
Solution of the Point Kinetics Equations 

Introduction 
In general, analytical solution of the point kinetics equations is not easy  --  recall that we have a 
coupled set of seven ODEs.  Thus, in most cases, these equations are evaluated for a given k(t) or 
ρ(t) using numerical methods (such as Matlab’s ode15s solver, for example).  However, for a 
few specific cases, the analytical solution schemes are manageable  --  and the resultant solutions 
give considerable insight into the general behavior of the time dependent neutron balance in real 
systems.  Thus, the focus of this section of notes is to give an overview of some typical analytical 
solutions with an emphasis on the interpretation of the analytical expressions for the time 
dependent amplitude of the neutron flux under various conditions.  This will allow us to 
introduce some common terminology related to reactor kinetics, and to gain a good under-
standing of the expected behavior in several common situations.  In addition, we also overview 
the operation of the kinetics_gui code which allows easy visualization of many of the key 
concepts discussed within this set of Lecture Notes. 

Step Change in Reactivity 
In particular, one common situation that is relatively easy to solve analytically involves a step 
change in reactivity in a critical reactor operating at low power (the “low power” specification is 
needed so that reactivity feedback effects are negligible).  If we focus on the generation time 
formulation of point kinetics (see Refs. 1 and 2 for details) with no external source, we have 
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where ci(t) refers to the normalized precursor densities, P(t) is the reactor power level (which is 
simply proportional to the amplitude of the neutron flux), Λ, βi, and λi are the so-called effective 
kinetics parameters for the system of interest, and ρ(t) is the reactivity.  In most applications of 
eqns. (1) and (2), the kinetics parameters are assumed to be constant, the reactivity is the driving 
force for the transient, and P(t) and ci(t) are the dependent variables that vary with time due to 
some changing ρ(t).  However, for a step change in reactivity, ρ(t) = ρ = constant, and the above 
equations become a system of seven linear constant coefficient ODEs  --  and this falls into a 
class of problems that we know how to handle analytically (from your sophomore-level 
Differential Equations class).  

The standard approach for solving linear time-invariant systems is to assume a solution of the 
form of a simple exponential.  Following this technique, we assume that 

t t
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Now, we substitute these assumed solutions into the precursor balance equation, to obtain 
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Now, putting the assumed solutions, along with eqn. (4), into the equation for P(t) gives 
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Cancelling the common Aoeωt factor in each term and multiplication by Λ gives 

i
i
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and solving for ρ gives 

i i
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β λ
ρ = Λω+β−
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To put this expression into standard form, note that β = ∑ βi.  Now, using this equality, eqn. (5) 
becomes 
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This equation is the standard form of the so-called reactivity equation obtained from the 
generation time formulation of point kinetics.  From a pure mathematical viewpoint, it is simply 
the characteristic equation associated with the original seven linear constant coefficient ODEs  
--  and, for a given value of reactivity, the roots of this equation give the values of ω that satisfy 
the original form of the assumed solution.  Also, since we have seven coupled first-order ODEs 
(giving an overall 7th order system), we should expect seven roots (or seven values of ω) that will 
satisfy eqn. (6).  Assuming that each ωj for j = 1, 2, ⋅⋅⋅ 7 is distinct, the linear superposition 
principle allows us to write the general solution for P(t) as a linear combination of the linearly 
independent individual solutions.  Thus, for example, we can write a general solution for the 
time-dependent power level as 

j 71 2
7

t tt t
j 1 2 7

j 1
P(t) A e A e A e A eω ωω ω

=

= = + + +∑       (7) 

where the ωj are the roots of eqn. (6) and the Aj are the seven arbitrary coefficients needed for 
the general solution of a 7th order initial value problem (IVP).  To obtain a unique solution (i.e. 
determine explicit values for the Aj coefficients), we simply need to specify seven initial 
conditions (ICs) on the original balance equations given in eqns. (1) and (2). 
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Although the above paragraph establishes a solid mathematical foundation for our solution 
methodology and the analytical form for the time-dependent power level (or neutron amplitude), 
it really has not shed a lot of insight into the actual behavior of P(t).  To do this, we must first try 
to get a better understanding of the reactivity equation and the value of its roots.   

To gain this insight, let’s try to actually visualize the root finding problem implied by the 
reactivity equation given in eqn. (6).  To do this, we can think of the right hand side (RHS) of 
eqn. (6) as some function of ω, say f(ω), and simply plot f(ω) vs. ω for a wide range of ω.  Then, 
if we superimpose the LHS of eqn. (6) [i.e. ρ(ω) = constant] on the plot, the intersections of the 
two curves give the desired roots, ωj, of the reactivity equation.  Although in theory this is quite 
straightforward, the generation of a single plot that shows the desired visualization is somewhat 
impractical because of the wide range of ω values that must be addressed.  Thus, to see this 
relationship quantitatively, multiple plots covering different ranges and scales for the ω variable 
are often given. 

This capability has been implemented within a Matlab code and a typical set of profiles are given 
in Figs. 1-3 for three different ranges of ω (here Λ = 0.1 ms and β = 0.0065).  In these plots there 
are seven individual red curve segments for f(ω) separated by six vertical blue dashed lines that 
represent the asymptotes of f(ω) as ω → -λi [note that f(ω) → ±∞ as ω → -λi].  In addition to the 
red f(ω) curve, we have also plotted the ρ(ω) = constant lines (dashed green lines) for the case 
where ρ = ±0.25 dollars of reactivity (note that ρ = β is $1 of positive reactivity).  The seven 
intersections of the solid red f(ω) curves and the dashed green ρ = constant lines represent the 
seven specific roots of the reactivity equation (characteristic equation) for the given parameters 
for this example problem (Λ = 0.1 ms, β = 0.0065, and ρ = ± $0.25).   

 
Fig. 1   Reactivity equation for -0.4 < ω < 0.2 1/s. 
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Fig. 2   Reactivity equation for -4 < ω < -0.4 1/s. 

 
 
 

 
Fig. 3   Reactivity equation for -100 < ω < -4 1/s. 
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Although the numerical values of all the roots, ωj, are needed for quantitative analysis, here we 
are only interested in a qualitative description of the transient behavior of the neutron flux 
magnitude.  In particular, the key observations from Figs. 1-3 can be summarized as follows: 

 positive ρ:   reactivity equation has one positive root and six negative roots 

negative ρ:   reactivity equation has seven negative roots 

If we order the roots ωj from most positive to most negative, then, after a relatively short 
transient time, the last six terms in eqn. (7) decay away (because ω2, ω3, ⋅⋅⋅ , ω7 < 0 for both 
positive and negative reactivity), leaving only the term containing ω1, or 

1t t /
1 1P(t) P e P eω ± τ= =   (after some transient time)    (8) 

where τ = 1/|ω1| is called the reactor period and P1 is the power level after the short transient 
period.  If ρ is positive, ω1 > 0, and the reactor period is positive  --  so the power level and 
neutron population grow indefinitely as et/τ (remember that we are assuming no feedbacks at this 
point).  And, for negative reactivity, just the opposite occurs.  That is, for ω1 < 0, the reactor 
period is negative  --  so the power level and neutron population decrease indefinitely towards 
zero with the form e-t/τ.  Thus, after a short transient time, the dominate behavior of P(t) is simply 
associated with the most positive root of the reactivity equation and it is represented as a simple 
growing or decaying exponential as shown in eqn. (8).  This shows that the time behavior after 
the early fast transient is simply characterized by the reactor period τ  --  which is indeed a very 
important quantity in reactor operations! 

Since τ = 1/|ω1| is so important, we can solve eqn. (6) for this quantity for a range of reactivity 
values (both positive and negative) and plot the summary results.  This has also been done within 
a Matlab code and the results for the case where Λ = 0.1 ms and β = 0.0065 are given in Fig. 4.  
This figure can be thought of as a “design curve” or an “operational aid” depending on the 
intended use.  For example, if we wanted to know the reactor period associated with a reactivity 
change of ρ = ± $0.25, we can simply extract this information from Fig. 4 (the green dashed line 
has been included on the plot to highlight this case).  For this specific case, ρ = +25 cents gives   
τ ≈ 24.4 sec and ρ = -25 cents gives τ ≈ -102 sec.  From a different perspective, one might, for 
example, add a small amount of positive reactivity into a critical system by pulling out a control 
rod a small distance and, by observing the power vs. time after the short transient period, actually 
measure the reactor period, τ.  If, in a specific case, a positive period of about 100 seconds is 
obtained, then Fig. 4 shows that the reactivity worth of the rod movement corresponds to about 
+0.095 dollars or +9.5 cents.  In short, a reactor period vs. reactivity curve can be a very useful 
tool for any system! 

To wrap up our formal discussion of eqns. (6) and (7), it makes sense to show the typical P(t) 
behavior for a specific change in both positive and negative reactivity.  This was done in the 
same Matlab code as noted above, but the actual solution was generated via numerical solution 
rather than analytically as described above.  The numerical approach was selected for two 
important reasons, as follows: 

1. The numerical solution is much easier to obtain.  The point of the above discussion for the 
analytical solution was so we could get a good understanding of the expected behavior and to 
introduce some important terminology associated with reactor kinetics.  However, actually 
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computing accurate values for all seven roots of the reactivity equations (via seven calls to 
Matlab’s fzero routine, for example), and then setting up the appropriate equations and 
solving for the seven coefficients for each transient situation of interest is not really easy to 
implement.  It certainly can be done for the case where ρ = constant but, even for this simple 
situation, the numerical solution of the seven coupled ODEs using a readily available ODE 
solver is a much easier path to follow.  Thus, this was the technique chosen here. 

2. The numerical solution allows the treatment of feedback effects into the model, since we 
are not restricted to the case where ρ = constant.  Recall that the above development of 
the analytical solution is based on the fact that ρ = constant.  In practice, however, the 
material properties are all functions of temperature and, as the neutron flux and power level 
change, so do the material temperatures within the system.  Thus, the unbounded exponential 
increase predicted for a positive reactivity insertion is not realistic  --  instead, the inherent 
negative feedbacks within the system tend to stabilize the behavior at some point. 

 

 
Fig. 4   Reactor period vs. reactivity for both positive and negative changes in ρ/β. 

 
To illustrate the stabilizing effect associated with negative feedback, let’s define a generic power 
feedback coefficient as  

p 2
1 k 1 k

P P k Pk
∂ρ ∂ ∂

α = = ≈
∂ ∂ ∂

        (9) 

With this definition, we see that the actual reactivity that enters into the point kinetics equation is 
a combination of the externally applied reactivity, ρext (e.g., due to a change in control rod 
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position) and the feedback reactivity, ρf, which is inherently time-dependent due to changes that 
are not under operator control, or 

( )ext f ext p o(t) (t) P(t) Pρ = ρ +ρ = ρ +α −       (10) 

Note also that the system is inherently unstable and it will quickly destroy itself if the feedback 
coefficient is positive.  This is easily apparent from eqn. (10) since, with a positive value of αp, 
an increase in reactivity leads to an increase in power, which, in turn, leads to a further increase 
in reactivity, which gives another increase in power, and so on  --  which leads to a runaway 
system.  If, on the other hand, αp is negative, then an increase in power reduces ρ, which 
decreases P, which increases ρ, etc. until some new equilibrium steady state condition is realized.  
Thus, this situation is clearly the only reasonable option, and all operating reactors are required 
to have a negative feedback coefficient under all possible hot zero or full power conditions. 

Also it should be emphasized that, by definition, criticality is achieved when ρ = 0.  Thus, we see 
that the new steady state power level associated with the negative feedback case will be reached 
when the feedback reactivity exactly cancels the applied external reactivity, or 

( ) ext
p new o ext new o

p
P P or P P ρ

α − = −ρ = −
α

     (11) 

Well, with this brief background, we can now actually simulate and compare the dynamics of a 
system with and without feedback.  For the feedback-free case, we simply set αp = 0, and for the 
simulation with inherent feedbacks, we set the power feedback coefficient to its appropriate 
value for the system of interest (for the current example with feedbacks, αp = -2×10-4 ∆k/k per 
unit ∆P).  The results of the Matlab simulation for the two cases with and without feedback are 
shown in Figs. 5 and 6 for the insertion and removal of reactivity, respectively. 

In particular, Fig. 5 shows the expected unbounded exponential increase in the flux or power 
level for the case of a positive reactivity insertion with no feedback (as predicted in the above 
analytical treatment).  However, for the case where the inherent negative feedback is treated, the 
power level rises less rapidly and it eventually levels off at a new steady state power that is 
roughly 9 times the initial value [note that Po - ρext/αp = 1 + (0.25)(0.0065)/(0.0002) = 9.125]. 

For the case where ρext = -25 cents, both simulations (with and without feedback) lead to a 
decreasing power level as shown in Fig. 6.  In the case with inherent feedbacks, the exponential 
decrease is reduced slightly, but not enough to keep the reactor from complete shutdown.  This is 
true because the positive reactivity due to the power feedback is not sufficient to overcome the 
original negative external reactivity added to the system.  Thus, both cases lead to complete 
shutdown (for the simulation parameters used here). 
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Fig. 5   P(t)/Po for ρext = +25 cents. 

 
 

 
Fig. 6   P(t)/Po for ρext = -25 cents. 
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The Prompt Jump/Drop 
If we expand upon the first few seconds of the transient profiles for the normalized power shown 
in Figs. 5 and 6, we see a nearly instantaneous rise or fall in the normalized power immediately 
after the step change in reactivity is made.  This prompt jump and drop are highlighted for the 
case of a 25 cent change in both positive (jump) and negative (drop) reactivity in Figs. 7 and 8, 
respectively.  The rapid change seen here is due to the most negative root, ω7, of the reactivity 
equation  --  that is, the 7t

7A eω  term in eqn. (7).  Because ω7 has such a large negative value, this 
term goes to zero very quickly after initiation of the transient. 

Since the prompt jump/drop is an inherent feature of each transient, it would be convenient if we 
could get a quick and easy-to-use estimate of the magnitude associated with this phenomenon.  
In particular, since we have already argued that the 1t

1A eω  term dominates the transient response 
after a short period (for the no feedback case), if we could determine the normalized power, P1, 
just after the prompt jump/drop, we would have a simple way to estimate the complete power 
profile versus time,  

1t1
o

o

PP(t) P e
P

ω 
=  
 

 

or 
t /1

o o

PP(t) e
P P

± τ=           (12) 

where P1/Po (or T1/To if we use the normalized amplitude from Ref. 1 instead of the normalized 
power from Ref. 2) is the desired magnitude of the prompt jump (P1/Po > 1) or prompt drop 
(P1/Po < 1). 

To derive an expression for P1/Po, let’s go back and consider the generation time formulation of 
point kinetics as given in eqns. (1) and (2).  Note that, since the phenomenon of interest here 
occurs very rapidly, we are only interested in the transient state over a period of 0.5 second or 
less.  Over this short interval, it is very reasonable to assume that the precursor densities do not 
change significantly.  Thus, over the time scale of interest for the prompt jump/drop, we have 
dci/dt ≈ 0 and eqn. (2) gives 

i
i io o i io o

i
c P or c Pβ β

λ = λ =
Λ Λ∑  

where all the quantities are evaluated just prior to the reactivity change (i.e. at t = 0).   

With this expression and the same assumption as above, the P(t) equation becomes 

( )
o

dP P P
dt

ρ−β β
= +

Λ Λ
 

This is just a simple first order linear ODE that, when written in standard form, gives 

( )
o

dP P P
dt

ρ−β β
− =

Λ Λ
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Fig. 7   P(t)/Po for ρext = +25 cents (expanded view for 0 ≤ t ≤ 10 seconds). 

 
 

 
Fig. 8   P(t)/Po for ρext = -25 cents (expanded view for 0 ≤ t ≤ 10 seconds). 



 

Lecture Notes:  Solution of the Point Kinetics Equations 
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (March 2015) 

11 

with integrating factor 
( ) ( )dt t

g(t) e e
ρ−β ρ−β

− −
Λ Λ∫= =  

Now, multiplying by the integrating factor, gives 
( ) ( ) ( ) ( )t t t

o
dP de P e P(t) P e
dt dt

ρ−β ρ−β ρ−β
− − −

Λ Λ Λ
 ρ −β  β − = =   Λ Λ   

 

and multiplication by dt and integration give 
( ) ( ) ( )t t t

o oe P(t) P e dt P e C
ρ−β ρ−β ρ−β

− − −
Λ Λ Λβ β

= = +
Λ β−ρ∫  

or 
( ) t

oP(t) P Ce
ρ−β
Λβ

= +
β−ρ

        (13) 

where C is an arbitrary constant of integration. 

Now, even without computing the constant C, we can argue that the exponential term containing 
C will vanish very quickly.  Since ρ < β, the term (ρ - β)/Λ is clearly negative.  Also, since the 
generation time, Λ, is usually quite small, the coefficient in the exponent is usually fairly large, 
causing this term to decay very quickly. 

As an example, let Λ = 0.0001 sec, β = 0.0065, and ρ = 0.25β.  With these values, we have 

( ) (0.25 1)(0.0065) 48.75
0.0001

ρ−β −
= = −

Λ
 

and, in 0.20 sec, we have 
48.75(0.20) 5e 5.8 10− −= ×  

Thus, in about 0.2 seconds, this term is only about 0.006% of its original value. 

Well, with the above argument, it is easy to see that a reasonable approximation for the prompt 
jump/drop is given by the first term in eqn. (13), or 

1

o

P
P

β
=
β−ρ

          (14) 

where P1 is the power level just after the prompt jump/drop. 

By way of example, for the simulation shown in Figs. 7 and 8, β = 0.0065 and ρ = ±0.25β.  Now, 
using the prompt jump/drop approximation in eqn. (14), we have 

1

o

P 1 1.33 (for  = +25 cents)
P 1 0.25

β
= = = ρ
β−ρ −

 

and 
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1

o

P 1 0.80 (for  = -25 cents)
P 1 0.25

β
= = = ρ
β−ρ +

 

and these values agree nearly exactly with the prompt jump and drop transients seen in Figs. 7 
and 8.   

Thus, for simple hand calculations, eqn. (12) and eqn. (14) combine to give a pretty good 
estimate of the power versus time behavior for a single step change in reactivity with no 
feedbacks. 

The kinetics_gui code 
To complete this unit, we need to say a few words about the Matlab code that was used to 
generate the figures for use in this set of Lecture Notes.  In particular, the Matlab code generated 
the plots associated with the visualization of the reactivity equation (Figs. 1 – 3), the reactor 
period vs. reactivity plot (Fig. 4), and the actual time-dependent normalized power profiles for 
both positive and negative step changes in reactivity (Figs. 5 – 8).  The first two sets of plots 
were obtained by simply evaluating the reactivity equation [eqn. (6)] over appropriate ranges, 
and the normalized power profiles were generated by solving eqns. (1) and (2) numerically using 
Matlab’s ode15s stiff ODE solver (stiff equations have widely varying time constants  --  and the 
point kinetics equation is a perfect example of a very “stiff” system). 

A graphical user interface was added to the computational part of the Matlab routines so that the 
student could easily run the Matlab program and readily change a variety of parameters.  The 
final GUI version of the code is called kinetics_gui, and a view of the main interface is shown in 
Fig. 9.  As apparent, the user can specify the effective delayed neutron fraction, βeff, the prompt 
neutron generation time, Λ, the magnitude of the step change in reactivity, ρ, to use in the 
evaluations, the power reactivity coefficient, αP, for the nonlinear simulations that include 
reactivity feedback, and the actual simulation time for the P(t)/Po computations.  In addition, the 
user can select the plot type of interest, with the three plot choices as already indicated.  The 
code is very straightforward and it is simple to use, but it gives a tremendous amount of insight 
into the workings of point kinetics.  The student should exercise the code, varying a number of 
the kinetics parameters, as needed, to get a good understanding of the basics of point kinetics!!! 

Summary 
The goal here was to discuss the solution of the point kinetics equation and to give the student 
some real insight into the various behaviors that can be expected.  In doing this, we have 
developed the so-called reactivity equation that is associated with a step change in reactivity, 
given a full discussion of its interpretation and use, simplified the estimation of the normalized 
power profiles using the concept of reactor period and the prompt jump/drop approximation, and 
actually solved the full generation time formulation of point kinetics for both the linear and 
nonlinear cases (i.e. no feedback and feedback cases).  In addition, the kinetics_gui code was 
written so that each student can individually explore various scenarios in further detail.  In all, 
this set of Lecture Notes tried to provide sufficient background in the theory and application of 
point kinetics so that the student gains a deeper understanding of its use in practical reactor 
operations scenarios  --  hopefully these notes were successful in achieving this goal… 
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Fig. 9  Initial screen for the kinetics_gui program. 
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