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Lesson 10:  The Time Dependent  Reactor I 

Lesson 10 Objectives 

List the three main time-dependent phenomena of interest and 

identify the time scale associated with each area. 

Write the fission source term needed for reactor kinetics studies 

and explain how this differs from the steady state fission source. 

Outline the procedure used to convert the 1-group space-time 

kinetics formulation into the 1-speed point kinetics model. 

Identify the primary advantage associated with the Lifetime 

and/or Generation Time Formulations relative to the standard 

time dependent diffusion equation representation.  

Outline the procedure for solving the Generation Time 

Formulation of point kinetics for a step change in reactivity. 
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Lesson 10 Objectives  (cont.) 

Explain the reactivity equation in some detail: discuss the sign 

and magnitude of the roots and the time dependent behavior of 

the power level following a step change in reactivity. 

Explain how the reactor period and prompt jump/drop 

approximations are used to estimate the behavior of the power 

following a step change in reactivity. 

Explain the concept of reactivity feedback and sketch the power 

profiles associated with a step change in reactivity with and 

without negative feedback. 

Perform a series of simple calculations to quantify the reactor 

period, prompt jump/drop, power level at various times, etc. for a 

variety of simple transient scenarios. 
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Time-Dependent Phenomena 

There are a number of aspects of reactor analysis (such as the 

fuel burnup process, reactor operations during reactor startup 

and shutdown periods and for various power maneuvers, and 

transient operations and control during off-normal conditions) 

that we have not discussed as yet  --  and all these processes are 

inherently time dependent.  

Within this context, there are three primary time-dependent 

phenomena of interest with significantly different time constants, 

as follows:    

                      Subject                         Time Scale of Interest   

          Reactor Kinetics                         seconds    minutes 

          Fission Product Poisoning       hours    days 

          Fuel Depletion                            months    years 
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Reactor Kinetics 

Reactor Kinetics is the treatment of the time behavior of the 

neutron level and distribution over short periods of time.  

The variations are usually caused by changes in control rod 

positioning, soluble boron concentration, or the fuel and coolant 

temperatures.   

Changes in these parameters add reactivity (positive or 

negative) to the core.   

This perturbs the critical system so that the multiplication factor, 

keff, is no longer unity.   

Depending on the perturbation, keff can be slightly greater than 

or less than unity, and the neutron density and power level will 

increase or decrease correspondingly.  
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The physics of the reactor in these situations is described by 

the time dependent neutron balance equation.  

For space-time reactor kinetics,   

For point kinetics,                                 , where the spatial 

distribution is assumed to be essentially time-independent.  

Reactor Kinetics   (cont.) 

o(r,t) (r)T(t)  

(r,t) (r,t)T(t)  

We will focus on the 

Point Kinetics model. 
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Fission Product Poisoning 

Fission Product Poisoning is another important time dependent 

phenomenon. 

Fission products (FPs) accumulate in a reactor from production 

via the fission reaction and these intermediate mass nuclides 

cause parasitic absorption in the core.   

This is especially important in thermal reactors, since most 

absorption cross sections are relatively high at thermal energies  

--  however, the long term effect of fission product poisoning is 

important in all systems.   

A few fission product nuclides play an especially important role 

in thermal systems because of their extremely large thermal 

absorption cross sections and their decay behavior.  
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Fission Product Poisoning 

For example, for Xe-135,  a(Eo) = 2.65106 barns 

                       for Sm-149, a(Eo) = 41,000 barns   

                       for a typical fission product, a(Eo)  40-50 barns 

The time constants associated with the dynamics of the 

important FP chains are on the order of hours to days (not a 

safety concern). 

We will highlight the 

dynamics of the I-Xe chain.  
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Fuel Depletion/Transmutation 

A third transient effect that requires consideration is the Fuel 

Burnup Process (occurs over relatively long periods of time).   

Fresh fuel inserted into a reactor is usually free of fission 

product poisons and the higher actinides.   

However, once power operation begins, neutron fission, which 

produces the FPs, and neutron capture, which produces higher 

actinides, alter the distribution of nuclides in the system. 

This transmutation of the heavy elements and the continuous 

buildup of FPs certainly affect the instantaneous neutron 

balance within the system.   

To maintain criticality over the design cycle length, considerable 

excess fuel must be loaded initially, where the initial excess 

reactivity is balanced by neutron poisons (typically soluble 

boron and burnable absorbers in a PWR).  
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Fuel Depletion/Transmutation 

As the fuel depletes and the FPs accumulate, the amount of the 

controlled poisons is reduced and, by definition, the end-of- 

cycle is reached when the excess reactivity of the fuel is zero 

with no control in the core. 

We will only overview the key 

aspects of the fuel depletion process.  
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Time Dependent Diffusion Equation 

The remainder of this lesson will elaborate on the subject of 

Reactor Kinetics (with additional discussion of the other topics 

in future lessons).   

The starting point here is the time-dependent diffusion equation 

that was developed previously.   

In words, this equation states that the  

 

 

and, for the 1-group or 1-speed diffusion theory approximation, 

this was written as 

 

 

rate of change production rate of loss rate of 

of  neutron density neutrons per unit volume neutrons per unit volume
 

f a

1
n Q D

t v t

 
                  
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Time Dependent Diffusion Equation 

Although this equation, with the derivative set to zero, is valid 

for steady state studies, the fission source term is not correct 

for dynamics studies. 

In particular, since both prompt and delayed neutrons are 

produced, we must take into account the timing associated 

with these separate components of the fission source. 

Recall that delayed neutrons are produced from the decay of 

certain nuclides (called precursors) that are produced in the 

fission process. 

The delayed neutron precursors are usually grouped into six 

separate groups with six effective decay constants, i, and 

yields, i.   
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Time Dependent Diffusion Equation 

The total delayed neutron fraction is given by  = i, where  

 

 

 

 

With these definitions, one has 

         =  fraction of total neutrons that are delayed 

   1 -  =  fraction of total neutrons that are prompt 

Thus, the obvious choice for the fission                                 

source for the 1-speed case becomes  

 

i
i

T

delayed neutrons from precursor group i per fission

total neutrons emitted per fission

fraction of total neutrons emitted that
result from the decay of precursor group i


  





total prompt delayed
fis fis fis

f f f

S S S

(1 )

 

         

But the timing here is 

wrong, since this only 

accounts for the number 

of neutrons, not the time 

when they are produced. 
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Concerning the timing of the neutron production terms, the 

prompt term, (1  )f , accounts for the instantaneous release 

of prompt neutrons at the time of fission.   

The delayed term, f , is not the delayed neutron production 

term but, instead, it is the instantaneous precursor production 

rate.   

The delayed neutrons, in turn, result from the decay of the 

precursors (which have characteristic decay constants, i).   

Thus, since each precursor decay produces one delayed 

neutron, we have 

 

 

Time Dependent Diffusion Equation 

g

6
delayed

gi i ifis

i 1

S C


  
Note that the delayed neutron 

spectrum is softer than the 

prompt neutron spectrum. 
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Therefore, for the multigroup case, the total fission source can 

be written as 

 

 

and the total fission source for the one energy group case, 

becomes 

Time Dependent Diffusion Equation 

 fis
f i i

i

S = 1 νΣ + λ C   

 fis p d
g g fg' g' gi i i

g' i

S = χ 1 νΣ + χ λ C   

This cannot treat the 

differences in the prompt 

and delayed spectra.  
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NOTE:  In practice, the use of eff instead of  is used in 

the final equations to account for the actual differences 

in the prompt and delayed neutron spectra…  

1-Speed Space-Time Kinetics 

In summary, we shall write the complete (and correct) 1-speed 

space-time kinetics equations as follows: 

   Neutron Balance 

 

     

   Precursor Balance 

 

 

These equations represent a set of  

seven coupled PDEs, where the 

cross sections, fluxes, and source are                                terms 

all functions of both space and time.   

In general, these equations are rather difficult to solve!!!  

f i i a

i

1
(1 ) λ C Q D

v t

 
                  



i
i f i i

C
C for i 1, 2, 6

t


      


Computer codes are 

available to solve the space-

time kinetics problem --  but 

this subject is outside the 

scope of this course… 
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1-Speed Point Kinetics Model 

There are many applications in reactor operations when the 

spatial flux shape does not change significantly with time.   

For these cases, the general space-time description can be 

reduced to a point model (spatially integrated model) that 

includes time as the only independent variable.   

This procedure reduces the system to seven ordinary differential 

equations (ODEs)  –  which are significantly easier to solve.   

There is a formal procedure for doing this reduction, during 

which, the “effective” kinetics parameters are defined precisely.   

The most general procedure usually starts with the multigroup 

neutron balance equation, but the 1-speed approximation allows 

a more straightforward development that gives identical point 

kinetics equations  --  with slightly less rigor in the definition of 

some parameters.   
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1-Speed Point Kinetics Model  (cont.) 

Since the resultant differences in definition do not affect our 

present discussion and application of the final equations, we will 

proceed here with the 1-speed formulation (since the notation is 

much easier to follow). 

Starting with the 1-speed space-time model, we assume that the 

flux can be separated into a slowly varying (or time independent) 

spatial distribution and a more rapidly varying amplitude 

function,  

 

where the spatial distribution with the ‘o’ subscript represents 

the initial steady state value and T(t) represents the time-

dependent amplitude of the neutron flux (or power level).   

o(r,t) (r,t)T(t) (r)T(t)    
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1-Speed Point Kinetics Model  (cont.) 

Now, we substitute this approximation into the neutron and 

precursor balance equations and integrate the resultant 

equations over the spatial domain of interest to give 

o f o i i o a o

i

1 dT
(1 ) T C Q D T

v dt

 
                  

 


i i f o i i

d
C T C for i 1, 2, 6

dt
      

These represent a set of seven coupled first-order ordinary 

differential equations (ODEs) --  that is, the Point Kinetics Model.  
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1-Speed Point Kinetics Model  (cont.) 

The Point Kinetics model given on the previous slide is usually 

not used in this form for practical application.   

In particular, since the cross sections can be time dependent and 

under operator control (i.e. movement of a control rod affects a, 

etc.), almost every term in these equations can be modified to 

initiate a transient case.  

However, from an operational perspective, the effect of a change 

in cross section (or material composition) manifests itself as a 

change in the multiplication factor, k, or in the reactivity, .   

Changing the above equations to incorporate k or  directly leads 

to the traditional Lifetime Formulation (uses k) and Generation 

Time Formulation (uses ) of point kinetics.   

In these formulations, the multiplication factor, k(t), or reactivity, 

(t), becomes the driving force for initiating most transient 

analyses.  
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The Generation Time Formulation 

 

 

 

One first defines the prompt neutron generation time by arguing 

that, at steady state, the neutron production rate from fission in a 

critical system is the total neutron population divided by the 

neutron generation time.   

In equation form, this can be written as  

 

 

Defining  as the prompt neutron generation time, the one-speed 

approximation gives  

 

neutron population neutron population
production rate or generation time

generation time production rate
 

o f o

1

v
    

In this lesson we will focus on the Generation 

Time Formulation, but the formal Lecture Notes 

develop both schemes in detail.   
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The Generation Time Formulation 

Note:  In the context of the 1-group diffusion equation, k and  

have the following formal definitions (these are used in 

subsequent manipulations): 

 

 

 

 

 

and 

neutron production rate from fission production  
k

loss rate loss 
 

k -1 production - loss  

k production 
  

f o

o a o

k
D

 


    

f o o a o

f o

D         
 

 
 
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Generation Time Formulation   (cont.) 

Now we divide every term in the point kinetics equation for the 

neutron level by the neutron production rate from fission to give 

 

 
and use the definitions of  and  to simplify to 

 

 
or 

 

o
f o

i i

if o f o f o

o a o

f o f o

1

dT 1v (1 ) T C
dt

D1
Q T

  
   

     

     
 

   



f o o a o

i i

if o f o f o

DdT 1 1
T C Q

dt

          
       

      
 



  i i

i f o f o

dT 1 1
T C Q

dt
      

   

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Generation Time Formulation  (cont.) 

Now, we define the normalized precursor and external source 

amplitudes as 

 

 

When these expressions are substituted into the above equation 

and we use the definition of the generation time, the final neutron 

balance equation results  

 

 
or 

 

i i

o

1
c (t) C (t)

1

v



 o

1
q(t) Q(t)

1

v





i i

i

dT
T c q

dt

  
    

 
neutron 

amplitude   

 
o o

i i

i f o f o

1 1

dT v vT c q
dt

 

      
   


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Finally, to complete the generation time formulation, we divide 

the precursor equation by the total neutron population and again 

use the definition of  and the normalized precursor amplitude to 

give 

 
or 

Generation Time Formulation  (cont.) 

f oi i

i i

o o o

C Cd
T for i 1, 2, 6

1 1 1dt

v v v

 
    

  

i i
i i

dc
T c for i 1, 2, 6

dt


   



The highlighted equations 

represent the Generation Time 

Formulation of Point Kinetics.   

precursor 

amplitudes   
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Normalization Considerations 

The solution of the kinetics equations usually leads to relative 

results  --  that is, one computes T(t)/To = n(t)/no = P(t)/Po etc., 

where these represent the time-dependent relative flux amplitude, 

neutron level, power level, etc. 

However, when reactivity feedbacks are important, knowledge of 

the absolute neutron level or power level becomes essential.  

As detailed in the Lecture Notes, one can formally derive a set of 

point kinetics equations that directly include the actual reactor 

power level, P(t), in watts and the neutron source level, <Q(t)>, in 

neutrons/sec.   The resultant equations are: 

 
i i

i

d 1
P(t) P(t) c (t) Q(t)

dt

  
   

  


i
i i i

d
c (t) P(t) c (t) for i 1, 2, 6

dt


   



These Point Kinetics 

equations will be 

highlighted in the 

remainder of these 

Lecture Notes... 
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Solution of the Point Kinetics Eqn. 

In general, analytical solution of the point kinetics equations is 

not easy  --  recall that we have a coupled set of seven ODEs!   

In most cases, these equations are evaluated for a given (t) 

using numerical methods (such as Matlab’s ode15s solver  --  

where a stiff equation solver is needed because of the large 

difference in time constants that results).   

For a few specific cases, an analytical solution is possible --  and 

the resultant solutions give considerable insight into the general 

behavior of the time dependent neutron balance in real systems.  

One common situation that can be solved analytically involves a 

step change in reactivity in a critical reactor operating at low 

power (“low power” means that feedback effects are negligible).  

The solution of this case allows us to introduce some common 

terminology, and to gain a good understanding of the expected 

behavior in several common situations.   
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Step Change in Reactivity 

Starting with the generation time formulation of point kinetics 

with no external source, we have  

 

 

 

 

In most applications of these equations, the kinetics parameters 

(, i, and i) are assumed to be constant, the reactivity is the 

driving force for the transient, and P(t) and ci(t) are the dependent 

variables that vary with time due to some changing (t).   

However, for a step change in reactivity, (t) =  = constant, and 

the above equations become a system of seven linear constant 

coefficient ODEs  --  and this falls into a class of problems that 

we know how to handle analytically. 

i i

i

dP
P c

dt

  
   

 


i i
i i

dc
P c for i 1, 2, 6

dt


   

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Step Change in Reactivity  (cont.) 

The standard approach for solving linear time-invariant systems 

is to assume a solution of the form of a simple exponential.   

Following this technique, we assume that 

 
Now, we substitute these assumed solutions into the precursor 

balance equations, to obtain 

 

 
or  

 

 

t t
o i iP(t) A e and c (t) A e

  

 t t ti i
i o i i i i oA e A e A e A A

   
       

 

i
i o

i

A A
 


 
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Step Change in Reactivity  (cont.) 

Now, putting the assumed solutions, along with the above result, 

into the P(t) equation gives 

 

 

Cancelling the common Aoet factor in each term and 

multiplication by  gives 

 

 

and solving for  gives 

 

 

  i
i

i i


     

 


i i

i i

 
    

 


t t t t ti
o o i i o i o

i i i

A e A e A e A e A e
         

         
     

 
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Step Change in Reactivity  (cont.) 

To put this expression into standard form, note that  =  i.   

Now, using this equality, we have 

 

 
or 

 

 

This equation is the standard form of the so-called reactivity 

equation (or inhour equation) obtained from the generation time 

formulation of point kinetics.  

i i i i i i i
i

i ii i

          
         

      
 

i

i i

 
  

 
 reactivity 

equation 
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Step Change in Reactivity  (cont.) 

From a pure mathematical viewpoint, the reactivity equation is 

simply the characteristic equation associated with the original 

seven linear constant coefficient ODEs  --  and, for a given value 

of reactivity, the roots of this equation give the values of  that 

satisfy the original form of the assumed solution.   

Also, since we have seven coupled first-order ODEs, we should 

expect seven roots (i.e. seven values of ) that will satisfy the 

so-called reactivity equation.   

Assuming that each j for j = 1, 2,  7 is distinct, the linear 

super-position principle allows us to write the general solution 

as a linear combination of the linearly independent individual 

solutions.   
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Step Change in Reactivity  (cont.) 

Thus, we can write a general solution for the time-dependent 

power level P(t) as 

 

 

where the j’s are the roots of the reactivity equation and the Aj’s 

are the seven arbitrary coefficients needed for the general 

solution of a 7th order initial value problem (IVP).  

Although the above development establishes a solid mathematical 

foundation, it really has not shed a lot of insight into the actual 

behavior of P(t).   

To do this, we must first get a better understanding of the 

reactivity equation and the values of its roots.  

j 1 2 7

7
t t t t

j 1 2 7

j 1

P(t) A e A e A e A e
   



    
The Aj coefficients 

are determined 

from the ICs. 
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Interpretation of the Reactivity Eqn. 

First, we can think of the right hand side (RHS) of the reactivity 

equation as some function of , say f(), and simply plot f() vs.  

for a wide range of .  

Then, if we superimpose the LHS [i.e. () = constant] on the plot, 

the intersections of the two curves give the desired roots, j, of 

the reactivity equation.   

positive :  one positive root and six negative roots 

negative :  seven negative roots 

- 

+ 
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 
  

 

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If we order the roots j from most positive to most negative, 

then, after a relatively short transient time, the last six terms for 

P(t) decay away (because 2, 3,  , 7 < 0 for both positive and 

negative reactivity), leaving only the term containing 1, or 

 

 

where  = 1/|1| is called the stable reactor period and P1 is the 

power level (or flux amplitude) just after the short transient 

period.   

If  is positive, 1 > 0, and the reactor period is positive  --  so 

P(t) grows indefinitely as e+t/ (remember that we assumed no 

feedbacks up to this point).   

Interpretation of the Reactivity Eqn. 

j 1 2 7 1

7
t t t t t t/

j 1 2 7 1 1

j 1

P(t) A e A e A e A e P e P e
      



      
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For negative reactivity, just the opposite occurs.   

That is, 1 < 0 and the reactor period is negative  --  so the power 

level decreases towards zero with the form e-t/.   

Thus, after a short transient time, the dominate behavior of P(t) 

is simply associated with the most positive root of the reactivity 

equation and it is represented as a simple growing or decaying 

exponential. 

Interpretation of the Reactivity Eqn. 

where all the above descriptions 

assume no feedbacks 
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Typical Solution Profiles 

To wrap up our formal discussion of the reactivity equation and 

the solution of the Generation Time Formulation of Point Kinetics 

for a step change in reactivity, it makes sense to show the typical 

P(t) behavior for a specific change in reactivity. 

This was accomplished in a simple Matlab code, with and without 

feedbacks, for the case of both positive and negative reactivity 

(/ = ±0.25).  

To illustrate the stabilizing effect associated with negative 

feedback, we define a generic power feedback coefficient as 

 p 2

1 k 1 k

P P k Pk

  
   

  
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Typical Solution Profiles 

With this definition, we see that the actual reactivity that enters 

into the point kinetics equation is a combination of the externally 

applied reactivity, ext  (e.g., due to a change in control rod 

position) and the feedback reactivity, f  (which is inherently 

time-dependent due to changes that are not under operator 

control), or 

 

Note that, if the feedback coefficient is positive, the system is 

inherently unstable and it will quickly destroy itself.   

This is readily apparent since, with a positive value of p, an 

increase in reactivity leads to an increase in power, which leads 

to a further increase in reactivity, which gives another increase in 

power, and so on  --  which leads to a runaway system.   

 ext f ext p o(t) (t) P(t) P         
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Typical Solution Profiles  (cont.) 

If p is negative, then an increase in power reduces , which 

decreases P, which increases , etc. until a new steady state 

condition is realized.   

The negative feedback situation is clearly the only reasonable 

option, and all operating reactors are required to have a negative 

feedback coefficient under all possible hot conditions!!! 

Note that , by definition, criticality is achieved when  = 0.   

Thus, the new steady state power level associated with the 

negative feedback case will be reached when the feedback 

reactivity exactly cancels the applied external reactivity,  

  ext
p new o ext new o

p

P P or P P


     

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Typical Solution Profiles  (cont.) 

With this brief background, we can now actually simulate and 

compare the dynamics of a system with and without feedback.   

For the feedback-free case, we set p = 0, and for the simulation 

with inherent feedbacks, we set the power feedback coefficient to 

its appropriate value for the system of interest (for this case, p = 

-210-4 k/k per unit P).  

The results of the Matlab simulation for the two cases with and 

without feedback are shown in the next few slides: 

Positive :  For ext = +25 cents, we see the expected unbounded 

exponential increase in the flux or power level for the case of a 

positive reactivity insertion with no feedback.   

However, for the case where the inherent negative feedback is 

treated, the power level rises less rapidly and it eventually levels 

off at a new steady state power. 
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Typical Solution Profiles  (cont.) 

Negative : For ext = -25 cents, both simulations lead to a 

decreasing power level.   

In the case with inherent feedbacks, the exponential decrease is 

reduced slightly, but not enough to keep the reactor from 

complete shutdown.   

This is true because the positive reactivity due to the power 

feedback is not sufficient to overcome the original negative 

external reactivity added to the system.   
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Typical Solution Profiles  (cont.) 
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Typical Solution Profiles  (cont.) 
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Numerical vs. Analytical Solution 

The main point of the above discussion of the analytical solution 

method was so we could get a good understanding of the 

expected behavior and to introduce some important terminology 

associated with reactor kinetics.   

However, actually computing accurate values for all seven roots 

of the reactivity equations, and then setting up the appropriate 

equations and solving for the seven coefficients for each 

transient situation of interest is not really easy to implement.   

Also, remember that the analytical solution method can only be 

applied for  = constant  --  it does not work for the general case 

of  = (t). 
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Numerical vs. Analytical Solution 

However, even for the simple situation where  = constant, the 

numerical solution of the seven coupled ODEs using an available 

ODE solver is a much easier path to follow (and this was the 

technique chosen here to do the actual simulations).  

Thus, the numerical approach was selected for two important 

reasons:  

   The numerical solution is much easier to obtain.  

   The numerical solution allows the treatment of feedback effects.  
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The Prompt Jump/Drop 

If we expand the first few seconds of the transient profiles shown 

previously, we see a nearly instantaneous rise or fall in the normalized 

power immediately after the step change in reactivity is made.  

The rapid change seen here is due to the most negative root, 7, of the 

reactivity equation.  Because 7 has such a large negative value, this 

term goes to zero very quickly after initiation of the transient.  
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The Prompt Jump/Drop  (cont.) 

Since the prompt jump/drop is an inherent feature of each 

transient, it would be convenient if we could get a quick and 

easy-to-use estimate of the magnitude associated with this 

phenomenon.   

In particular, since we have already argued that the            term 

dominates the transient response after a short period (for the 

no feedback case), if we could determine the normalized power, 

P1, just after the prompt jump/drop, we would have a simple 

way to estimate the complete power profile versus time, or 

 

 

where P1/Po is the desired magnitude of the prompt jump   

(P1/Po > 1) or prompt drop (P1/Po < 1). 

1t

1A e


1t t/1 1
o

o o o

P PP(t)
P(t) P e or e

P P P

   
  
 
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The Prompt Jump/Drop  (cont.) 

To derive an expression for P1/Po, let’s go back and consider 

the Generation Time Formulation of Point Kinetics, 

 

 

 

Note that, since the phenomenon of interest here occurs very 

rapidly, we are only interested in the transient state over about 

0.5 seconds or less. 

Over this short interval, it is very reasonable to assume that the 

precursor densities do not change significantly.   

i i

i

dP
P c

dt

  
   

 


i i
i i

dc
P c for i 1, 2, 6

dt


   

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The Prompt Jump/Drop  (cont.) 

Thus, over the time scale of interest for the prompt jump/drop, 

we have dci/dt  0, or 

 

 

where all the quantities are evaluated just prior to the reactivity 

change (i.e. at t = 0).  

With this expression and the same assumption as above, the 

P(t) equation becomes 

 

 

This is just a simple first order linear ODE that, when written in 

standard form, gives 

i
i io o i io o

i

c P or c P
 

   
 



o

dP
P P

dt

   
  

  

 
o

dP
P P

dt

  
 

 
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The Prompt Jump/Drop  (cont.) 

with integrating factor 

 

 

Now, multiplying by the integrating factor, gives 

 

  

and multiplication by dt and integration give  

 

 

 

or                                                                       (C = integration constant)  

 

   
dt t

g(t) e e

 
 

 
 

       
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  
     
    
     

     
t t t

o oe P(t) P e dt P e C

  
  

  
 

  
   

 
t

oP(t) P Ce






 
  

(Nov. 2016) 
ENGY.4340  Nuclear Reactor Theory                                                       

Lesson 10:  The Time Dependent  Reactor I 



26 

The Prompt Jump/Drop  (cont.) 

Now, even without computing the constant C, we can argue that 

the exponential term containing C will vanish very quickly.   

Since  < , the term ( - )/ is clearly negative.   

Also, since the generation time, , is usually quite small, the 

coefficient in the exponent is usually fairly large, causing this 

term to decay very quickly. 

As an example, let  = 0.0001 sec,  = 0.0065, and  = 0.25.  

With these values, we have 

 
and, in 0.20 sec, we have   

Thus, in about 0.2 seconds, this term is only about 0.006% of its 

original value.  

  (0.25 1)(0.0065)
48.75

0.0001

  
  


48.75(0.20) 5

e 5.8 10
  
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The Prompt Jump/Drop  (cont.) 

With the above arguments, it is easy to see that a reasonable 

approximation for the prompt jump/drop is given by the first 

term in the P(t) expression, or 

 
where  P1 is the power level just after the prompt jump/drop. 

By way of example, for the simulations shown previously,             

 = 0.0065 and  = 0.25.   

Now, using the prompt jump/drop approximation, we have 

 

and 

1

o

P

P



  

1

o

P 1
1.33 (for  = +25 cents)

P 1 0.25


   
   

1

o

P 1
0.80 (for  = -25 cents)

P 1 0.25


   
   

These values agree very 

nicely with the prompt jump 

and drop transients seen in 

the previous figures!!! 
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Small Reactivity Values 

One last approximation that often simplifies hand calculations, 

concerns the treatment of small reactivity insertions. 

For   0 (either positive or negative), the magnitude of the most 

positive root of the reactivity equation is small compared to the 

magnitude of all the i values (i.e. || << |i|).   

With this observation, the reactivity equation becomes 

 

 

and, since the reactor period, , is just the inverse of the most 

positive root, 1, we have  

 

i i i

i i ii i i

    
          

    
  

i

i i

1
(for small )

 
     

  

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Small Reactivity Values 

Also, in all practical cases, the generation time, , is small 

compared to the 2nd term inside the brackets.   

Thus, we can estimate the reactor period as  

di

i i

t1
(for small )


   

  


td is the mean lifetime 

of the delayed neutrons  

(about 12 – 14 seconds) 
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Capabilities of the kinetics_gui Code 

Finally, we note that one can simply evaluate the reactivity 

equation and generate a plot of reactor period vs. reactivity  --  

this is a very useful operations/design tool.   

The capability to do this, as well as plot the reactivity equation 

and generate the solution profiles for a given  has been 

incorporated into the kinetics_gui code. 

The code is very simple to use and it gives a tremendous 

amount of insight into the workings of point kinetics  --  you 

should give it a test drive!!!  
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The kinetics_gui Interface 
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Lesson 10 Summary 

In this Lesson we have briefly discussed the following subjects: 

The three main time-dependent phenomena of interest and the 

time scale associated with each area. 

The fission source term needed for reactor kinetics studies and 

how this differs from the steady state fission source. 

The procedure used to convert the 1-group space-time kinetics 

formulation into the 1-speed point kinetics model. 

The primary advantage associated with the Lifetime and/or 

Generation Time Formulations relative to the standard time- 

dependent diffusion equation representation.  

The procedure for solving the Generation Time Formulation of 

point kinetics for a step change in reactivity. 
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Lesson 10 Summary  (cont.) 

The reactivity equation -- including a discussion concerning the 

sign and magnitude of the roots and the actual time dependent 

behavior of the power level following a step change in reactivity. 

How the reactor period and prompt jump/drop are used to 

estimate the behavior of the power following a step change in . 

The concept of reactivity feedback and the observed power 

profiles associated with a step change in reactivity with and 

without negative feedback. 

How to perform a series of simple calculations to quantify the 

reactor period, prompt jump/drop, power level at various times, 

etc. for a variety of simple transient scenarios. 
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