
Reactivity Measurement Techniques  

Introduction 

One of the most important parameters of interest for proper operation of both critical and 

subcritical facilities is the absolute reactivity level of a given configuration or the change in 

reactivity between two operating states.  In this set of Lecture Notes, we will address the basic 

theory behind some of the more popular reactivity measurement techniques.  In particular, the 

Asymptotic Period Technique and Rod Drop Method are discussed within the context of 

measuring the magnitude of a reactivity insertion within a critical system, and the Source Jerk 

Method and Subcritical Multiplication Factor Approach are developed for application within 

subcritical systems.  Each method is developed individually, along with a simple Matlab 

simulation that illustrates the basic application of the method (using simulated data).  In addition, 

some practical suggestions/hints for applying the methods within a real system are also given, 

where appropriate.   

The starting point for the development of all the methods is the Generation Time Formulation 

of Point Kinetics.  From Refs. 1 and 2, the Generation Time Formulation of the kinetics 

equations can be written as  

 
i i

i
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     (2) 

where P(t) is the power level in watts and <Q(t)> represents the total external source strength in 

neutrons/sec, and the relationship between the usual normalized neutron amplitude, T(t), and 

reactor power, P(t), is given by2 

 T(t) P(t)





          (3) 

These expressions represent the basis for the theory behind each of the methods discussed in this 

set of Lecture Notes.  If the reader is unfamiliar with this particular representation of Point 

Kinetics, he or she should definitely consult Refs. 1-3 before continuing with the discussions 

given below. 

Asymptotic Period Technique 

As discussed in some detail in Ref. 3, the solution to the point kinetics equations given in eqns. 

(1) and (2) for a step change in reactivity in a critical system with no external source is given by 

the so-called reactivity equation.  In particular, for the Generation Time Formulation, the 

reactivity equation is given by 

 i

i i

 
  


          (4) 

From a pure mathematical viewpoint, this expression is simply the characteristic equation 

associated with the original seven coupled linear constant coefficient ODEs  --  and, for a given 
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value of reactivity, there will be seven distinct roots, and the root locations dictate the dynamics 

of the system.  For example, we can write a general solution for the time-dependent power level 

as 

j 71 2

7
t tt t

j 1 2 7

j 1

P(t) A e A e A e A e
  



          (5) 

where the j are the roots of eqn. (4) and, as explained in Ref. 3, the key observations to be made 

from studying the reactivity equation are: 

 positive :   reactivity equation has one positive root and six negative roots 

negative :   reactivity equation has seven negative roots 

Now, if we order the roots from most positive to most negative, then, after a relatively short 

transient time, the last six terms in eqn. (5) decay away (because 2, 3,  , 7 < 0 for both 

positive and negative reactivity), leaving only the term containing 1, or 

1t t /
1 1P(t) P e P e

      (after some transient time)    (6) 

where  = 1/|1| is called the reactor period and P1 is the power level after the short transient 

period.  If  is positive, 1 > 0 and the reactor period is positive  --  so the power level and 

neutron population grow indefinitely as et/ (recall that the development of eqn. (4) assumes no 

feedbacks).  And, for negative reactivity, just the opposite occurs.  That is, for 1 < 0, the reactor 

period is negative  --  so the power level and neutron population decrease indefinitely towards 

zero with the form e-t/.  Thus, after a short transient time, the dominate behavior of P(t) is simply 

associated with the most positive root of the reactivity equation and it is represented as a simple 

growing or decaying exponential as shown in eqn. (6).  This form for P(t) is referred to as its 

asymptotic behavior and it is simply characterized by the reactor period   --  which is indeed a 

very important quantity in reactor operations. 

Now, if a small reactivity change is made in a low-power critical system then, after a short 

transient time, the asymptotic power level will behave approximately as given in eqn. (6) and, 

from observation of the measured P(t), one should be able to measure the reactor period,   --  

which, via the reactivity equation given in eqn. (4), gives an indirect measurement of , the 

reactivity change that initiated the transient in the first place.   

In particular, notice that taking the natural logarithm of eqn. (6) gives a straight line, 

 
1

P(t) 1
ln t

P
 


 

with a slope m = 1/, where m will be positive for P(t)/P1 > 1 and negative for P(t)/P1 < 1.  Thus, 

the best way to implement the asymptotic period method is to take the natural logarithm of the 

P(t) data, do a linear fit to determine the slope, and then compute the reactor period as  = 1/m. 

Another common approach for obtaining  is to measure the doubling time, td.  That is, td is the 

time it takes for the reactor power to change by a factor of two after a short transient time 

following the initial reactivity change.  Mathematically, this can be written as 
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dt /d d

1

P(t ) t
2 e and this gives

P ln 2


         (7) 

Thus, the desired asymptotic period can be easily obtained with a simple measurement of the 

doubling time in the system following a reactivity change.  Note also that, for a negative 

reactivity, the same expression is obtained if we associate td with the time it takes the flux 

amplitude or power to decrease by a factor of two.  Finally we note that, although the doubling 

time method is easy to use, the noisy detector signals that are characteristic of most real systems 

can lead to some uncertainty in selecting td and in the measurement of .  If the detector signal is 

quite noisy, then determining the period from a linear fit to the ln P(t)/P1 profile will probably 

give the best result. 

Once the asymptotic period is known, eqn. (4) evaluated with  = 1 = 1/ gives 

 i i i

i i ii
i i

1 1

1 1

   
     
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   

 

    
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i i1


 

  
           (8) 

This result allows one to convert a measured asymptotic period into a measured reactivity  --  

and this was our original goal!!! 

To illustrate how this reactivity measurement procedure might work in practice, a short Matlab 

code called rho_stable_period.m was written to simulate P(t) for a step change in reactivity.  A 

noise component of  ±15% was added to the signal generated via numerical integration of the 

feedback-free point kinetics equations to simulate the noise that is often observed in real 

systems.  The simulation assumes that the system is initially critical with no source, and either 

positive or negative reactivity can be inserted.  With the noisy simulated P(t) signal to represent 

the real reactor power response, the code takes the natural logarithm of the P(t) data, does a 

linear fit to the data after a 60 second transient period to determine the slope, computes the 

reactor period as  = 1/slope, and then uses eqn. (8) to compute ρ based on the 'measured' stable 

period.  Finally, a comparison is made between the actual reactivity that was used to generate the 

simulated data and the one obtained from the simulated experimental data.   

The rho_stable_period code was run for two specific cases with reactivity insertions of positive 

and negative 0.05 dollars.  The results for the positive ρ case are showed in Fig. 1 and the 

summary observations for the negative ρ case are displayed in Fig. 2.  Both cases give very good 

results, with about 1 % error for each situation.  However, although these examples illustrate the 

proper analysis methodology, don't get your expectations too high, since ideal simulated data 

(even data with a simulated noise component) often gives much better comparisons than can be 

expected with real reactor data.  Nevertheless, the asymptotic period method is usually a good 

choice when trying to measure small reactivity changes from critical.   

Finally, we should emphasize that, for large reactivity changes, the stable period method breaks 

down for both positive and negative ρ  --  for quite different reasons.  For large positive ρ, the 

reactor period becomes too small such that P(t) increases too rapidly, quickly causing an unsafe 

reactor condition that clearly must be avoided in all cases.  In addition, even for moderate +ρ, the 

reactor power often approaches a level where we can no longer assume that the feedbacks are 
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negligible.  Thus, positive reactivity changes beyond about 0.10 dollars simply cannot be 

measured with the stable period method (actually, there is no simple dynamic method that can be 

used to measure large positive changes in reactivity). 

For large negative ρ, the situation is quite different.  Here the reactor power is decreasing, so 

safety is not the concern.  However, as discussed in Ref. 3, τ vs. ρ approaches a constant for large 

negative ρ values  --  thus, beyond about -0.10 dollars, it is simply not possible to relate a unique 

combination of τ and ρ via eqn. (8) [see Fig. 4 in Ref. 3, for example].  Therefore, an alternate 

method is clearly needed for measuring large negative ρ (as discussed in the next subsection)...  

 

  

Measured stable period (sec):     217.76   

Measured rho (dollars):           0.0505   

Error in Predicted rho (%):         1.05 

 

Fig. 1   Measured results using simulated data for ρ = 0.05 dollars (positive reactivity). 

 

  

Measured stable period (sec):    -290.34   

Measured rho (dollars):          -0.0507   

Error in Predicted rho (%):         1.39 

 

Fig. 2   Measured results using simulated data for ρ = -0.05 dollars (negative reactivity). 
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The Rod Drop Method and Source Jerk Formulations4 

As noted above, the stable period method does not work for large reactivity changes.  In 

addition, for the asymptotic period method, the system must be initially critical, which eliminates 

the whole class of subcritical systems that are clearly of interest.  Thus, surely, we need to 

address additional reactivity measurement techniques to expand our capability to measure ρ for a 

wider variety of situations.  Two techniques that do this for us include the Rod Drop and Source 

Jerk methods.  Although these methods address different situations, they share a common 

theory, so we will address both these methods in this subsection.  In particular, the Rod Drop 

Method is used to measure large negative reactivity insertions in critical systems, and the Source 

Jerk Method is used to determine the absolute reactivity level of subcritical systems  --  and both 

these situations are of interest in practical applications. 

As implied by the methods' names, the intent here is to either introduce a large negative step 

change in reactivity into a critical system (i.e. for the Rod Drop case), or to make a source 

perturbation to a subcritical system by instantaneously removing the external source (i.e. for the 

Source Jerk method).  Both these instantaneous changes occur at t = 0 and they lead to the 

following situations 

  for t > 0+,  ρ = constant          and             
0

Q(t) dt 0




    (9) 

and both these statements are true for both the Rod Drop and Source Jerk scenarios.  For 

example, for the initial critical case there is no source present and, for the subcritical case, the 

source is zero for t > 0+  --  so the second part of eqn. (9) is true in both cases.  And, to justify the 

first statement, we note that this is certainly consistent with the "step insertion" condition 

associated with the Rod Drop case, and the assumption is made that the instantaneous removal of 

the source only affects the source strength, not the reactivity level of the system (this, by the 

way, is only approximately true in practice).  Thus, in the following development, we will take 

the two statements given in eqn. (9) as valid approximations for both the Rod Drop and Source 

Jerk methods.  

Now, to develop the theory for both methods, we start with the generation time formulation of 

point kinetics as given in eqns. (1) and (2), and integrate both equations from 0+ to ∞.  Doing this 

gives 

 
i i

0 0 0
i

dP P(t)dt c (t)dt
  

  
  


         (10) 

i
i i i

0 0 0
dc P(t)dt c (t)dt for i 1, 2, 6

  

  
  
       (11) 

where we have already used the relationships in eqn. (9) to simplify eqn. (10). 

Now we solve eqn. (11) for the i i
0

c (t)dt




   term, substitute this result into eqn. (10), and do the 

indicated sum over all precursor groups, to give 

i
0 0 0 0 0

i

dP P(t)dt P(t)dt P(t)dt dc
    

      
   
  

       
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and, with the middle terms cancelling, we have 

i
0 0

i

0

dP dc

P(t)dt

 



 



 
  
  

 


         (12) 

The exact derivatives on the right side of eqn. (12) can be written as 

i i0 0 i0 i00 0
dP P P P and dc c c c    

 

            

where the last approximation in each expression assumes that the perturbation made at t = 0 is 

such that the neutron flux or power and the precursor populations will go to zero as t → ∞  --  

and clearly this is indeed the case for both the Rod Drop and Source Jerk scenarios described 

above. 

Thus, upon substitution of these results into eqn. (12), the expression of interest for the 

reactivity, ρ, becomes 

0 i0
i

0

P c

P(t)dt

 





 
  

  




         (13) 

Rod Drop Method:  For this case, the system is initially at critical with ρ0− = ρo = 0 and no 

source, so the initial conditions are 

i

0 i0 0
i

1
P(0 ) P and c P for i 1, 2, 6  

 
  

 
    (14) 

where the 0− notation implies before the instantaneous perturbation is made.  Also, for this 

method, ρ in eqn. (13) represents the worth of the rod (or whatever material) that is instantly 

inserted into the critical system at t = 0. 

Now, the relationship between quantities evaluated at t = 0− and at t = 0+ is associated with the 

usual prompt jump/drop phenomena due to the fast response of the prompt neutrons.  Thus, 

because of the very rapid change due to the prompt neutrons, we have P0+   P0− but, due to the 

much slower response of the delayed neutrons, we can argue that ci0+ = ci0−.  Therefore, it is 

necessary to carry along the power signal (or neutron amplitude) both before and after the step 

perturbation in the system (i.e. P0− and P0+, respectively) but, in contrast, ci0+ can be replaced 

with the initial condition expression given in eqn. (14).  Making this substitution in the equation 

for the reactivity gives 

i i

d0 0 0 0 0 0
i ii i

0 0 0

1 1
P P P P P t P

P(t)dt P(t)dt P(t)dt

     

  

  

      
    

           


 

  
   (15) 

where 
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i
d

i i

1
t



 
           (16) 

is the mean lifetime of the delayed precursors and, for convenience, we have chosen to write the 

reactivity change as a positive quantity in dollars. 

As a last step, since td >> Λ/β, eqn. (15) reduces to  

d 0

0

t P

P(t)dt













          (17) 

and this is the final expression of interest here.  This says that, to measure the worth of the 

negative step change in reactivity in dollars, we need to measure P(t), perform a numerical 

integration to find its integral, and then simply evaluate the above expression.   

Concerning implementation/use of this expression, we note that, within the UMLRR, the average 

value of the Linear Power 1 and Linear Power 2 channels will be used as the P(t) signal for 

application within eqn. (17) for the Rod Drop Method.  The reactor will be assumed to be at 

some steady state power level P0− before the negative reactivity insertion, and the P(t) behavior 

that results from the perturbation is used to evaluate the denominator of eqn. (17).  Also note 

that, because power, P, appears in both the numerator and denominator, a relative or normalized 

power can also be used.  Thus, eqn. (17) is also often expressed in terms of the normalized 

neutron amplitude, T(t), as 

d 0

0

t T

T(t)dt













          (18) 

Source Jerk Method:  For this case, the system is initially subcritical with ρ0− = ρo being the 

degree of subcriticality.   The initial conditions for this system can be written explicitly as  

i

0 i0 0
o i

1 1
P(0 ) P Q(0 ) and c P for i 1, 2, 6  

  
    

   
  (19) 

Here it is important to note that these initial conditions are essentially identical with the Rod 

Drop case if we simply think of P0− as the initial power level and don't dwell on how the steady 

state neutron level is developed (i.e. critical vs. subcritical system).  And, with identical initial 

conditions, we end up with the identical development and resultant formula as given above to 

represent the desired system subcriticality, or 

do 0

0

t T

T(t)dt













          (20) 

where ρo is used here so it can be distinguished from the ρ used in the Rod Drop method.  In 

particular, ρ in eqn. (18) for the Rod Drop scenario is the worth of the negative reactivity 

inserted into the critical system (with the initial ρo identically zero).  In contrast, ρo in eqn. (20) 

for the Source Jerk technique is the degree of subcriticality within the subcritical system, where 

it has been assumed that the instantaneous source removal does not cause any substantial 

reactivity change  --  that is, the only perturbation in the system is the removal of the external 
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source.  Thus, the appropriate equations are essentially identical, only the interpretation of the 

reactivity term, ρ vs. ρo, is different for the two scenarios. 

Therefore, to measure the degree of subcriticality in a subcritical system, we can rapidly remove 

the source, measure the neutron amplitude vs. time, T(t), perform a numerical integration to find 

its integral, and then simply apply eqn. (20) to obtain ρo/β.  As apparent, the basic procedures for 

the Rod Drop and Source Jerk methods are nearly identical  --  the key difference, of course, is 

that the Rod Drop method starts from a critical system with no source, and the Source Jerk 

method begins with a steady state subcritical system with an external source present.  In addition, 

for measurement within the UMLRR, we should note that the linear power channels are 

unresponsive at very low power levels, so the startup detector is used to get the measured T(t) 

signal for analysis and experimental determination of the degree of subcriticality within a given 

subcritical configuration. 

An example for each of the two methods has been prepared to illustrate the procedure described 

above.  In particular, the Matlab code rho_rod_drop.m has been developed to simulate a noisy 

P(t) profile following a large negative insertion of reactivity within a just critical system.  The 

code then uses Matlab's trapz function to do the needed numerical integrations, eventually 

evaluating eqn. (17) for the "measured" ρ/β.  Two specific cases, for negative insertions of 0.5 

and 3.0 dollars, were simulated and the results are summarized in Fig. 3  --  showing both the 

resultant noisy P(t) profiles and the comparisons between the "measured" values and the actual 

reactivities that initiated the transients.  Both comparisons are reasonably good but, because of 

the fixed sampling time of 1 sec that is used in the simulations (since this is what is used in the 

UMLRR data acquisition system), the very large and fast prompt drop associated with the larger 

reactivity insertion leads to somewhat larger prediction errors.  Although a smaller Δt between 

sampled P(t) data would lead to better results here, a smaller sampling interval is not really 

practical for use within the real system.  Thus, a Δt = 1 sec will be used for all the simulations 

given in these Lecture Notes (the user can easily change this within the codes, if desired). 

 

  
    Actual reactivity used ($):    -0.500      Actual reactivity used ($):    -3.000 

    Measured reactivity worth ($): -0.519      Measured reactivity worth ($): -3.262 

    Error in measured result (%):   3.78       Error in measured result (%):   8.72 

 

Fig. 3   Results for the Rod Drop method using simulated data for two different reactivities. 
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For the Source Jerk method, a very similar test analysis was performed and the code for this 

case, rho_source_jerk.m, is nearly identical to the rho_rod_drop code  --  as it should be since 

the background theory for the two methods is the same.  For this simulation, however, we 

doubled the noise level (from 15% to 30%) since the startup counter within the UMLRR tends to 

have a somewhat larger noise component relative to the linear power channels.  The summary 

results from the rho_source_jerk code are shown in Fig. 4 and, for comparable subcriticality 

levels relative to the reactivity insertion levels used for the Rod Drop method tests, we see nearly 

identical P(t) profiles and "measured" results.  Again, this was expected because of the similarity 

of the methods.   

Thus, it appears that both the Rod Drop and Source Jerk methods have the potential to the useful 

as techniques for measuring reactivity under quite different scenarios.  These methods will be 

tested with real reactor data as part of a subsequent Reactor Experiments lab on Reactivity 

Measurement Techniques. 

Note:  Much of the theoretical development here for the Rod Drop and Source Jerk methods was 

based on a similar development done in Ref. 4 which used the Lifetime Formulation of Point 

Kinetics.  Both treatments get the same expressions for ρ/β and ρo/β as given in eqns. (18) and 

(20). 

 

  
    Actual subcriticality ($):    -0.500       Actual subcriticality ($):    -3.000 

    Measured subcriticality ($):  -0.523       Measured subcriticality ($):  -3.244 

    Error in measured result (%):  4.59        Error in measured result (%):  8.14 

 

Fig. 4   Results for the Source Jerk method using simulated data for two different o values. 

 

Subcritical Multiplication Factor Approach 

The methods discussed thus far allow us to measure reactivity changes from critical and to 

measure the absolute subcriticality level of a particular subcritical configuration, so the only key 

situation that is missing is to account for reactivity changes while the system is still subcritical.  

This situation was addressed to some extent in the Approach to Critical Reactor Experiments 

Lab5-6 where we introduced the concept of subcritical multiplication and the relative subcritical 
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multiplication factor, Mr.  In particular, as developed in Ref. 6, this quantity is defined as the 

ratio of detector count rates for two different subcritical configurations, 

1
r

0

C
M

C
           (21) 

and, with the absolute subcritical multiplication factor for the ith state given by Mi = 1/(1 − ki), 

Mr can be written in a number of useful forms as follows: 

 
 

 

1

1 o 0 0 0 01 1 1 1 1 1 1 1
r

0 0 0 0 0 0 1 0 1 0 0 1 1
0

1

1
1

1 k 1C M S M 1
M

C M S M 1 k 11
1

1

 
  

                 
          

  
 

 (22) 

where ρ0 and ρ1 represent the two subcriticality levels for the two different states. 

Now, with these relationships, the change in reactivity from state 0 to state 1 is given by 

 

1

0

1

0

C
C1 r

1 0 0 0 0 0 C
C0 r r

11 M1
1 1

M M

       
                             

  (23) 

Thus, if we know the subcriticality level for the reference state, then the change in reactivity 

associated with a perturbation to the subcritical system can be determined by simply comparing 

the steady state detector count rates before and after the configuration change as given by       

eqn. (23). 

A similar relationship for the reactivity change written in terms of the power level or neutron 

amplitude at two different subcritical states can also be formally developed quite easily by 

starting with the point kinetics equations given in eqns. (1) and (2).  To see this, we simply set 

the time derivatives to zero to establish a steady state relationship between the power level and 

source amplitude for each subcritical state, or 

 0 0 0 0

0 0

1 1
P Q or Q

P

 
    

  
     (24a) 

 1 1 1 1

1 1

1 1
P Q or Q

P

 
    

  
      (24b) 

where ρ0, <Q0>, and P0 are the subcriticality level, total source amplitude, and power level for 

the initial reference steady state, and the same quantities with a '1' subscript correspond to the 

new steady state after some Δρ has been introduced into state 0.  If the source is not modified 

(i.e. <Q> = <Q0> = <Q1>), then the reactivity change can be written as 

 

01
1 0 0 0

0 1

P
1 1

P

   
            

   
 

or, with multiplication and division by P1/P0, we have 
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1 1 1

0 0 0

1 1 1

0 0 0

P P T
P P T0

0 0 0P P T
P P T1

1 1P
1

P

     
               

     

     (25) 

which is clearly the same as eqn. (23) which uses the ratio of count rates, C1/C0, since in all this 

development (as well as in Refs. 5 and 6) we have been saying that  

1 1 1
r

0 0 0

C P T
M

C P T
            (26) 

Thus, if we know any of these relative quantities (i.e. ratio of count rates, ratio of power levels, 

or ratio of flux amplitudes) and the reference subcriticality level, ρ0 = ρo, then obtaining an 

estimate of Δρ is a rather trivial task  --  we simply need to evaluate eqn. (23) or eqn. (25). 

Although not necessary to compute Δρ, it is also interesting to look at the actual transient that 

transpires in moving from state 0 to state 1.  We can illustrate this transient behavior by solving 

the point kinetics equation using a numerical ODE solver with a step change in reactivity (either 

positive or negative) with the system initially at steady state subcritical with subcriticality level 

ρo.  Such a simulation will not only support the steady state conditions given in eqn. (24), but it 

should also highlight how long it takes to reach the new steady state after the step reactivity 

change. 

In particular, a Matlab code called rho_subcriticalM.m was written to perform the operations 

described above and a set of typical results are shown in Fig. 5.  There are a couple of important 

comparisons to be highlighted here.  First we note that the transient power profile for the cases 

with and without a noise component give very similar results  --  although the real P(t) signal is 

very hard to "see" through the ± 30% noise level that was imposed.  Note that, for evaluating the 

new steady state level, P1 or T1, an average value over the last 300 seconds is taken (the system 

is assumed to be in steady state over this interval  --  this can be changed by the user if needed).  

Concerning the actual prediction of the reactivity change, Δρ, clearly this was expected to be 

computed accurately, since the only "error” in the simulation results is due to the noise 

component (whose average values should be near zero) and the assumption that the last 300 

seconds represents the real steady state level after the perturbation (as seen in Fig. 5, this is only 

approximately true for the 2nd set of cases with Δρ = 0.9 dollars). 

Of primary interest here, however, is the length of the time it takes to stabilize after the step 

change.  As discussed in Refs. 5-6 and during the actual Approach to Critical experiment, the 

time needed to reach the new steady state gets much larger as one approaches a critical system  --  

because the delayed neutron effects become more important as one approaches the delayed-

critical state.  For the two simulation sets shown in Fig. 5, the initial subcriticality level was −1.0 

dollars and the reactivity perturbations were 0.5 dollars and 0.9 dollars, respectively, for the top 

and bottom set of plots.  The first simulation which, at the end of the perturbation is still 0.5 

dollars subcritical, stabilized completely in under 300 second.  However, the second simulation, 

being only 0.1 dollars subcritical after the perturbation, required more than 600 seconds to reach 

equilibrium.  Finally, we note that, although not illustrated directly here, as ρ1 → 0 (i.e. very 

close to critical), the stabilization time can become quite long  --  and this behavior is fully 

consistent with expectations and with the experimental observations made during our previous 

Approach to Critical lab. 
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    Subcriticality level($):      -1.000       Subcriticality level($):      -1.000  

    Actual delrho used ($):        0.500       Actual delrho used ($):        0.500 

    Measured delrho ($):           0.500       Measured delrho ($):           0.503   

    Error in measured delrho (%): -0.002       Error in measured delrho (%):  0.587 

 

 

  
    Subcriticality level($):      -1.000       Subcriticality level($):      -1.000  

    Actual delrho used ($):        0.900       Actual delrho used ($):        0.900 

    Measured delrho ($):           0.899       Measured delrho ($):           0.897   

    Error in measured delrho (%): -0.098       Error in measured delrho (%): -0.292 

 

Fig. 5   Measured results using simulated data for two different reactivity changes  

with and without a ± 30% noise component. 

 

Summary 

This set of Lecture Notes summarizes four experimental techniques for measuring reactivity 

levels or reactivity changes within actual reactor systems.  The four methods combined give 

good coverage of most of the situations that can occur within real systems  -- for both critical and 

subcritical configurations.  In addition to the basic theory, actual use of the methods was also 

illustrated via simulation within a series of short Matlab codes so that the reader could better 

visualize how to apply these techniques in practical applications.  The key take-aways from these 
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notes should be a good understanding of the various reactivity measurement techniques 

addressed here, and the confidence and knowledge of how to use these methods within 

subsequent experiments within the UMLRR... 
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