
Subcritical Multiplication 

Introduction 

Clearly it is important to monitor the neutron level in a reactor system at all times  --  even 

during shutdown conditions.  When a system is subcritical, neutrons introduced into the system 

still undergo all the same type of interactions  --  capture, fission, scattering, and leakage from 

the system  --  that occur during normal power operations.  When subcritical, however, the 

neutron lost terms (absorption and leakage) dominate neutron production from fission, and the 

multiplication factor, k, is less than unity, where k is defined as 

neutron production rate from fission
k

neutron loss rate
       (1) 

For monitoring shutdown operations, all reactors have a sufficiently large neutron source (either 

inherent within the fuel or externally controlled by the reactor operators) to ensure that the 

neutron flux in the system is high enough for proper operation of the in-core instrumentation.  A 

detector placed within the system will measure a count rate that is proportional to the total 

neutron level near the detector, which can consist of both the original source neutrons and/or the 

neutrons produced via fission with the original source particles and their progeny, depending 

upon the source-detector configuration and the reactivity level of the system. 

To see the relationship between the steady state neutron level and the source strength, consider 

the following arguments (see the Appendix for two alternate derivations).  First, let’s assume that 

a steady state source of neutrons producing q neutrons per generation is available.  At time t = 0, 

with no neutron population present, we turn on the source.  Thus, initially, q neutrons are 

introduced into the multiplying system which can be characterized by the multiplication factor, 

k.  Using the definition of k in eqn. (1), the total neutron population after one generation, n1, after 

two generations, n2, etc. can be written as the sum of the fission neutrons produced in the current 

generation and the original source neutrons added in that generation, or 

on q  

 1 on kn q k 1 q     

   2 2
2 1n kn q k k q q k k 1 q         

   3 2 3 2
3 2n kn q k k k q q k k k 1 q           

and, at steady state (after many generations), we have 

 2 3 p

p 0

n 1 k k k q k q






 
        

 
       (2) 

However, the infinite series in eqn. (2), for k < 1, is the binomial series, which reduces to 

1
n q

1 k
 


          (3) 
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For ease of discussion in the above development, we let q be the number of source neutrons 

added per generation.  If the resultant expression is divided by the neutron generation time, , 

(with units of seconds per generation), then the interpretation becomes more straightforward in 

terms of a standard neutron source with units of neutrons per second, 

n 1 q

1 k

 
  

 

or 

1
N S MS

1 k
 


         (4) 

where S is the original input neutron source strength (neutrons/sec), N is the total steady state 

neutron source present in the system (neutrons/sec), and M is the subcritical multiplication 

factor, which is given explicitly by 

1
M

1 k



          (5) 

These last two expressions are extremely important when monitoring subcritical operations!   

The two limiting conditions, k  0 and k  1, imply that no fuel is present and that the system 

is critical, respectively: 

   Non-Multiplying System: k  0 and M  1 which indicates that the total neutron source is 

due only to the original source neutrons (i.e. no fuel is present). 

   Critical System: k  1 and M   which says that the total neutron source is 

dominated by the fission neutron source. 

Usual subcritical operation lies somewhere between these limits, but it needs to be emphasized 

that the subcritical multiplication factor, M, and the total neutron source, N, clearly increase 

dramatically as k increases towards its upper limit of unity. 

Because of the behavior of M as k approaches unity, one often considers 1/M instead of M 

directly.  In this case, 1/M  0 as the system nears critical.  This relationship is very useful in 

observing “approach to critical” situations  --  since simply plotting 1/M as a function of the 

parameter of interest (i.e. fuel elements loaded, control rod position, etc.) gives a very clear 

indication of where criticality will occur. 

Measurement Considerations 

In practice, measuring the parameters in eqn. (4) is not particularly easy.  Usually, the value of k 

for the system is not known, the input source strength, S, is not readily available, and the total 

neutron source strength, N, is not directly measurable.  Instead, what is available from the 

detector is a count rate, C, in counts per second that is proportional to the total neutron source 

level, or 

i i i i i i i i

i

1
C N S M S

1 k

 
      

 
       (6) 
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where i is the proportionality constant and the subscript i refers to the ith configuration (i.e. the 

count rate in a particular configuration is a function of the given configuration).   

However, if the input source strength remains constant (independent of i) for a series of 

measurements, then a ratio of measurements in two specific configurations removes the 

dependence on S, 

 

 
i oi i i i i

o o o o o o i

1 kC M S M

C M S M 1 k

  
  
   

       (7) 

where Co is the initial count rate in the base system. 

Now, since the true value of the absolute subcritical multiplication factor, M, is often not 

available (need value of k for some base configuration), a common definition for the relative 

subcritical multiplication factor in the ith configuration, Mri, is 

i i i
ri

o o o

M C
M

M C


 


         (8) 

which can be determined simply by the ratio of the count rate for configuration i to the initial 

count rate.  Finally, taking the inverse of eqn. (8) gives 

 

 
 o io

i i

ri i i o

1 kC1
1 k

M C 1 k

 
    

 
       (9) 

where i is just another (unknown) proportionality constant as implied in the above equation.  

The important feature here is that the inverse relative subcritical multiplication factor, 1/Mr, is 

approximately a linear function of the neutron multiplication factor, k.  In particular, a plot of 

1/Mr using two known values of k can be easily extrapolated to the 1/Mr = 0 point  --  which 

gives a rough prediction of where the system will be critical. 

Note #1:  The use of eqn. (9) to extrapolate linearly to the 1/Mr = 0 point implies that i (and i) 

is insensitive to the configuration change from the (i-1)th to the ith arrangement.  Although this is 

often a relatively poor assumption in the early stages of an approach to critical sequence, it 

usually becomes a reasonably good approximation as one slowly approaches the critical 

configuration.   

Note #2:  In practice, of course, a plot of 1/Mr vs. k is not very useful since the value of k for 

each new configuration is not readily available.  Instead, however, the real independent variable, 

say η, is some operator-controlled measurable parameter that is used to bring the reactor to 

critical  --  such as the number of fuel assemblies loaded in the core, the position of a control rod 

or group of control elements, or the amount of soluble boron in the system, for example.  A 

change in the control parameter, η, changes k and, instead of a 1/Mr vs. k plot, one uses a 1/Mr 

vs. η plot, where criticality is still reached when 1/Mr → 0.  Thus, linear extrapolation of the 

1/Mr vs. η plot still gives an estimate of the value of η needed for criticality.  In addition, as 

criticality is approached via progressively smaller changes in the control parameter, η, the 

relationship between k and η also becomes approximately linear, so that the approximate linear 

behavior indicated in eqn. (9) can still be expected.  Thus, in practice, a 1/Mr vs. η plot is indeed 

a very useful tool for predicting where criticality will occur. 
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Note #3:  As a final footnote to the above development, one should be aware that many of the 

above equations are often expressed in terms of reactivity, , where 

k 1 1
or k

k 1


  


       (10) 

In particular, substituting these expressions into eqn. (7) gives 

i

o o oi i i i

o o i o o i
o

i

1
1

1C 1

C 11
1

1

 
  

       
     

  
 

      (11) 

where the last approximation assumes that  << 1.  Furthermore, if the proportionality constant 

between the total neutron source, Ni, and detector count rate, Ci, is relatively insensitive to the 

configuration change, then eqn. (11) simplifies further to the following very useful expression, 

oi

o i

C

C





          (12) 

This simple relationship says that, if the count rate is doubled, then the reactivity level is reduced 

by about one-half (and vice versa)  --  and this is a very useful rule-of-thumb for monitoring 

and control of subcritical systems. 

Example Application within the UMLRR 

As an illustration of the use of the above development, we briefly review the initial critical 

loading analysis that was performed for the conversion of the UMass-Lowell research reactor 

(UMLRR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel.  The 

actual fuel conversion took place in August 2000 using an approach that was based roughly on a 

previous computational study of the expected core loading sequence.  The details of the pre-

analysis and the results of the actual startup testing are reported in more detail in Refs. 1-3.   

After a fairly comprehensive design process, a 21-element core with 19 full fuel elements and 2 

partial elements was chosen as the best candidate for the initial startup of the LEU-fueled 

UMLRR.1  As part of the design studies, both 2-D and 3-D VENTURE4 models were developed 

and these were used to predict a variety of neutronics characteristics within the new core.  A top 

view of the material layout for the initial reference core is shown in Fig. 1 along with a legend to 

help identify the various components within the system.  This figure depicts the final goal of the 

initial loading procedure  --  this was the target configuration for the new LEU core. 

A set of formal in-house procedures is used by the operations staff when performing a critical 

loading for a new configuration.  The basic idea is to carefully monitor the subcritical 

multiplication associated with each new configuration as one goes from only a few elements 

towards a configuration that leads to a critical system.  As the number of fuel elements in the 

core increases, the subcritical multiplication increases, eventually approaching infinity as a 

critical configuration is reached  --  and, as M  , 1/M  0 following the development from 

above. 
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Fig. 1  Target LEU core design for the UMLRR. 

 

The numerical simulation of the initial critical loading experiment for the new LEU core 

involved the computation of the neutron multiplication factor, ki, for several different loading 

configurations using a 2-D VENTURE model.  With this information, a standard 1/M plot could 

be generated; simulating what might be expected during the actual approach to critical for the 

new LEU core.  During actual loading, the detector count rate, Ci, for each configuration was 

available and this also allowed the development of the 1/M plot based on actual reactor 

measurements.   

The resultant 1/M plots for the VENTURE simulation and the actual reactor measurements are 

given in Fig. 2.  The data for the simulated plot were generated with 2-D VENTURE keff 

calculations for 14 different assembly configurations.  The actual reactor loading approached a 

critical configuration with 16 discrete core configurations.  Although the core layouts for the 

simulation and the actual loading were not identical, the trend towards a critical configuration 

was expected to be quite similar, especially as one approaches the critical state. 

The process started by loading the core periphery with an arrangement of graphite reflectors and 

radiation basket assemblies that was consistent with the proposed final core configuration as 

shown in Fig. 1.  This arrangement left 22 centrally located grid positions available for the 

placement of full and partial fuel assemblies and the central flux trap irradiation facility.  

Initially, only full fuel elements were loaded into the core, starting in the central core region.  

New assemblies were then added in a systematic manner, trying to maintain as much symmetry 

as possible, until the core was nearly critical.  At this point, the full fuel assembly in D5 was 

removed and replaced with the flux trap assembly.  In addition, the full fuel elements in C5 and 

E5 were exchanged with two partial assemblies.  Both these moves decreased the multiplication 

factor, k, and increased the inverse subcritical multiplication, 1/M, in the system.  This 

discontinuity is apparent in Fig. 2 with the start of a new set of 1/M lines with 14 assemblies 

loaded (12 full and 2 partial fuel elements).  After this configuration change, the normal 
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systematic loading of full fuel assemblies was continued until a critical core was reached.  The 

final step, of course, was to load all remaining assemblies to achieve the loading pattern given in 

Fig. 1 to provide some excess reactivity for normal operation of the reactor over an extended 

period of time. 

 

Fig. 2  1/M plots for the initial loading sequence (simulation vs. measurement). 

 

From Fig. 2, with just full fuel present, we see that VENTURE predicted the LEU core would be 

critical with 16 elements.  However, actual measured data show that criticality would not be 

achieved until 17 full fuel elements are loaded.  Thus, the VENTURE calculations are somewhat 

conservative, with a small over-prediction of the fuel reactivity.  After replacing the full fuel 

elements in positions C5, D5, and E5 with the flux trap and two partial fuel elements (with half 

the U235 loading of a full element), criticality is not reached until 19 and 20 elements were 

loaded, respectively, for the VENTURE simulations and actual initial loading.  Thus, again, the 

VENTURE data slightly over-predict the core reactivity.  The actual initial critical configuration, 

with 18 full and 2 partial assemblies was designated as the M-1-1 core.  As a last step, the final 

full element was placed in position F6 to give the proposed initial core configuration shown in 

Fig. 1 (referred to as the M-1-2 configuration). 

The above simulated and actual experimental analyses were performed to guarantee a safe and 

predictable startup for the new LEU core that was installed within the UMLRR in the summer of 

2000.  The 1/M plots generated here are quite typical of any approach to critical sequence.  In 

this example, the number of fuel elements loaded was the variable of interest, but similar 

behavior would be expected in other cases (for the determination of the critical height of a 

control blade, for example).  Thus, the application given here is typical of any approach to 

critical sequence, and it shows a real application of the concepts and equations developed in this 

set of Lecture Notes on Subcritical Multiplication. 

Summary/Conclusions 

This unit on Subcritical Multiplication should give the reader a good understanding of this 

important subject.  The focus here is on the steady state behavior of subcritical systems, with 
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emphasis on the definition and application of the subcritical multiplication factor, M.  The 

specific application to the UMass-Lowell research reactor (UMLRR) adds some specificity to the 

subject and it shows how a 1/M plot can be used to predict where criticality will occur in a 

particular system.  The Appendix also gives two alternate derivations of the expression for M, 

and these should give additional insight and understanding of this important parameter  --  

especially for those interested in a more mathematical approach to the subject.  Overall, the 

reader should be leaving this unit with a better general understanding of subcritical systems, and 

how knowledge of M and 1/M can be quite useful in a number of practical situations.  This 

increased understanding of the topic was the primary purpose of this unit on Subcritical 

Multiplication  --  hopefully we were successful in achieving this goal… 
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Appendix 

Alternate Derivations of the Formula for the Subcritical Multiplication Factor 

In this Appendix we provide two alternate derivations of the formula for the subcritical 

multiplication factor, M.  The starting point is two different formulations of the point kinetics 

equations (the lifetime and generation time formulations, as detailed in Ref. A.1) that describe 

the dynamics of critical, as well as subcritical nuclear systems.  In both cases, the time-dependent 

equations are reduced to the situation of interest  --  that is, for a steady state subcritical system   

--  and the resultant formula for M is identical to the one developed using the more intuitive 

approach in the main body of these Lecture Notes [see eqn. (5)].  The goal here is to offer 

additional insight into the subject of subcritical systems and to provide a brief look at a more 

mathematical approach to the study of this class of nuclear systems. 

The Lifetime Formulation 

From Ref. A.1, the defining equations for the Lifetime Formulation of point kinetics are: 

 
i i

ip

(1 )k 1dT
T c q

dt l

 
           (A.1) 

i
i i i

p

dc k
T c for i 1, 2, 6

dt l
          (A.2) 

where T(t) is the neutron flux amplitude and ci(t) and q(t) are normalized precursor and external 

source amplitudes defined by 

i i

o

1
c (t) C (t)

1

v





         (A.3) 

o

1
q(t) Q(t)

1

v





         (A.4) 

and o  is the spatially integrated steady state flux distribution, and all the remaining terms and 

symbols are defined in detail in Ref. A.1. 

For steady state subcritical operation, a steady state flux distribution will result from the 

subcritical multiplication of the source neutrons.  Clearly, the resultant total neutron population 

is related to the total external neutron source, and a formal mathematical representation for this 

relationship can be derived from the above equations.  In particular, in steady state, the derivative 

terms vanish and the production and loss terms just balance each other.  From the precursor 

balance we have 

i i i i i

ip p

k k
0 T(0) c (0) or c (0) T(0)

l l
       

and, inserting this into the neutron balance gives 
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 

p p

(1 )k 1 k
0 T(0) T(0) q(0)

l l

 
    

or 

p

p

l1 k
T(0) q(0) and T(0) q(0)

l 1 k


 


 

Using the 1-group representation for the prompt neutron lifetime (from Ref. A.1), 

o

p

o a o

1

vl
D




    

        (A.5) 

and the definition of the normalized external source from eqn. (A.4) in the expression for T(0) 

gives 

o

o a o o

1

1 1vT(0) Q(0)
11 k D
v




        

 

Finally, writing the loss rate terms (leakage plus absorption) as the production rate divided by k, 

gives 

f o

1 k
T(0) Q(0)

1 k


  
 

Now, knowing T(0), we can write the fission source as 

fis f o ext

k k
S T(0) Q(0) S

1 k 1 k
    

 
      (A.6) 

where Sfis is the total fission source and Sext is the external neutron source strength  --  both with 

units of neutrons per second.   

As a last step, we let the total neutron source, N, be the sum of the fission source, Sfis, and the 

input source, Sext, or 

fis ext ext ext ext ext ext

k k 1
N S S S S 1 S S M S

1 k 1 k 1 k

 
        

   
  (A.7) 

where M = 1/(1-k) is the desired subcritical multiplication factor.  This says that, at steady state 

subcritical, the total neutron source is simply M, the subcritical multiplication factor, times the 

input external source strength, Sext  --  and, of course, this is the same result obtained in the main 

body of these lecture notes.   

The Generation Time Formulation 

Another popular form of the point kinetics equations is the Generation Time Formulation which, 

using the notation from Ref. A.1, can be written as 
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i i

i

dT
T c q

dt

 
    

 
        (A.8) 

i i
i i

dc
T c for i 1, 2, 6

dt


  


       (A.9) 

where the normalized precursor concentration and external source have already been defined in 

eqns. (A.3) and (A.4). 

Now, to develop an expression for the subcritical multiplication factor, we again set the 

derivative terms to zero and use the precursor balance to simplify the neutron balance equation.  

In particular, at steady state, eqn. (A.9) gives 

i
i i i i

i

0 T(0) c (0) or c (0) T(0)
 

   
 

  

and putting this into the neutron balance in eqn. (A.8) yields 

0 T(0) T(0) q(0)
  

   
  

 

or 

1 k k
0 T(0) q(0) and T(0) q(0) q(0) q(0)

k 1 1 k


         
   

 

Now, using the definition of the normalized input source from eqn. (A.4) and the definition of 

the prompt generation time, , from Ref. A.1, we have 

o

f o f o
o

1

k 1 k 1vT(0) Q(0) Q(0)
11 k 1 k

v



 
     



 

and, multiplying both sides by f o   gives 

fis f o ext

k k
S T(0) Q(0) S

1 k 1 k
    

 
     (A.10) 

which is identical to eqn. (A.6) from the above development using the Lifetime Formulation as 

the starting point.  The last step in the current derivation for the Generation Time Formulation, of 

course, is the same as above, and this leads to eqn. (A.7) from above.  Thus, here again, we get 

the result that M = 1/(1-k) is the final formula for the desired subcritical multiplication factor.    
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