


The following simulation results use the RegBlade curve from January 2018...
Also, as apparent from the blade position vs. time curve, this set of results used exactly the same $z(t)$ as recorded during the reactor run.




The following simulation results use the RegBlade curve from January 2018...
Also, as seen in the blade position vs. time curve, this set of results used a slightly modified $z(t)$ which was chosen to give better $P(t)$ and $\rho(t)$ comparisons.




```
>> bw1_stable_period_post2012
    Raw Measured + Computed Data from March 2012
        Initial Ht. Final Ht. Doubling Time Midpoint Diff. Worth
            (in) (in) (sec)
            0.00 0.00 0.0
            0.00 2.00
        1.00 3.50
        2.00 4.00
```



```
        10.00 12.00 10.50
        10.00 10.50
        14.00 
        14.00 14.00 14.40
                        18.75 74.2 18.38
        74.2 18.38 0.0950
        14.00 
        71.7 19.50 0.0732
        71.7 19.50 0.0732
        18.00 
                65.0 20.75
                            22.50
                                (in) (%Dk/k per in)
                    102.9
                        0.00
                                0.0000
                        1.00
                                0.0273
                        43.2 2.25
        44.1 2.25 0.00427
        49.9 3.75
        0.0643
        53.7 10.25
        0.1825
        20.00 21.50
        63.1 12.20 0.2019
        63.1 12.20 0.2019
        83.2 14.4 14.20
        83.2 14.20 14.25 0.1626
        23.50 78.2
        0.0526
\begin{tabular}{cc} 
Midpoint & Diff. Worth \\
(in) & (\%Dk/k per in) \\
0.00 & 0.0000 \\
1.00 & 0.0273 \\
2.25 & 0.0427 \\
3.00 & 0.0527 \\
3.75 & 0.0643 \\
10.25 & 0.1825 \\
12.20 & 0.2019 \\
14.20 & 0.1626 \\
16.25 & 0.1336 \\
18.38 & 0.0950 \\
19.50 & 0.0732 \\
20.75 & 0.0526 \\
22.50 & 0.0342
\end{tabular}
Coeffs for Combined Poly-Sinusoid Differential Worth Model:
        8.6947e-02 1.2239e-02 -1.2951e-03 3.5100e-05 -8.1554e-02
    Curve fit coeff of determination (r-squared): 0.9912
    Total worth based on curve fit using 2012 data (%Dk/k): 2.6229
    2 0 1 3 ~ t o t a l ~ w o r t h ~ o f ~ B l a d e ~ 1 ~ ( \% D k / k ) : ~ 2 . 6 3 5 0
    Jan2018 total worth of Blade 1 (%Dk/k): 2.8488
```




Note: The UMLRR staff started using the inverse kinetics method in 2013 to do the blade calibrations. Therefore, the last time the Stable Period Method was used was in 2012. Here we compare the Blade 1 integral worth curves from 2012 using the Stable Period Method with the 2013 curve generated with the Inverse Kinetics Method. In 2012 and 2013 the M-2-5 core configuration was the given core layout.

A similar comparison is made below to the current (2018) Blade 1 curves for the M-5-8 core, but here the core configuration is different, so it is expected that the total worth will be different (expected to be greater since the two partial elements in C3 and E3 have been replaced with full fuel elements).


Rough sketch of the M-2-5 core configuration for the UMLRR.
Note that, for the M-5-8 core, the two partial full elements are now full fuel assemblies.



```
>> critical_height(h,c)
    Post analysis data from umlrr_data GUI...
        Summary Data for 1/M Plot and Estimate of Critical Height
\begin{tabular}{cccccc} 
Expt. Pt & \begin{tabular}{c} 
Blade Pos. \\
(inches out)
\end{tabular} & \begin{tabular}{c} 
Count Rate \\
(cps)
\end{tabular} & M \(=\) Ci/Co & \(1 / \mathrm{M}\) & \begin{tabular}{c} 
Est. Crit. Ht. \\
(inches out)
\end{tabular} \\
0 & 0.000 & 19 & 1.00 & 1.000 & \\
1 & 8.000 & 25 & 1.32 & 0.760 & 33.333 \\
2 & 14.000 & 59 & 3.11 & 0.322 & 18.412 \\
3 & 16.000 & 100 & 5.26 & 0.190 & 18.878 \\
4 & 17.500 & 163 & 8.58 & 0.117 & 19.881 \\
5 & 18.500 & 258 & 13.58 & 0.074 & 20.216 \\
6 & 19.700 & 575 & 30.26 & 0.033 & 20.677
\end{tabular}
```

Columns 2 and 3 in the above table (from the Approach to Critical Lab on March 6, 2018) were used to generate the partial blade worth curve using the Inverse Count Rate Method.

The following comparison uses the measured full Blade 1 curve from January 2018...


Clearly, the poor comparison towards the lower end of the curve suggests that an additional point or two are needed in the $\mathbf{0}-8$-inch range. Also, if this profile was to be used in practice, then the upper part of the blade traverse would also be needed to complete the full integral blade worth curve using the Inverse Count Rate Method...



