system.   

3.  In practice, however, the Xe-135 cross section is extremely 

large at thermal energies relative to that at high energy  --  thus, 

ignoring the fast component of the Xe-135 reaction rate is 

certainly justifiable.   

f  aX 

Dynamics of the I-Xe Chain  (cont.) 
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4.  Also, since most of the fissions in a thermal system occur at 

thermal energies, one often assumes that the fission term 

includes only thermal energies.   

However, for 2-group theory, we can write 

 

 

Thus, we will let f represent the effective fission cross section 

as implied here. 

1 1
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Dynamics of the I-Xe Chain  (cont.) 
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Equilibrium Xenon Reactivity 

When the production and loss rates for a particular isotope 

become balanced (i.e. production rate = loss rate), the isotope 

concentration no longer changes with time, and it is said to be 

in equilibrium.   

This condition occurs in a real system when the reactor has 

been operating at constant power for a relatively long period of 

time.   

To determine the reactivity effect for the equilibrium condition, 

we set the derivatives, dI/dt and dX/dt, to zero, which gives 

  I X fI f

I X aX

I and X


 



      
 

    
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Equilibrium Xenon Reactivity  (cont.) 

Working, in particular, with the expression for X, we can write 

the macroscopic Xe-135 absorption cross section at equilibrium 

as 

 

 

where  is the average thermal flux at equilibrium conditions 

and X is given by 

 

Finally, we recall from the previous Lesson that the reactivity 

due to a homogenous poison in a thermal system can be given 

as 
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has the same units 

as neutron flux 
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Equilibrium Xenon Reactivity  (cont.) 

Thus, putting the expression for X into this equation gives the 

reactivity effect of equilibrium xenon, or  

 

 

It is interesting to find an approximate numerical value for .   

To do this, we need to make a bunch of assumptions:  

First assume a large U-235 fueled system (PFPT  1.0) with        

p  1.0 and f/f2  1.0.   

With these rough approximations, the above expression 

reduces to 

 
 

I X f

F T f 2 Xp P P






    
 

     

 
 

I X

X






   
 

   
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p  1.0  and  f/f2  1.0  

equilibrium 

xenon reactivity 
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Now, the thermally averaged a for Xe-135 at temperature T is 

given by  

 

 

and, at T = To = 293 K (20 C), this can be evaluated to give 

 

 

Also, the decay constant for Xe-135 is given by 

 

 

Using these latter two values in the expression for X gives  

has the same units 

as neutron flux 

1 2

o
aX a aX o

T
(T) g (T) (E )

2 T

  
    

 

 
2

6 24 18 2
aX

cm
(1.158) 2.65 10 b 10 2.72 10 cm

2 b

 
 

     
 

5 1
X

1 2

ln 2 ln 2 1 hr
2.09 10 s

T 9.2 hr 3600 s

      

5 1
13 2 1

X 18 2

2.09 10 s
0.77 10 cm s

2.72 10 cm

 
 




   



Equilibrium Xenon Reactivity  (cont.) 
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Now, we see that if the thermal flux at equilibrium is much 

greater than X, then the ratio /(X + ) approaches unity.   

Thus, for the case of a large thermal flux, the equilibrium xenon 

reactivity becomes  

 

 

This represents an approximate value for the equilibrium xenon 

reactivity in thermal systems with a large thermal flux (where    

 >> X).   

This corresponds to about 4 dollars of negative reactivity  --  

which certainly represents an important consideration in the 

control and operation of thermal systems.  

 
 I X 0.06627
1.0 2.73 %

2.43


  
    



Equilibrium Xenon Reactivity  (cont.) 
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Solution for the General Case 

The above development for ∞ is only applicable for operation at 

constant power for a relatively long period of time.   

All the other cases of interest involve solution of the full time-

dependent I-Xe dynamics equations.   

This means that, given some initial condition and the time-

dependent thermal flux (or power) as input, we need to solve the 

I-135 and X-135 balance equations to give X(t), which can then be 

used to give (t).   

For the general case, where a general P(t) or (t) is used, the 

easiest way to solve these equations is via numerical integration 

with a standard ODE solver (such as Matlab’s ode45 routine).   

However, when P(t) is constant over some interval, the balance 

equations represent a set of sequential, linear, constant 

coefficient ODEs, that can be solved analytically.  
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Solution for the General Case  (cont.) 

The result for the constant thermal flux case, after suitable 

manipulation to get it into desired form, is given as follows: 

 

 

 

where                         and Io and Xo represent the initial I-135 and 

Xe-135 concentrations.  

Note that that these equations are only valid over a time period 

of constant power/flux given by the value of .   

However, even with this restriction, these equations can be 

very useful, since for most situations of interest, the thermal 

flux (or power) can be given as a piecewise constant function. 
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Some Case Studies 

In particular, there are three situations: 

1. Instantaneous startup to some constant power and flux level,      

with Io = Xo = 0. 

2. Instantaneous shutdown after a long period of full power 

operation, with Io = I and Xo = X (using the full power thermal 

flux to determine the equilibrium concentrations).  

3. Instantaneous change to some new constant power and flux 

after previous operation at a different constant power level 

(here the initial concentrations for each new time interval are obtained 

from the conditions at the end of the prior time interval).  

Careful study of these three cases can give significant insight 

into the general behavior of the I-Xe chain, as well as a good 

understanding of how xenon buildup and decay can affect the 

reactivity in thermal systems. 
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Application to the UMLRR 

To quantify the Xe-135 reactivity effect for a given application, 

we require specific information about the particular system of 

interest.   

In particular, we have used the six-factor formula to estimate 

the reactivity effect because it is relatively easy to approximate 

the terms within this expression for the multiplication factor, k, 

using appropriate 2-group cross sections and some geometry 

and material information for the system under study.   

For the UMLRR, the needed parameters are summarized as 

follows (using 2-group cross sections generated in Aug. 2010): 

        = 2.43                        p = 0.879                       = 1.067 

       PF = 0.665                    PT = 0.969 

       f1 = 1.21x10-3 cm-1      f2 = 5.04x10-2 cm-1      1/2 = 2.75 
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Application to the UMLRR  (cont.) 

As noted previously, the power or flux represents the driving 

force for the I-Xe dynamics.   

The thermal flux is given in terms of the relative power, rp, and 

this quantity can vary for the various cases studied, as follows: 

 

Now solving for  gives 

 

where Pfull = 1 MW = 106 W and the relative power, rp, is now the 

driving force for modeling the I-Xe dynamics within the UMLRR.   

For the UMLRR, we used a 20 element core where the fuel 

assembly cross section is 7.7724 cm  7.7724 cm and the active 

fuel height is 59.69 cm (Vcore = 7.212104 cm3).   

 f 1 1 f 2 2 core f coreP V V         
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f core f core
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V V


  

 
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Startup of the UMLRR from Zero ICs 

(Dec. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 12:  The Time Dependent Reactor III 

Shutdown from Equilibrium ICs 
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UMLRR Operation (8-hr shift, 5-days/week) 
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The xenon_gui Interface 
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Some Other Important FP Chains 

The simplified Pm-Sm chain is given by 

 

 

 
and the appropriate balance equations are: 
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Some Other Important FP Chains 

E f E E aG

dE dG
E and E G

dt dt
          

Similarly, the simplified Eu-Gd chain is given by 

 

 

 

and the appropriate balance equations are: 

Both Sm-149 and Gd-157 are stable isotopes  --  thus, the 

dynamics here are somewhat different from the I-Xe chain. 
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0.00007
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fission


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
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Fuel Depletion 

see next slide… 

The last topic in our introductory treatment of Reactor Theory 

is fuel depletion. 

In practice, since the time scale of interest for fuel depletion is 

long relative to the kinetics problem, the so-called Quasi-Static 

Burnup Approximation is almost always used. 

This approach discretizes the time variable into multiple 

discrete steps:  

cycle k,     time step i,     and     substep j 

where various discrete operations are only allowed at the 

beginning of certain intervals and the nuclide vector is the only 

time dependent variable within the lowest substep level. 
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Quasi-Static Burnup Approximation 

         Operation                                            Time Boundary 

                                                           Cycle     Time Step     Substep 

Refueling/Shuffling/Discharge           x 

Control Movement/Nuclide Search    x                 x 

Flux-Eigenvalue Calculation               x                 x 

Cross Section Update                          x                 x 

Power Normalization                            x                 x                 x 

cycle k 

time step i 

substep j 
time 
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At each time step and cycle boundary: 

   neutron balance equation: 

       this gives  

       where 

 

At each substep, time step, and cycle boundary: 

   power normalization: 

        where       ℓ  nuclide     z  zone     g  group 

                            energy/fission                     = flux shape & magnitude  

Quasi-Static Burnup Approximation 

 L F 0   

z
g gz gv

z

1
(r) (r) dr

v
    

z gz

z g

v 1  

zone average flux 

shape normalization 

z z f gz gz

z g

P v N
 

      
 

  

  

flux magnitude 
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Within each substep j and for each zone z: 

   nuclide balance equation: 

        where          = nuclide vector for zone z  

                             = transmutation matrix with loss terms along 

                                the main diagonal and the production routes 

                                in the off-diagonal elements         

Quasi-Static Burnup Approximation 

z zz

d
N M N

dt


Can use stiff ODE Solver or 

Matrix Exponential Approach… 

See Lesson on Radioactive Decay Calculations 

from Fundaments of NSE course… 

z
M

zN
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Consider the following abbreviated transmutation scheme: 

                N1              N2                N3             N4              N5 

 
                                                                                                 N6 (only 1 FP) 

 

A Simple Example 

a11 1

c1 a2 22 2

3 32 a3

4 4c3 a4

5 5c4 a5

6 616 f 1 36 f 3 56 f 5

0 0 0 0 0N N

( ) 0 0 0 0N N

N N0 0 0 0d

N N0 0 0 0dt

N N0 0 0 0

N N0 0 0

        
             
    

         
            

            
    
                  

n, n, n,

27.4 d
Th232 Pa233 U233 U234 U235

fission fission fission

   
   

  

d
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
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Microscopic Depletion in Core Calculation 

1. Calculate region-dependent multigroup (8-10 groups or more) 

microscopic cross section library. 

Then for the full core calculations: 

2. Microscopic data remains constant versus burnup. 

3. Allow nuclide densities to vary according to nuclide 

transmutation equation. 

4. Macroscopic cross sections vary with time 

 

5. Follow quasi-static burnup approximations as outlined above. 

Two Different Algorithms 

Primarily used for fast 

reactor analysis… 

xz z x z(t) N (t)  
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Macroscopic Depletion in Core Calculation 

1. Calculate assembly-dependent few-group (2-4 groups) 

macroscopic cross section libraries versus several variables 

(burnup, void fraction, temperature, soluble boron, etc.). 

 

 

Then for the full core calculations: 

2. Calculate burnup (BU = Power  Time). 

3. Determine appropriate macroscopic cross section by 

interpolating from the data tables. 

4. Do new flux/power distribution calculation. 

5. Specify t and go to Step 2 until end-of-cycle is reached. 

Two Different Algorithms 

Primarily used for 

LWR analysis… 

Note: The calculation versus burnup on the cell and/or assembly scale is 

done similar to that described above.  The macroscopic cross section 

data versus burnup, for example, are then tabulated for later use. 
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Lesson 12 Summary 

In this Lesson we have briefly discussed the following subjects: 

Some of the key processes associated with fuel depletion and 

their affect on reactor operations. 

The difference between saturating and non-saturating fission 

products and their typical time-dependent profiles. 

Why Xe-135 is such an important fission product in thermal 

systems and several other important nuclides that required 

special consideration. 

How to write the iodine-xenon balance equations along with an 

explanation of the typical behavior of the Xe reactivity for a 

number of different scenarios (startup, shutdown, power-level 

changes, etc.) with the use of the xenon_gui code. 
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Lesson 12 Summary  (cont.) 

Similar dynamic analyses for other important FP chains     

(Pm149  Sm149, Eu157  Gd157, etc.) . 

The key reactions and structure of the basic matrix form of the 

fuel depletion equations assuming a quasi-static flux 

approximation. 

The behavior of a typical kexcess vs. time curve for large power 

reactors and the importance of burnable absorbers, soluble 

boron (in PWRs), and the use of external control during the 18-24 

month time span between refueling.  

Why a uniform fuel loading leads to a non-optimum core 

configuration, why loading of fresh fuel on the core periphery is 

no longer practiced, why BWRs typically have more control rods 

than PWRs, etc… 
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