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Review from previous class and HW#1

General Operational Control Concepts

Perform a Reactor Startup Demonstration 

Review of Reactor Kinetics and Dynamics

Space-Time Kinetics  Point Kinetics

The Generation Time Formulation of Point Kinetics

Solution to the Kinetics Eqns.  (the kinetics_gui code)

Homework #2  (see details in rexpts_hw2sp18.pdf)

(Jan. 2018)
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Review: Previous Class and HW#1

24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo
(Jan. 2018)

Any Questions:

Introduction/Course Policy

The UMLRR Facility Overview

Data Acquisition Tools

UMLRR_Online Demo (remote real-time capability)

umlrr_data GUI Demo (offline data analysis tool)

Matlab Analysis of Reduced Data File

Homework #1 (see details in rexpts_hw1sp18.pdf)

(Jan. 2018)
24.536  Reactor Experiments                                                 
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Reactor operations is all about controlling 

the neutron population in the system…

U235 + n → fission products + 2 or 3 n’s + 200 MeV

UMLRR Operations…



3

(Jan. 2018)
24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo

Fission is the primary neutron source in nuclear reactors.

Scattering only changes the neutron energy level.

Absorption and leakage are the ultimate loss mechanisms.

When the neutron production and loss rates are in balance, then 

the neutron population remains constant and the system 

operates at constant power (power is related to the fission rate). 

Fission neutrons are born at high energy, they slow 

down via elastic and inelastic neutron scattering, 

and then, as thermal neutrons, they cause additional 

fissions to continue the cycle…

Rate of Change  =  Production Rate  – Loss Rate 

Neutron Life Cycle (thermal systems)
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production production
k  = 

loss absorption + leakage


Critical →   production  =   absorption  +  leakage

Supercritical →   production  >   absorption  +  leakage

Subcritical →   production  <   absorption  +  leakage

k = 1

k > 1

k < 1

The multiplication factor, k, is a term used to 

describe the neutron balance in a nuclear system. 

The Multiplication Factor
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Reactor power can be controlled by regulating the absorption 

rate via movement of the control rods.

Power Increase: From steady-state, remove control to decrease 

the absorption term.  Production becomes greater than loss          

(k > 1) and the neutron population begins to increase.

Power Decrease: From a stable condition, insert control to 

increase the relative number of parasitic absorptions.  The loss 

component becomes greater than neutron production (k < 1) and 

the neutron population begins to decrease. 

When the new target power level is reached, control is moved 

towards its previous position until k becomes unity  -- the 

reactor is now critical again at the new steady state power level.

A reactor can be critical at any power level…

Power Level Control  (from critical)
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In an operating reactor, the value of k is always very close to 

unity (i.e. near critical) . 

Thus, we define the term reactivity, , as a measure of the 

deviation from critical, or 

For example, we often talk about the insertion of positive or 

negative reactivity when the control rods are moved:  

-- If the rods are inserted, this adds more absorption, k 

becomes less than unity, and we say that negative reactivity 

has been added to the system.

-- If the control rods are moved outward a little, then positive 

reactivity has been added since the absorption term decreases, 

and k becomes slightly greater that unity.

k 1

k


 

Reactivity
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Do Live UMLRR Startup Demo… 

Typical Reactor Startup
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Within the context of the general control considerations 

discussed above, let’s take a quick look at a typical startup 

sequence in the UMLRR (specific data are from an April 2008 

Energy Balance Experiment plotted using the umlrr_data GUI.)

Basic Sequence (external source inserted and blades full in at start):

1.  Pull RegBlade out to near mid position (manual mode).

2.  Systematically pull remaining blades out one at a time 

keeping the blades banked nearly evenly.  This is done in stages, 

with much smaller blade movements as criticality is approached 

(usual procedure is to move about ½ the z expected for criticality –

which is known from previous operation).

This should be similar to the observations from 

today’s UMLRR Startup Demo --

you will analyze this demo as part of HW#2… 

Typical Reactor Startup
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3.  The startup counter is used to monitor operations at 

subcritical and Linear P1 and P2 are used during power 

operation (these are auto-ranging detectors).

4.   When the count rate on the SUC starts to increase rapidly 

(2000-4000 cps), the reactor is critical (or slightly supercritical).

5.   At 500 W the system is stabilized for a short time by putting 

the RegBlade in auto mode.

6.   At this point, the external source and startup counter are 

usually removed from the core.

7.   After removal of the source and SUC, the RegBlade is put 

back into manual mode, and the reactor is taken to the desired 

power level.

Typical Reactor Startup  (cont.)
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8.  The RegBlade is put into auto mode for routine operation to 

automatically counter any transient reactivity effects (xenon 

buildup and/or temperature changes).

9.  For extended operation, regular re-banking is needed to keep 

the RegBlade near the middle of its 25-26 inch movable range.

10. For shutdown, the blades, SUC, and source are reinserted…

See the sequence of plots for blade position, 

power, SUC rate, and core temperatures   

from a typical startup in April 2008…

Typical Reactor Startup  (cont.)
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Reactor Startup: Blade Position
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Reactor Startup: Power
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Reactor Startup: SUC Rate
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Reactor Startup: Core Temps



9

(Jan. 2018)
24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo

Typical Reactor Startup Results
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Now let’s discuss some formal 

Reactor Kinetics… 

Reactor Kinetics
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Time-Dependent Diffusion Equation
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The remainder of this lesson will elaborate on the subject of 

Reactor Kinetics.  

The starting point here is the 1-group time-dependent diffusion 

equation.  

In words, this equation states that the 

Note that, since both prompt and delayed neutrons are 

produced, we must take into account the timing associated with 

these separate components of the fission source.

To keep track of the amount of delayed neutron precursors, 

precursor balance equations are also needed (the precursors are 

usually grouped into six separate groups with six effective decay 

constants, i, and yields, i).  

rate of change production rate of loss rate of 

of  neutron density neutrons per unit volume neutrons per unit volume
 

1-Speed Space-Time Kinetics

(Jan. 2018)
24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo

Using standard notation, we can write the complete 1-speed 

space-time kinetics equations as follows:

Neutron Balance

Precursor Balance

These equations represent a set of 

seven coupled PDEs, where the

cross sections, fluxes, and source are                                terms 

all functions of both space and time.  

In general, these equations are rather difficult to solve!!!

f i i a

i

1
(1 ) λ C Q D

v t

 
                   



i
i f i i

C
C for i 1, 2, 6

t


         



Computer codes are 

available to solve the space-

time kinetics problem -- but 

this subject is outside the 

scope of this course…
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1-Speed Point Kinetics Model
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There are many applications in reactor operations when the 

spatial flux shape does not change significantly with time.  

For these cases, the general space-time description can be 

reduced to a point model (spatially integrated model) that 

includes time as the only independent variable.  

This procedure reduces the system to seven ordinary differential 

equations (ODEs)  – which are significantly easier to solve.  

There is a formal procedure for doing this reduction, during 

which, the “effective” kinetics parameters are defined precisely.  

The most general procedure usually starts with the multigroup 

neutron balance equation, but the 1-speed approximation allows 

a more straightforward development that gives identical point 

kinetics equations -- with slightly less rigor in the definition of 

some parameters.  

1-Speed Point Kinetics Model  (cont.)
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Since the resultant differences in definition do not affect our 

present discussion and application of the final equations, we will 

proceed here with the 1-speed formulation (since the notation is 

much easier to follow).

Starting with the 1-speed space-time model, we assume that the 

flux can be separated into a slowly varying (or time-independent)

spatial distribution and a more rapidly varying amplitude 

function, 

where the spatial distribution with the ‘o’ subscript represents 

the initial steady state flux shape and T(t) represents the time-

dependent amplitude of the neutron flux (or power level).  

o(r ,t) (r,t)T(t) (r)T(t)    



12

1-Speed Point Kinetics Model  (cont.)
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Now, we substitute this approximation into the neutron and 

precursor balance equations and integrate the resultant 

equations over the spatial domain of interest to give

o f o i i o a o

i

1 dT
(1 ) T C Q D T

v dt

 
                  

 


i i f o i i

d
C T C for i 1, 2, 6

dt
         

These represent a set of seven coupled first-order ordinary 

differential equations (ODEs) -- that is, the Point Kinetics Model. 

1-Speed Point Kinetics Model  (cont.)
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The Point Kinetics model given on the previous slide is usually 

not used in this form for practical application.  

In particular, since the cross sections can be time dependent and 

under operator control (i.e. movement of a control rod affects a, 

etc.), almost every term in these equations can be modified to 

initiate a transient case. 

However, from an operational perspective, the effect of a change 

in cross section (or material composition) manifests itself as a 

change in the multiplication factor, k, or in the reactivity, .  

Changing the above equations to incorporate k or  directly leads 

to the traditional Lifetime Formulation (uses k) and Generation 

Time Formulation (uses ) of point kinetics.  

In these formulations, the multiplication factor, k(t), or reactivity, 

(t), becomes the driving force for initiating most transient 

analyses. 
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The Generation Time Formulation
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One first defines the prompt neutron generation time by arguing 

that, at steady state, the neutron production rate from fission in a 

critical system is the total neutron population divided by the 

neutron generation time.  

In equation form, this can be written as 

Defining  as the prompt neutron generation time, the one-speed 

approximation gives 

neutron population neutron population
production rate or generation time

generation time production rate
 

o f o

1

v
    

In this lesson we will focus on the Generation 

Time Formulation, but the formal Lecture Notes 

develop both schemes in detail.  

The Generation Time Formulation
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Note:  In the context of the 1-group diffusion equation, k and 

have the following formal definitions (these are used in 

subsequent manipulations):

and

neutron production rate from fission production  
k

loss rate loss 
 

k -1 production - loss  

k production 
  

f o

o a o

k
D

 


     

f o o a o

f o

D         
 

 
 
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Generation Time Formulation   (cont.)
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Now we divide every term in the point kinetics equation for the 

neutron level by the neutron production rate from fission to give

and use the definitions of  and  to simplify to

or

o
f o

i i

if o f o f o

o a o

f o f o

1

dT 1v (1 ) T C
dt

D1
Q T

  
   

     

     
 

   



f o o a o

i i

if o f o f o

DdT 1 1
T C Q

dt

          
       

      
  



  i i

i f o f o

dT 1 1
T C Q

dt
      

   


Generation Time Formulation  (cont.)
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Now, we define the normalized precursor and external source 

amplitudes as

When these expressions are substituted into the above equation 

and we use the definition of the generation time, the final neutron 

balance equation results

or

i i

o

1
c (t) C (t)

1

v



 o

1
q(t) Q(t)

1

v





i i

i

dT
T c q

dt

  
    

 
neutron 

amplitude  

 
o o

i i

i f o f o

1 1

dT v vT c q
dt

 

      
   


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Finally, to complete the generation time formulation, we divide 

the precursor equation by the total neutron population and again 

use the definition of  and the normalized precursor amplitude to 

give

or

Generation Time Formulation  (cont.)

f oi i

i i

o o o

C Cd
T for i 1, 2, 6

1 1 1dt

v v v

 
       

  
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i i
i i

dc
T c for i 1, 2, 6

dt


      



The last two highlighted equations 

represent the Generation Time 

Formulation of Point Kinetics.  

precursor 

amplitudes  

Normalization Considerations
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The solution of the kinetics equations usually leads to relative 

results  -- that is, one computes T(t)/To = n(t)/no = P(t)/Po etc., 

where these represent the time-dependent relative flux amplitude, 

neutron level, power level, etc.

However, when reactivity feedbacks are important, knowledge of 

the absolute neutron level or power level becomes essential. 

As detailed in the Lecture Notes, one can formally derive a set of 

point kinetics equations that directly include the actual reactor 

power level, P(t), in watts and the neutron source level, <Q(t)>, in 

neutrons/sec.   The resultant equations are:

 
i i

i

d 1
P(t) P(t) c (t) Q(t)

dt

  
   

  


i
i i i

d
c (t) P(t) c (t) for i 1, 2, 6

dt


      



These Point Kinetics 

equations will be 

highlighted in the 

remainder of these 

Lecture Notes...



16

Solution of the Point Kinetics Eqn.
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In general, analytical solution of the point kinetics equations is 

not easy -- recall that we have a coupled set of seven ODEs!  

In most cases, these equations are evaluated for a given (t) 

using numerical methods (such as Matlab’s ode15s solver --

where a stiff equation solver is needed because of the large 

difference in time constants that results).  

For a few specific cases, an analytical solution is possible -- and 

the resultant solutions give considerable insight into the general 

behavior of the time dependent neutron balance in real systems. 

One common situation that can be solved analytically involves a 

step change in reactivity in a critical reactor operating at low 

power (“low power” means that feedback effects are negligible). 

The solution of this case allows us to introduce some common 

terminology, and to gain a good understanding of the expected 

behavior in several common situations.  

Step Change in Reactivity
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Starting with the generation time formulation of point kinetics 

with no external source, we have 

In most applications of these equations, the kinetics parameters 

(, i, and i) are assumed to be constant, the reactivity is the 

driving force for the transient, and P(t) and ci(t) are the dependent 

variables that vary with time due to some changing (t).  

However, for a step change in reactivity, (t) =  = constant, and 

the above equations become a system of seven linear constant 

coefficient ODEs -- and this falls into a class of problems that 

we know how to handle analytically.

i i

i

dP
P c

dt

  
   

 


i i
i i

dc
P c for i 1, 2, 6

dt


      

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Step Change in Reactivity  (cont.)
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The standard approach for solving linear time-invariant systems

is to assume a solution of the form of a simple exponential.  

Following this technique, we assume that

Now, we substitute these assumed solutions into the precursor 

balance equations, to obtain

or 

t t
o i iP(t) A e and c (t) A e

  

 t t ti i
i o i i i i oA e A e A e A A

   
       

 

i
i o

i

A A
 


 

Step Change in Reactivity  (cont.)
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Now, putting the assumed solutions, along with the above result, 

into the P(t) equation gives

Cancelling the common Aoet factor in each term and 

multiplication by  gives

and solving for  gives

  i
i

i i


     

 


i i

i i

 
    

 


t t t t ti
o o i i o i o

i i i

A e A e A e A e A e
         

         
     

 
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Step Change in Reactivity  (cont.)
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To put this expression into standard form, note that  =  i.  

Now, using this equality, we have

or

This equation is the standard form of the so-called reactivity 

equation (or inhour equation) obtained from the generation time 

formulation of point kinetics.

i i i i i i i
i

i ii i

          
         

      
 

i

i i

 
  

 
 reactivity 

equation

Step Change in Reactivity  (cont.)
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From a pure mathematical viewpoint, the reactivity equation is 

simply the characteristic equation associated with the original 

seven linear constant coefficient ODEs -- and, for a given value 

of reactivity, the roots of this equation give the values of  that 

satisfy the original form of the assumed solution.  

Also, since we have seven coupled first-order ODEs, we should 

expect seven roots (i.e. seven values of ) that will satisfy the 

so-called reactivity equation.  

Assuming that each j for j = 1, 2,  7 is distinct, the linear 

super-position principle allows us to write the general solution 

as a linear combination of the linearly independent individual 

solutions.  
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Step Change in Reactivity  (cont.)

(Jan. 2018)
24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo

Thus, we can write a general solution for the time-dependent 

power level P(t) as

where the j’s are the roots of the reactivity equation and the Aj’s

are the seven arbitrary coefficients needed for the general 

solution of a 7th order initial value problem (IVP). 

Although the above development establishes a solid mathematical 

foundation, it really has not shed a lot of insight into the actual 

behavior of P(t).  

To do this, we must first get a better understanding of the 

reactivity equation and the values of its roots. 

j 1 2 7

7
t t t t

j 1 2 7

j 1

P(t) A e A e A e A e
   



       
The Aj coefficients 

are determined 

from the ICs.

Interpretation of the Reactivity Eqn.
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We can think of the right hand side (RHS) of the reactivity 

equation as some function of , say f(), and simply plot f() vs. 

for a wide range of . 

Then, if we superimpose the LHS [i.e. () = constant] on the plot, 

the intersections of the two curves give the desired roots, j.  

positive : one positive root and six negative roots

negative : seven negative roots

i

i i

 
  

 


reactivity equation

-

+
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If we order the roots j from most positive to most negative, 

then, after a relatively short transient time, the last six terms for 

P(t) decay away (because 2, 3,  , 7 < 0 for both positive and 

negative reactivity), leaving only the term containing 1, or

where  = 1/|1| is called the reactor period and P1 is the power 

level (or flux amplitude) just after the short transient period.  

If  is positive, 1 > 0, and the reactor period is positive -- so 

P(t) grows indefinitely as e+t/ (remember that we assumed no 

feedbacks up to this point).  

Interpretation of the Reactivity Eqn.

j 1 2 7 1

7
t t t t t t/

j 1 2 7 1 1

j 1

P(t) A e A e A e A e P e P e
      



         
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For negative reactivity, just the opposite occurs.  

That is, 1 < 0 and the reactor period is negative -- so the power 

level decreases towards zero with the form e-t/.  

Thus, after a short transient time, the dominate behavior of P(t) 

is simply associated with the most positive root of the reactivity 

equation and it is represented as a simple growing or decaying 

exponential,

or

Interpretation of the Reactivity Eqn.

(Jan. 2018)
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where all the above descriptions 

assume no feedbacks

1t1
o

o

P
P(t) P e

P

 
  
 

t/1

o o

PP(t)
e

P P

 
P1/Po is the prompt 

jump/drop and  is 

the reactor period
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i 1
1

i 1 i

 
   

  


1

1
 



Reactivity Equation:  vs. 
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Low power operations means no feedback effects (i.e. no 

changes in fuel and coolant temperatures, no Xe buildup, etc.)

However, for high power operation, changes in the temperature 

of the fuel and coolant, for example, can result in Doppler 

broadening of the resonances and material density changes, 

which changes the various production and loss rates, which 

changes k…

These are referred to as inherent feedbacks within the system,

We define the temperature coefficient of reactivity, T , as the

rate of change of reactivity with temperature, or

Inherent Safety 

T T

d d
and T T

dT dT

 
       

T k P T etc.       

24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo
(Jan. 2018)
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In the Point Kinetics model, the inherent feedbacks are 

incorporated through a “feedback reactivity, f”

where

Now, consider the sign of T:

positive T,                                                                        unbounded

negative T,                                                                                 stable

Inherent Safety 

T P T P etc.          

T P T P T etc.            

All reactors MUST be designed to have 

NEGATIVE T to ensure inherent safety.

f cf T f T c Xe(t) T (t) (t) T (t) (t)        

ext f(t) (t) (t)    

24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo
(Jan. 2018)

Typical Solution Profiles

(Jan. 2018)
24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo

To wrap up our formal discussion of the reactivity equation and 

the solution of the Generation Time Formulation of Point Kinetics 

for a step change in reactivity, it makes sense to show the typical 

P(t) behavior for a specific change in reactivity.

This was accomplished in a simple Matlab code, with and without 

feedbacks, for the case of both positive and negative reactivity

(/ = ±0.25). 

To illustrate the stabilizing effect associated with negative 

feedback, we define a generic power feedback coefficient as

p 2

1 k 1 k

P P k Pk

  
   

  
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Typical Solution Profiles  (cont.)
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With this definition, the actual reactivity that enters into the point 

kinetics equation is a combination of the externally applied 

reactivity, ext and the feedback reactivity, f, or

Note that, with negative p, then an increase in power reduces , 

which decreases P, which increases , etc. until a new steady 

state condition is realized.  

Since criticality is achieved when  = 0, the new steady state 

power level associated with the negative feedback case will be 

reached when the feedback reactivity exactly cancels the applied 

external reactivity, 

 ext f ext p o(t) (t) P(t) P         

  ext
p new o ext new o

p

P P or P P


     


Typical Solution Profiles  (cont.)
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With this brief background, we can now actually simulate and 

compare the dynamics of a system with and without feedback.  

For the feedback-free case, we set p = 0, and for the simulation 

with inherent feedbacks, we set the power feedback coefficient 

to its appropriate value for the system of interest (for this case, 

p = -210-4 k/k per unit P). 

The results of the Matlab simulation for the two cases with and 

without feedback are shown in the next few slides:

Positive : For ext = +25 cents, we see the expected unbounded 

exponential increase in the flux or power level for the case of a 

positive reactivity insertion with no feedback.  

However, for the case where the inherent negative feedback is 

treated, the power level rises less rapidly and it eventually levels 

off at a new steady state power.
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Typical Solution Profiles  (cont.)

(Jan. 2018)
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Negative : For ext = -25 cents, both simulations lead to a 

decreasing power level.  

In the case with inherent feedbacks, the exponential decrease is 

reduced slightly, but not enough to keep the reactor from 

complete shutdown.  

This is true because the positive reactivity due to the power 

feedback is not sufficient to overcome the original negative 

external reactivity added to the system.  

Typical Solution Profiles (cont.)

(Jan. 2018)
24.536  Reactor Experiments                                                 
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Typical Solution Profiles (cont.)

(Jan. 2018)
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Numerical vs. Analytical Solution

(Jan. 2018)
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The main point of the above discussion of the analytical 

solution method was so we could get a good understanding of 

the expected behavior and to introduce some important 

terminology associated with reactor kinetics.  

However, actually computing accurate values for all seven roots

of the reactivity equations, and then setting up the appropriate 

equations and solving for the seven coefficients for each 

transient situation of interest is not really easy to implement.  

Also, remember that the analytical solution method can only be 

applied for  = constant  -- it does not work for the general case 

of  = (t).
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Numerical vs. Analytical Solution

(Jan. 2018)
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However, even for the simple situation where  = constant, the 

numerical solution of the seven coupled ODEs using an available 

ODE solver is a much easier path to follow (and this was the 

technique chosen here to do the actual simulations). 

Thus, the numerical approach was selected for two important 

reasons:

The numerical solution is much easier to obtain.

The numerical solution allows the treatment of feedback effects.

The Prompt Jump/Drop

(Jan. 2018)
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If we expand the first few seconds of the transient profiles shown 

previously, we see a nearly instantaneous rise or fall in the normalized 

power immediately after the step change in reactivity is made. 

The rapid change seen here is due to the most negative root, 7, of the 

reactivity equation.  Because 7 has such a large negative value, this 

term goes to zero nearly instantaneous after initiation of the transient. 
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The Prompt Jump/Drop  (cont.)
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Since the prompt jump/drop is an inherent feature of each 

transient, it would be convenient if we could get a quick and 

easy-to-use estimate of the magnitude associated with this 

phenomenon.  

In particular, since we have already argued that the            term 

dominates the transient response after a short period (for the 

no feedback case), if we could determine the normalized power, 

P1, just after the prompt jump/drop, we would have a simple 

way to estimate the complete power profile versus time, or

where P1/Po is the desired magnitude of the prompt jump   

(P1/Po > 1) or prompt drop (P1/Po < 1).

1t

1A e


1t t/1 1
o

o o o

P PP(t)
P(t) P e or e

P P P

   
  
 

These values agree very 

nicely with the prompt jump 

and drop transients seen in 

the previous figures!!!

The Prompt Jump/Drop  (cont.)
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The development of an approximation for the prompt jump/drop 

is given in detail in the formal Lecture Notes, with the result

where  P1 is the power level just after the prompt jump/drop.

By way of example, for the simulations shown previously,             

 = 0.0065 and  = 0.25.  

Now, using the prompt jump/drop approximation, we have

and

1

o

P

P



  

1

o

P 1
1.33 (for  = +25 cents)

P 1 0.25


   
   

1

o

P 1
0.80 (for  = -25 cents)

P 1 0.25


   
   
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Small Reactivity Values
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One last approximation that often simplifies hand calculations, 

concerns the treatment of small reactivity insertions.

For   0 (either positive or negative), the magnitude of the most 

positive root of the reactivity equation is small compared to the 

magnitude of all the i values (i.e. || << |i|).  

With this observation, the reactivity equation becomes

and, since the reactor period, , is just the inverse of the most 

positive root, 1, we have 

i i i

i i ii i i

    
          

    
  

i

i i

1
(for small )

 
     

  


Small Reactivity Values
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Also, in all practical cases, the generation time, , is small 

compared to the 2nd term inside the brackets.  

Thus, we can estimate the reactor period as 

di

i i

t1
(for small )


   

  


td is the mean lifetime 

of the delayed neutrons
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Capabilities of the kinetics_gui Code

(Jan. 2018)
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Finally, we note that, as shown previously, one can simply 

evaluate the reactivity equation and generate a plot of reactor 

period vs. reactivity -- this is a very useful operations/design 

tool.  

The capability to do this, as well as plot the reactivity equation 

and generate the solution profiles for a given  has been 

incorporated into the kinetics_gui code.

The code is very simple to use and it gives a tremendous 

amount of insight into the workings of point kinetics  -- you 

should give it a test drive!!! 

The Matlab-based kinetics_gui code is available 

for use from the course Dropbox folder.

The kinetics_gui Interface

(Jan. 2018)
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Summary and Take-Aways

How power maneuvers are performed within typical 

reactor systems.

Good overview of the specific startup procedure for the 

UMLRR.

How to convert the 1-group space-time kinetics

formulation into the 1-speed point kinetics model.

An understanding of the primary advantage associated 

with the Generation Time Formulation relative to the 

standard time-dependent diffusion equation.

How to solve the Generation Time Formulation of point 

kinetics for a step change in reactivity.

24.536  Reactor Experiments                                                 

Reactor Kinetics & Dynamics and UMLRR Startup Demo
(Jan. 2018)

Summary and Take-Aways (cont.)

A good understanding of the reactivity equation --

including a discussion concerning the sign and 

magnitude of the roots and the time dependent 

behavior of the power following a step change in .

How the reactor period and prompt jump/drop are 

used to estimate the behavior of the power following a 

step change in :

The concept of reactivity feedback and the observed 

power profiles associated with a step change in 

reactivity with and without negative feedback.
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