
Inverse Point Kinetics  

Introduction 

When modeling the behavior of a system, one can often think of the physical system as acting on 

the independent inputs to produce a particular output response that is related to the input and to 

the inherent dynamics for the system of interest.  This rather abstract view is illustrated for the 

general case of input u(t) and output y(t) on the left side of Fig. 1, and a specific application of 

this input-output perspective as applied to the point kinetics equations is given on the right side, 

where the externally-applied reactivity, (t), is the input and the transient reactor power, P(t), is 

the output of interest.  This is the usual situation that is encountered in modeling most systems 

and, in particular, when simulating the dynamic behavior of nuclear reactor cores.  For example, 

a routine power maneuver can be simulated by inserting some small positive reactivity [or by 

moving a control rod or blade outward, which is then converted into an appropriate (t)] and, 

once the desired power level is achieved, one simply returns the applied reactivity (or control 

device) back to its original value and allows the system to approach steady state at the new 

desired power level.  The key element in this "usual" for "forward" view is that the reactivity is 

the driving function or system input and the power level is the output response  --  this is the 

usual input-output view of the system. 

 

 

Fig. 1   Usual input-output view of a generic system and a specific reactor dynamics model. 

 

Now, let's reverse our perspective somewhat and ask the question "Given some observed output 

y(t), what was the input u(t) that caused this output response?".  This perspective is referred to as 

the inverse problem  --  that is, trying to determine the driving function u(t) that led to some 

observed system behavior, y(t).  And, in the context of reactor dynamics, this is called inverse 

kinetics, where the goal is to determine (t) by observing the P(t) behavior.  This "inverse" view 

of the system is illustrated in Fig. 2 for the reactor dynamics problem, which simply reverses the 

arrows and the input-output relationships relative to the sketch given in Fig. 1.  Thus, in the 

inverse problem, the signal flow is reversed  --  that is, given the observed power vs. time 

behavior, P(t), as the known "input", we want to compute the "output" (t).  This perspective is 

quite different in that we put on our "detective hat" and by observing some measureable system 

behavior, we try to determine what actually caused the observed response.  This is the goal of all 

inverse problems... 

 

 

Fig. 2   Input-output view for the inverse reactor dynamics problem. 
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The Inverse Point Kinetics Equations 

Our starting point for the development of Inverse Point Kinetics is the Generation Time 

Formulation of Point Kinetics.  From Refs. 1 and 2, the Generation Time Formulation of the 

kinetics equations can be written as  
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where P(t) is the power level in watts and <Q(t)> represents the total external source strength in 

neutrons/sec.  In the usual forward treatment, time, t, is the independent variable, (t) and <Q(t)>  

are the system inputs, and the power level, P(t) is the desired output.  However, as described 

above, for inverse kinetics, we reverse the roles of (t) and P(t)  --  where now P(t) is known and 

our goal is to determine the (t) the led to the currently observed P(t) behavior.  Thus, the goal 

here is to solve this set of seven coupled ODEs for the reactivity, (t), given a measured P(t) 

profile.   

To accomplish this goal, we start by solving eqn. (2) for the normalized precursor concentration, 

then substitute this into eqn. (1), and eventually solve the resultant expression for (t).  As a first 

step, we rearrange eqn. (2) to put it into standard form for solution via the integrating factor 

method.  Doing this gives 

i
i i i

d
c (t) c (t) P(t)

dt


  


 

and multiplication by the integrating factor i te


 gives 

 i i it t ti
i i i i

d d
e c (t) c (t) e c (t) e P(t)

dt dt

   
    

 
 

Now, we multiply both sides by dt and integrate over discrete time interval tj-1 to tj, to give 
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where Δt = tj – tj-1 is the sampling time used for the measured power vs. time information  --  that 

is, P(t) → P(tj) = Pj is assumed to be available at each discrete time point tj. 

With respect to the integral contained in eqn. (3), we will use the same approach as discussed in 

Ref. 3.  Here T. P. Michaud studied the accuracy of the inverse kinetics method for different 

integral approximations and came to the conclusion that Simpson's 1/3 Rule4 gave sufficient 
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precision with a relatively straightforward implementation scheme.  In particular, Simpson's 1/3 

Rule applied over an interval a ≤ x ≤ b is given by  
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and using this general result for the integral in eqn. (3) gives 
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Finally, we substitute this expression in eqn. (3) to give 
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Thus, eqn. (4) says that, with measured discrete values for the power vs. time, Pj, we can also 

easily estimate the time-dependent normalized precursor concentrations, cij, for each precursor 

group i. 

Now, evaluating eqn. (1) at time point tj using a central finite difference approximation for the 

derivative, gives 
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and, solving this expression for the reactivity at the jth time point, gives 
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Equation (5) coupled with eqn. (4) for the precursor concentrations, cij, represent the final form 

of the desired Inverse Point Kinetics equations.  With measured values for Pj, these expressions 

allow us to estimate the reactivity vs. time profile, ρj, that actually caused the observed power vs. 

time behavior to occur.   

A Simulated Test of the Inverse Kinetics Method 

As a test of the above inverse kinetics methodology, we can solve the "usual" or "forward" point 

kinetics equations using a standard ODE solver for some specified ρ(t) to determine P(t), and 

then use the inverse method with this simulated P(t) profile to obtain the "measured" ρ(t) that 

originally caused the observed P(t) behavior.  If this simple test returns the result that ρmeasured(t) 

≈ ρapplied(t), then we will have proven that the theoretical development is sound and that the 

specific implementation is valid (within the limits of the approximations made during the above 

development).  This approach was successfully applied to test the implementation done in Ref. 3, 

and here we will use a code that contains only minor modifications to the original code written 
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by T. P. Michaud.  In particular, the invkin_sr.m routine which implements eqns. (4) and (5) 

with no source present, along with the test_invkin.m code to evaluate a specific test sequence, 

will be used here to validate the overall methodology for reference critical operation. 

The applied ρ(t) scenario involves a ramped positive insertion, a short interval where ρ(t) is 

constant, and then a ramped ρ(t) back down to the original zero reactivity level.  After a short 

interval, this sequence is repeated in the reverse order, where the initial change is a negative 

ramped insertion, and after this second sequence is complete, ρ(t) = 0 is held for an indefinite 

time.  This full ρ(t) sequence is pictured in the top portion on the left side of Fig. 3 and the 

corresponding simulated normalized power profile is displayed in the lower half of this plot  --  

where this was generated by solving the forward point kinetics equation with Matlab's built-in 

ode15s ODE solver.   

 

 

Fig. 3   Results from the test_invkin.m code using the clean simulated P(t). 

 

As apparent, the resultant P(t) profile is as expected, with an increasing power level as the initial 

response to the positive reactivity at the start of the transient.  At about 60 seconds into the 

transient, a ramped negative reactivity is inserted to counter the original positive reactivity, and 

we see the power begin to decrease accordingly, eventually approaching a new equilibrium P(t) 

after about 100 seconds or so into the transient simulation.  A similar response is observed as a 

consequence of the negative-then-positive ramped reactivity perturbations made during the 

second sequence of reactivity variations in the system.  Eventually the system stabilizes at a 

power level that is about 40% higher than the original Po. 

Now, the real goal of this test sequence was to illustrate and validate the overall inverse kinetics 

methodology developed in the previous section of these Lecture Notes.  To accomplish this, the 

simulated P(t) profile was used as the input to the invkin_sr.m routine, and the computed or 

"measured" ρ(t) output is compared to the actual input ρ(t) in the right half of Fig. 3  --  and 

clearly the good comparison here proves the validity of the basic inverse kinetics method and its 

specific implementation within the invkin_sr.m Matlab function file.  Several additional test 

cases showing similar good agreement are also given in Ref. 3. 
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As a final observation, we should caution that the inverse kinetics method is actually somewhat 

sensitive to a noisy P(t) signal since it interprets rapid changes in power as being caused by 

prompt changes in reactivity.  To illustrate this behavior, a random ± 5% noise component was 

added to the simulated P(t) profile from the above test case before sending it to the invkin_sr.m 

routine, and the noisy P(t) input and resultant computed ρ(t) response are shown in Fig. 4.  

Although this sensitivity to a noisy signal is somewhat problematic, it is clear that the measured 

ρ(t) output does indeed follow the real applied reactivity that created the P(t) profile.  This type 

of noisy ρ(t) output should be expected in all practical applications of the inverse kinetics 

method.    

 

 

Fig. 4   Results from the test_invkin.m code with a 5% noise component added to P(t). 

 

Implementation Considerations  

For implementation of the inverse kinetics equations for use within the UMass-Lowell research 

reactor (UMLRR), Thomas Michaud, as part of his MS thesis3, concluded that, for near critical 

operation, an average of the linear power 1 and 2 channels gave the best P(t) signal to use within 

eqns. (4) and (5) for evaluating ρ(t).  In addition, as part of his work, he also discovered that, at 

low reactivity levels, there was a "drift" in the reactivity prediction due to gamma interference 

within the power detectors.  In particular, the power data measured by the three power channels 

(the Linear 1 and 2 channels and the LogPower signal) are not solely related to the neutron 

signal, but rather they represent a combination of the neutron and the gamma signals.  At near 

critical operation at relatively high power levels (above 500 W), this is not an issue since the 

neutron signal dominates.  However, for fast negative transients, the neutron level drops much 

faster than the gamma level because of the longer-lived fission product gammas and, during the 

transient, the assumption that the detector signal is simply proportional to the neutron level may 

no longer be valid  --  and this can lead to significant discrepancies with the inverse kinetics 

method (i.e. the observed reactivity "drift" noted in Ref. 3).  Thus, for practical implementation 

within the UMLRR for near critical operation, the deviation from critical should be held within 

about ± 0.4 %Δk/k and the power swing, especially on the low side, should not be much greater 

that a factor of 10-20 below the reference critical value.  Within these rough limits, the inverse 
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kinetics method proved to be an excellent technique for measuring the dynamic reactivity within 

the UMLRR (see Ref. 3 for several example test scenarios).   

Finally, we note that, although the inverse kinetics method should also be applicable within 

subcritical configurations, the startup counter within the UMLRR is simply too noisy for 

practical operation with the current detector system.  Thus, our use of the inverse kinetics 

method within the UMLRR is currently limited to the measurement of dynamic reactivity 

changes from critical, where the power deviations from reference are such that the power 

channels are still primarily sensitive to the neutron level (i.e. with minimal gamma interference).   

However, even within the limitations noted here, the inverse kinetics method can be extremely 

useful  --  such as for measuring the integral blade worth curves for the various control devices 

within the system.  In particular, an illustration of the procedure for performing a blade 

calibration using inverse kinetics is incorporated as one of the standard labs within the Reactor 

Experiments course offered at UMass-Lowell.5  In addition, it should be noted that the Inverse 

Kinetics Method has recently replaced the Asymptotic Period Method as the primary means for 

performing the annual control blade calibrations within the UMLRR6  --  since the method offers 

better overall accuracy and a full set of integral worth curves can be generated in only a fraction 

of the time relative to the traditional Stable Period Method.7-9  Thus, the Inverse Point Kinetics 

method discussed within these Lecture Notes is indeed a practical tool for measuring reactivity in 

real reactor operations... 
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