
Integral Worth Curves: Theory and Measurement Techniques  

Introduction 

The worth of the control devices within any reactor is one of the most important quantities that 

must be measured for each specific system.  For the shutdown rods, only the total worth is 

needed since these are used primarily as safety devices and are either fully inserted (in shutdown 

mode) or fully withdrawn (during normal operation).  However, for the control devices that are 

utilized for routine reactivity control during daily operations, full rod worth curves (or blade 

worth curves in the UMLRR) are required  --  that is, it is essential that the reactivity worth 

versus position be established.  In particular, the integral worth curve, ρw(z) vs. z, represents the 

worth (i.e. Δ from reference) of the control device as a function of axial location, where the 

reference z = 0 location can be taken at either the top or bottom of the active region of the core 

(or some similar location that establishes the fully inserted or fully withdrawn position).  Within 

the UMLRR the four large control blades and the single low-worth regulating blade traverse a 

distance of about 25-26 inches (varies slightly for each blade), with z = 0 at about 0.75 inches 

below the active fuel.  Since the reference position for the UMLRR is at the bottom of the core, 

the axial position of the control blades is usually given in units of inches withdrawn.   

In this set of Lecture Notes, we will study how to develop and interpret the integral blade worth 

curves for the UMass-Lowell research reactor (UMLRR).  The first step is to establish the basic 

concepts and terminology, and this will be done using 1-group theory for an idealized bare 

homogeneous reactor model.  Although very simplistic, this theoretical treatment allows us to 

observe a typical worth profile and to establish some insight into what to expect in a real reactor.  

For real operating systems, however, the rod or blade worth curves are always established by 

actual measurement, and the real focus here is to discuss typical techniques for doing this.  In 

particular, we will highlight three experimental methods for generating the desired worth 

profiles:  the Stable Period Method, the Inverse Count Rate Method, and the Inverse 

Kinetics Method.   

Within the UMLRR, the Stable Period Method (which is referred to locally as the Doubling 

Time Method) was the primary tool used by the operations staff for the first 35+ years of 

operation (from initial criticality in 1975 to late 2012).  This basic technique for measuring 

reactivity is treated in some detail in Ref. 1 and this is also addressed as part of the Reactivity 

Measurements Lab within the Reactor Experiments course at UMass-Lowell (see Ref. 2).  Thus, 

in the discussions here, we will simply apply this relatively well-established method for 

measuring a reactivity worth to the specific application of interest  --  that is, for establishing the 

blade worth curves within the UMLRR.   

On a similar note, we have also already discussed most of the background needed for the Inverse 

Count Rate Method, in that the basis of this method deals with subcritical multiplication, which 

is discussed in some detail in Ref. 3 and also within an experimental context in the first two labs 

within the Reactor Experiments course (Refs. 2 and 4).  Thus, the goal here is to quickly 

establish the usual notation used (i.e. what is the origin of the "inverse count rate" notation) and 

the final equations that allow generation of the normalized worth profile, and then focus on 

providing a specific example of the method.  Note that, although new data to test this method 

will not be generated explicitly as part of the subsequent Measuring Integral Blade Worth 

Curves... lab,5 partial data was already generated as part of the Approach to Critical lab (see   
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Ref. 4)  --  so the results from this lab could be used, if desired, to generate a partial blade worth 

curve profile for the blade of interest from the previous experiment. 

Finally, concerning the Inverse Kinetics Method, since this tool is a relatively new technique at 

UMass-Lowell,6 we will spend a little more time formally developing this technique and in 

illustrating how it can be applied within the context of developing the desired blade worth curves 

for the UMLRR  --  and much of the physical lab time will be focused on applying this technique 

for measuring the actual worth profile of one of the UMLRR control blades. 5   

Theoretical Background 

Before measuring any quantity in the lab it is important to have a good idea of the expected 

result that will be obtained.  Thus, to establish this base understanding of what we mean by a 

"blade worth curve", we will first analytically develop the form of the worth profile for a simple 

idealized reactor configuration.  In particular, using Perturbation Theory Methods (see brief 

overview in Ref. 7), it can be shown that the worth of a material inserted to an axial depth z 

within the reactor is proportional to the product of the forward and adjoint fluxes integrated over 

the perturbed domain.  In particular, assuming 1-group theory and that movement of the control 

rod only perturbs the absorption cross section, we have 

z *
w a

0
(z) (z ') (z ') (z ')dz '             (1) 

where  is a proportionality constant and * is known as the adjoint flux or importance function. 

However, since the 1-group diffusion equation is self-adjoint,7  the adjoint and forward fluxes are 

identical, and eqn. (1) becomes 

z 2
w a

0
(z) (z ') (z ')dz '            (2) 

Now, for a bare 1-D homogeneous critical reactor of total height H, the flux profile is given by8-9 

2

2(z) Asin Bz with B
H
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    

 
 

where z is measured from the top of the reactor (for simplicity, we have ignored the small 

extrapolation distance in this simple development).  Finally, if the rod absorption cross section is 

constant, then combining the flux profile for a homogeneous system with eqn. (2) gives 

z
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w
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  

where C is just a new proportionality constant. 

To evaluate this constant, we let w(z)|z = H = w(H) = tot, which is the total rod worth.  With this 

constraint we have  

 w w

H 2
(H) C 1 0 or C (H)

2 H
      

and the so-called ideal integral worth distribution becomes 
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 
       (3) 

where w(z) is the worth of a partially inserted rod to depth z [this is the relationship given in 

Chapter 7 of Lamarsh (i.e. Ref. 8) without much justification].  Finally, if one plots the 

relationship w(z)/w(H), the ideal S-shaped normalized integral rod worth curve is obtained (as 

shown in the sketch below from Ref. 8). 

Also of interest is the rate of change of w(z) per unit distance.  This differential worth can easily 

be obtained by differentiation of eqn. (3), or 

w
w

(H)d 2 z
(z) 1 cos

dz H H

  
   

 
       (4) 

This function, when plotted, gives the familiar differential rod worth curve (as shown below in 

the sketch from Ref. 8).   

        

In practice, of course, the integral and differential worth curves for real reactor systems differ 

somewhat from the ideal curves shown above (note that these were developed using first-order 

perturbation theory for a bare homogeneous 1-group system  --  a pretty idealized situation 

indeed).  However, they do give a good qualitative view of what to expect for a real system, with 

low differential worth near the upper and lower boundaries (where the flux and importance 

functions are relatively low) and a peak differential worth near the core center (where we expect 

the highest flux and the largest neutron importance).  In a real reactor, if the control rods are 

inserted from the top, then the worth distribution often tends to be slightly bottom peaked, and it 

is slightly top peaked if the rods are inserted from the bottom (assuming, of course, that 

everything else is axially symmetric).  However, to a rough first approximation, eqns. (3) and (4) 

and the sketches given above should help establish a reasonable set of expectations for the 

measurement of blade or rod worth curves for most real systems  --  with the additional 

expectation that some asymmetry may be observed. 
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Stable Period Method 

As noted in the Introduction section, the Stable Period Method has been the primary tool used by 

the operations staff for many years for measuring the blade worth curves within the UMass-

Lowell research reactor (UMLRR).  The basic theory behind the method is discussed in Refs.    

1-2, an overview of the actual procedure used and a discussion of a Matlab-based blade_worth 

GUI that does the curve fits once the doubling time data are available is given in Ref. 10, and a 

detailed analysis of the data obtained from a sample experiment for Blade 4 back in 2005 is 

presented in Ref. 11.  Thus, there is ample information and discussion of this method already 

readily available, so this material will not be repeated here.  Instead, the reader is expected to 

review the references noted here to get a good overview of this experimental technique. 

We should note however that, although the basic approach for the Stable Period Method is quite 

straightforward, it does pose some operational difficulties.  First the method is actually rather 

time consuming in that it takes a minimum of 20-30 minutes to obtain the needed information for 

a single data point  --  and typically, 10-12 data points should be taken to get a good fit.  Thus, it 

takes 3-4 hours to obtain a good blade worth curve for each control device.   

In addition, since the technique involves reactivity balancing at critical, it is sometimes difficult 

to get good coverage over the full range of the blade traverse.  In particular, for the current 

UMLRR configuration, the excess reactivity is under 3 %Δk/k, but the total individual worths of 

Blades 3 and 4 are well over this amount, so the reactor cannot be made critical if either Blade 3 

or 4 is fully inserted into the core  --  which means that it is not possible to get experimental data 

at the lower end of the blade worth curve (i.e.  the near full-insertion region).  On the other side 

of the curve, when one of the high-worth blades is nearly fully withdrawn, it is also hard to 

balance the reactivity swing, since this situation leads to relatively large radial and axial flux tilts  

--  which are also undesirable.  Thus, the Stable Period Method is certainly not ideal, but it has 

indeed served the reactor staff sufficiently well for many years... 

As a simple self-contained illustration of the Stable Period Method (without the limitations 

associated with a real system as noted above), we will assume a blade worth profile, use this to 

excite the point kinetics representation of the system, extract doubling time information for 

several blade movements, compute the differential worths, do a curve fit to the data, and finally 

integrate this expression to get the integral worth curve to see if we can create the original profile 

from the simulation data.  All this processing is completed within the bw_stable_period.m 

Matlab program and the summary results are illustrated in Fig. 1.  Here we see that the 

differential curve fit matches the simulated data almost perfectly, and that the integral curve 

generated from this mathematical representation is almost identical to the actual blade worth 

curve for Blade 3 that was used to generate the simulated data.  Thus, this simple test does 

indeed show that the method works as expected (as was shown previously in Refs. 10 and 11). 

Finally we note that the mathematical model for the differential worth curve shown in Fig. 1 is 

given by 

2 3
w 1 2 3 4 5

d 2 z
(z) c c z c z c z c cos

dz H

 
       

 
     (5) 

where z is the distance withdrawn and H is the maximum blade traverse.  This distribution 

allows modeling the slightly bottom peaked differential worth profile that is observed for the 

UMLRR control blades.  Integrating this expression gives the integral worth curve, 
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2 3 4
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1 1 1 H 2 z
(z) c z c z c z c z c sin
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       
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Equations (5) and (6) represent the mathematical models that have been used for many years 

when working with the doubling time or stable period method within the UMLRR (see Refs. 10 

and 11, for example).   

However, we should emphasize that, more recently, especially when using the inverse kinetics 

method (see below), the base formulation for the reactivity versus distance is written with the 

integral form as the reference model as 

4 3 2
1 2 3 4 5 6

2 z
(z) c z c z c z c z c c sin

H

 
        

 
     (7) 

and the actual worth of the integral blade worth is given as 

  w (z) (z) min (z)             (8) 

which, in most situations, is simply eqn. (7) with c5 = 0.  However, when eqn. (7) is fit to noisy 

experimental data, there are sometimes a few small negative values that occur  --  and the 

combination of eqns. (7) and (8) is one way to remove the negative entries and make the integral 

worth curve positive everywhere.  The reader should be careful not to mix the formulations given 

by eqns. (5) and (6) and by eqns. (7) and (8), since clearly they represent two completely 

different reference situations.  Equations (5) and (6) have been traditionally used at the UMLRR 

to represent the so-called sinusoid + polynomial model used with the Doubling Time Method, 

and eqns. (7) and (8) are used with the relatively new Inverse Kinetics Method (see below)  --  

thus, the user should be aware that a given set of blade worth coefficients are only valid for the 

model for which they were generated.   Clearly the equation constants generated for eqns. (5) and 

(6) are not applicable for eqns. (7) and (8).  So be careful here... 

 

Fig. 1   Simulated differential and integral worths and comparison to actual data. 
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Inverse Count Rate Method 

This method has its basis in the subcritical multiplication factor techniques that have already 

been discussed in previous labs.1-4  The method can be developed easily with just a few 

definitions: 

 ρin = subcriticality level with the blade of interest fully inserted 

 ρout = subcriticality level with the blade of interest fully withdrawn 

 ρtot = ρout − ρin = total worth of the control rod or blade 

Now, we can define the worth of the blade at any z location as 

 w in(z) (z) (z)              (9) 

and multiplying by unity in the form of ρtot/(ρout − ρin ) gives 

   tot in
w in tot

out in out in

(z)
(z) (z)

   
       

    
     (10) 

But we know that, with some assumptions about the proportionality constant not changing much 

from one configuration to another, we have 

 

0 01 1 in in
r in

0 0 1 1 in z

C CC(z)
M or or (z)

C C (z) C

  
      
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  (11) 

Thus, eqn. (10) becomes 
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     

 

or z in
w tot

out in

1 1

C C
(z)

1 1

C C

 
 

   
  
 

        (12) 

Therefore, the blade worth profile can be determined by simply measuring the detector count rate 

for several blade axial locations denoted by the z subscript or, more precisely, in terms of the 

inverse detector count rate  --  and, of course, this is where the name "Inverse Count Rate 

Method" comes from. 

The biggest advantage associated with this method is that it is done at subcritical conditions, 

where the time to reach stable operation between data points is quite reasonable (relative to the 

stable period method that requires returning to critical by rebalancing the blades after each 

point).   Thus the Inverse Count Rate method is attractive since it can be performed in a timely 

manner.   

However, it has several disadvantages, the most important being that it only gives the relative 

profile, not the absolute worth [i.e. ρtot in eqn. (12) must be available from some other method].  
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In addition, the method is only approximate because of the assumption that the configuration-

dependent proportionality factors cancel.  Although the assumptions associated with eqn. (11) 

are often quite good between neighboring configurations that involve small changes (i.e. between 

configuration i and i+1), it does often introduce some error from the first to last arrangement 

(that is, assuming that αin ≈ αout is probably much less accurate than saying αi+1 ≈ αi).  Finally, 

within the UMLRR, we know that the startup counter is rather noisy, and this also introduces 

issues in using this method to determine accurate blade worth curves for the system.   

As an illustration of the method, a simulation of a blade being withdrawn in several distinct steps 

within a subcritical system has been programmed into the bw_inverse_rate.m Matlab code.  For 

each blade withdrawal sequence, the code solves the point kinetics equations at subcritical, stores 

the power data after stabilization, and then uses eqn. (12) to determine the normalized worth, 

ρw(z)/ρtot, at each discrete z location.  Finally, a linear least squares curve fit using the 

mathematical model given in eqn. (7) is performed and the results are compared to the raw data 

points and to the actual integral reactivity curve used to initiate the transients and to generate the 

simulated data. 

In particular, the results from a specific case with Blade 3 with an initial subcriticality level of  

−5 dollars are shown in Fig. 2.  The blade position profile, z(t), is shown on the left side of the 

plot along with the simulated P(t)/Po or CR(t)/CRo behavior  --  and the trends seen here are 

exactly as expected for subcritical reactivity changes.  The CR data at the end of each interval 

was stored along with the blade location after step i (after stabilization), and these data were used 

to compute the normalized reactivity worth vs. position via eqn. (12) [i.e. ρ(zi) vs. zi].  The right 

side of Fig. 2 shows these data points along with the best curve fit using eqn. (7) and the actual 

blade worth curve used to generate the simulations.  Clearly, as apparent from Fig. 2, all three 

profiles are nearly identical  --  demonstrating that the procedure and basic methodology are 

sound.  Recall, however, that even though great results are obtained here (within a simulated 

environment), the best we can do is to get a normalized profile, since it is not possible to get the 

absolute ρw(z) behavior with the Inverse Count Rate method (i.e. need ρtot to get the absolute 

worth curve).  Thus, even with a perfect scenario, this method can only give the shape of the 

integral blade worth curve...  

Fig. 2   Results from simulation of the subcritical Inverse Count Rate method. 
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Inverse Kinetics Method 

The details of the Inverse Kinetics Method are given in a separate set of Lecture Notes (see Ref. 

12) and the reader is expected to study these notes thoroughly to get a good understanding of the 

basic methodology.  Simply stated, in the inverse kinetics problem, the usual signal flow path is 

reversed  --  that is, given the observed power vs. time behavior, P(t), as the known "input", we 

want to compute the "output" (t)  --  and this fits in quite nicely with our goal here of measuring 

blade worth curves. 

One complication, however, is that at low reactivity levels, there is a "drift" in the (t) prediction 

due to gamma interference within the power detectors within the UMLRR  --  and this dictates 

that the deviation from critical should be held within about ± 0.4 %Δk/k and the power swing, 

especially on the low side, should not be much greater that a factor of 10-20 below the reference 

critical value (see Refs. 6 and 12 for further discussions on this subject).  Thus, for applications 

involving the measurement of the full blade worth curve, the negative reactivity addition 

associated with the blade of interest being inserted into the core must be balanced by the other 

blades in the system  --  and the lab procedure discussed in Ref. 5 summarizes this process quite 

nicely. 

As a specific example, we illustrate this procedure by simulating the measurement of the integral 

worth profile for Blade 3 while compensating for the negative reactivity addition as Blade 3 is 

inserted by moving Blade 4 out of the core.  This sequence of inserting Blade 3 and removing 

Blade 4 is done in several small steps so that the subcriticality level does not violate the above 

general guidelines of staying within ± 0.4 %Δk/k of critical.  The basic procedure for a specific 

set of Blade 3 inward and Blade 4 outward movements is implemented within the first part of the 

bw_inverse_kinetics.m routine, and the results of this simulation are summarized in Fig. 3.   

 

Fig. 3   Reactivity and power vs. time profiles for a specific set of blade movements. 
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On the left side of the figure is the actual blade positions vs. time and the corresponding 

reactivity associated with these blade movements, where the ρ(t) profile is simply obtained from 

the known blade worth curves for the two control devices.  With an input z(t) or ρ(t), the point 

kinetics equations (with no feedbacks) can be solved to produce the power vs. time behavior, 

P(t), shown on the right side of Fig. 3, where each decrease and increase in power corresponds to 

the insertion of Blade 3 and removal of Blade 4, respectively.  The idea here was to balance the 

magnitude and timing of the blade movements so that the P(t) profile stays within a reasonable 

range of the reference Po and that the absolute reactivity level is maintained within ± 0.4 %Δk/k 

of critical  --  and Fig. 3 clearly shows that these goals have been achieved with the specific 

blade positions used in the simulation.  

Now, with a simulated P(t) signal to represent the real reactor power profile, we simply pass this 

through the invkin_sr.m routine discussed in Ref. 12 to solve for the ρ(t) that produced the 

observed P(t) behavior  --  and this is the whole idea of the Inverse Kinetics Method [that is, by 

reversing the usual input-output relationship, we can determine the input that caused a specific 

output].  For this simulation, the computed or predicted reactivity that corresponds to the P(t) 

profile shown in Fig. 3 is displayed in Fig. 4 along with the actual input ρ(t) that produced the 

transient simulation.  Here we have simulated a noisy P(t) signal by adding a ±5% random noise 

component and, clearly, the resultant ρ(t) profile reflects (and even magnifies) this noisy 

behavior.  However, even with the noise component, one can clearly see that the "measured" ρ(t) 

signal follows the "input" reactivity quite nicely  --  showing that the inverse kinetics routine has 

done its job remarkably well.   

 

 

Fig. 4   Comparison of the computed and actual input reactivity from the 

bw_inverse_kinetics demo. 
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The ρ(t) profile displayed in Fig. 4 is the total reactivity due to the movement of both Blades 3 

and 4.  However, of interest in a blade worth calibration is the worth of only the blade of interest 

(BOI).  As detailed in Ref. 6, T. P. Michaud developed a rebank_adjust routine that does 

exactly what is needed here  --  that is, to isolate the reactivity change due only to the BOI.  The 

concept here is actually pretty straightforward in that we assume that only one blade moves at a 

time, and that any reactivity change during that time is associated with the blade that is currently 

moving.  In this way, the rebank_adjust routine collects the reactivity changes for the BOI and 

creates a separate ρBOI(t) profile that is associated with the zBOI(t) movement.  For the current 

simulation, the total and BOI reactivities are shown in Fig. 5, where the ρBOI(t) profile is simply a 

composite of all the negative reactivity insertions for this case (notice that, when the BOI is not 

moving, ρBOI(t) is constant).   

 

Fig. 5   Reactivities before and after application of the rebank_adjust algorithm. 

 

Well, with the "measured" ρBOI(t) behavior and zBOI(t) locations, one has all the information 

needed to generate the desired blade worth curve for the blade of interest (BOI).  A little filtering 

is done to remove the repetitive entries when the BOI is not moving, and then the vectors 

containing the ρ(ti) and z(ti) pairings are sent to a linear least squares curve fit routine, which 

returns the final ρw(z) vs. z integral blade worth curve based on the mathematical model given in 

eqn. (7)  --  and this was the ultimate goal here.  The coding to accomplish this final task within 

the bw_inverse_kinetics routine was taken directly from the umlrr_data GUI that performs a 

similar function on the measured reactor data.  The result of this final processing step is shown in 

Fig. 6 along with the actual blade worth curve used in producing the simulated data.  Clearly, the 

two curves are very similar, indicating that the overall procedure is sound and that it has been 
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properly implemented within this example simulation (note that, if the noise level is set to zero, 

the two blade worth curves are nearly identical).  With this validation, this example is complete   

--  and it has demonstrated, quite clearly, the basic approach that is used to measure the actual 

blade worth curves within the UMLRR using the Inverse Kinetics Method.   

 

 

Fig. 6   Comparison of the "measured" and actual Blade 3 worth curves. 

 

Summary 

This set of Lecture Notes first introduces the theoretical concepts needed for the discussion of 

blade worth curves, and it then summarizes three techniques for actually measuring the blade 

worth profiles within a real system.  The three experimental methods  --  Stable Period Method, 

Inverse Count Rate Method, and Inverse Kinetics Method  --  are each demonstrated via 

simulation within a sequence of Matlab codes.  These simulations show the basic procedures 

involved and they validate that each of the methods are theoretically sound and have been 

implemented correctly.  Now, all that remains is to apply these methods using real reactor data 

(instead of simulated data)  --  and this is done within a formal lab as part of the Reactor 

Experiments course at UMass-Lowell.5  The key take-aways from the discussion and examples 

given here should be a good understanding of the theoretical basis for the ideal differential and 

integral worth curves seen in the literature, and for the various reactivity measurement 

techniques that can be used to determine these worth profiles in real systems.  
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