
Applied Engineering Problem Solving (CHEN.3170) 

Part II:  Numerical Methods and Applications 

Lesson 5:  Root Finding and Polynomial Manipulations 

 

In the remainder of this course, each new lesson will introduce a new class of problems that 

routinely occurs in engineering analysis.  A set of brief examples will be given to motivate the 

need for the development of one or more methods for handling problems of this type.  Then, with 

an established need, we will overview some of the basic strategies that are used to solve this 

particular class of problems.  Finally, we will focus, where possible, on existing Matlab routines 

for solving the problem of interest, and illustrate the practical use of the available tools in a 

variety of realistic applications. 

In Lesson 5 we will deal primarily with the subject of root finding  --  that is, given some 

function, f(x), we ask the question, “What are the values of x such that f(x) = 0?”, and our goal is 

to develop and apply some numerical methods that allow us to answer this question for a variety 

of situations.  In practice, there are two general classes of problems that occur: 

I.    Find the real roots of algebraic and transcendental equations, where we usually search for a 

single root based on its approximate location.  The procedure may be repeated, with a new 

starting guess, if multiple roots are required. 

II.  Find all the roots, both real and complex, of a polynomial equation of the form 

 n n 1
1 2 n n 1f (x) a x a x a x a 0

           (1) 

where, for an nth order polynomial, there are n roots.  For this class of problems, we are often 

interested in all n roots. 

Also, since dealing with polynomials is so common, we will introduce a sequence of Matlab 

commands for performing a variety of polynomial operations (addition, subtraction, 

multiplication, and division  --  as well as root finding). 

The subjects of root finding and polynomial manipulation are discussed in parts of Chapters 8 

and 9 in your Matlab text by Gilat, and also in some detail in Chapters 5 and 6 of your Numerical 

Methods textbook by Chapra.  You should study these chapters of your texts, paying particular 

attention to the material in the two chapters in Chapra  --  since he does a pretty nice job of 

highlighting the more important aspects of the key root finding methods. 

Note:  Chapter 7 of your text by Chapra introduces the subject of Optimization Methods, which 

are closely related to the root finding techniques discussed in Chapters 5 and 6.  Although we 

will not formally discuss these methods as part of this course (simply not enough time), you 

should at least be aware that techniques for finding the minima of functions do exist.  Thus, I 

suggest that you at least browse Chapter 7 in your text just to get a rough idea/overview of this 

interesting subject.  Note also that we will briefly touch upon this subject again as part of the 

Comprehensive Analysis of a Slanted Gate illustrative demo at the end of this section of notes 

(see slanted_gate_1.pdf for more details). 
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Motivation 

To motivate your study of this subject, let’s identify a few situations where root-finding 

techniques are required.  In particular, consider the following four problem scenarios: 

Problem 1:  Volume of Liquid in a Horizontal Cylindrical Tank   

The volume of liquid in a horizontal cylindrical tank is given by 

2 1 2R h
V R cos (R h) 2Rh h L

R

   
     

  
     (2) 

where R is the tank inside radius, L is the length, and h is the height of liquid.   

a. Consider a tank with R = 2.5 m and L = 5 m.  If the fluid height is 3.0 m, what is the fluid 

volume in the tank? 

b. If another 1.5 m3 of liquid is added to the tank in Part a, what will be the new value of fluid 

height? 

Since eqn. (2) expresses the volume as an explicit function of fluid height, the solution to Part a 

is quite straightforward  --  we simply put in all the known values (R, L, and h) on the RHS of 

eqn. (2) and solve for V.  Now, Part b poses a completely different situation.  Here we know R, 

L, and V, and we are asked to determine h.  However, eqn. (2) cannot be written as an explicit 

equation of the form, h = f(R,L,V).  Instead, the best we can do is to write the implicit 

relationship, f(R,L,V,h) = 0, and with known R, L, and V, this can be written as f(h) = 0.  So our 

goal is to find the value of h such that f(h) = 0.  Thus, Problem 1b is indeed a classical root-

finding problem, and clearly we need to develop some techniques for handling this situation. 

------------------------- 

Note:  Just in case you are interested, eqn. (2) for the volume of fluid 

in a horizontal cylindrical tank can be developed using the notation 

associated with the geometry of a circle (see sketch).  The area of the 

segment enclosed by the points ABCDA, Asegment, is given by 

2 2

segment

R R
A rdrd d

2 2
        

where  can be written as  

1d d
cos or 2cos

2 R R

   
     

   
 

But d = R-h, so we can write  as  12cos (R h) R   , and the area of the segment becomes 

2 1
segment

R h
A R cos

R

  
  

 
 

Now, the area occupied by the fluid, Afluid, is enclosed by the points BCDB and this is given by 

the area of the segment defined above, Asegment, minus the area of the triangle, Atriangle, enclosed 

by the points ABDA.  We can easily write the area of the triangle as 
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      2 2 2 2 2BD
triangle

L1
A 2 d R d d R (R h) R h R h 2Rh h

2 2

  
           

  
 

so the area of interest can be written as 

 2 1 2
fluid segment triangle

R h
A A A R cos R h 2Rh h

R

  
      

 
 

This area times the length of the horizontal cylinder, L, gives the desired volume  --  which is the 

result stated in eqn. (2). 

------------------------- 

Problem 2:  van der Waal’s Equation of State 

The formal relationship between pressure, temperature, and volume of a gas is called its equation 

of state.  The simplest and most commonly used equation of state is the Ideal Gas Law, 

 P RT            (3) 

where P represents the pressure (atm),   refers to the molar volume (liters/gmole), R is the 

universal gas constant (0.08206 liters-atm/gmole-K), and T represents the absolute temperature 

(K). 

However, several other relationships that are more accurate, but also more complicated, have 

also been developed.  In particular, van der Waal’s equation of state is given as 

  
2

a
P b RT
 

   
 

        (4) 

where a and b are constants for the gas of interest. 

a. The ideal gas law is certainly easier to use, but imagine that a particular application needs as 

much accuracy as possible.  Thus, you are asked to provide a plot of molar volume versus 

temperature for several pressures of interest using the more complicated, but more accurate, 

van der Waal equation.  In the application of interest, ammonia is used as the working fluid 

and the ranges of interest for the pressure and temperature are given as follows: 

Pressure:  1, 3, and 5 atms  and  Temperature:  250 < T < 400 K 

with the van der Waal constants for ammonia as follows: 

a = 4.19 atm-(liters/gmole)2  and  b = 0.0372 liters/gmole 

b. To compare how closely the van der Waal equation is to the Ideal Gas Law, one can compute 

and plot the compressibility factor, Z, which is given as, 

 
P

Z
RT


           (5) 

Note that for the Ideal Gas Law, Z is always unity, but for other forms for the equation of 

state it will deviate somewhat from unity  --  and this is a measure of the error involved if one 

decides to use the Ideal Gas Law instead of the van der Waal equation of state.   
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Provide a plot of this factor for ammonia using the van der Waal equation of state, and 

comment on the suitability of the simple Ideal Gas Law for ammonia over the range of 

pressures and temperatures of interest for this problem. 

Part b of this problem is straightforward once we have computed the molar volume for the 

pressures and temperatures indicated in Part a.  However, writing eqn. (4) as an explicit 

relationship,  = f(P,T), for the solution of Part a is not possible.  Note, however, that for a given 

combination of P and T, eqn. (4) can be written in implicit form as 

  
2

a
f ( ) P b RT 0

 
      

 
       (6) 

In this form, we see that the question of interest is, “What is the value of  such that f() = 0?”.  

Thus, this problem is also a root finding problem! 

------------------------- 

Note:  With a little algebra, eqn. (4) can be rewritten as a cubic polynomial in , as follows: 

2 2(P a)( b) RT 0       

or 

3 2P (Pb RT) a ab 0              (7) 

Thus, one could use eqn. (7) instead of eqn. (6), if desired.  However, I would recommend eqn. 

(6) for this problem since it avoids the algebra needed to derive eqn. (7) and, in this form, we 

would look for only the real root that is close to the value given by the Ideal Gas Law in eqn. (3).  

If one uses eqn. (7), you might be tempted to find all three roots of the cubic polynomial, but 

then you would have to decide which one is the valid solution to the problem.  Both approaches 

will work, but the first method that uses eqn. (6) is more efficient.   

------------------------- 

Problem 3:  Implicit Solutions to IVPs 

The implicit solution to the initial value problem (IVP) defined by 

 3 4

3

2xy y
y ' with y(0) 1

xy 2

 
 


       (8) 

can be written as 

2 2u(x, y) x xy y 1 0             (9) 

Plot the solution, y(x), over the domain 0 x 2  . 

Obtaining the analytical solution to the given IVP is a lot of work (see below), but once you have 

a solution, you would think that creating a plot of y(x) should be straightforward.  However, for 

many situations, the solution to the IVP is in the form of an implicit relationship between the 

independent and dependent variables (x and y, for this problem).  Although eqn. (9) is a valid 

solution to eqn. (8) (can you prove this?), we cannot write eqn. (9) in the form of an explicit 

solution, y = f(x).  Instead, as in the previous examples, an implicit relationship between x and y, 
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given by u(x,y) = 0, is the best that we can do.  Thus, once again, we see that a root finding 

technique is required so that, given x, we can “find y such that u(y) = 0”. 

------------------------- 

Note:  The derivation of eqn. (9) was a bit of work, so I will include it here so that you won’t 

have to struggle with it.  We start by writing eqn. (8) as follows: 

 3 4

3

2xy ydy

dx xy 2

 



 

and some algebraic manipulations gives 

   3 3 4xy 2 dy 2xy y dx     

or    3 4 32xy y dx xy 2 dy 0           (10) 

This expression is in the form 

M(x, y)dx N(x, y)dy 0          (11) 

The LHS of this equation is of the form of an exact differential 

u u
du dx dy

x y

 
 
 

         (12) 

if  M y N x     . 

Thus, computing these partial derivatives gives 

 3 4 2 3M
2xy y 6xy 4y

y y

 
   

 
 

and 

 3 3N
xy 2 y

x x

 
  

 
 

which says that the original expression is not exact! 

One possible technique for resolving this situation is to find an integrating factor, g(y), that, 

when used with the original equation, makes the LHS exact.  (Note that one often tries an 

integrating factor, g(x), first  --  but, in this case, that approach failed.  Thus, I tried to find an 

integrating factor that is only a function of y.)  To develop an expression for g(y), we multiply 

eqn. (11) by g(y), giving 

gMdx gNdy 0   

Now, by definition, for this expression to be exact, the following relationship must be valid, 

(gM) (gN)

y x
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and, with the integrating factor only a function of y [i.e. g(x,y)  g(y)], this becomes 

M dg N
g M g

y dy x

 
 

 
 

which reduces to 

1 dg 1 N M

g dy M x y

  
  

  
        (13) 

Now, if we can find some g(y) that satisfies eqn. (13), it will be our desired integrating factor  --  

which, in turn, will make our original expression exact! 

To determine g(y) for the given problem, we simply substitute the appropriate expressions on the 

RHS of eqn. (13), or 

 
 2 3

3 2 3

3 4 3 4

6xy 3y1 dg 1
y (6xy 4y )

g dy 2xy y 2xy y

 
   

 
 

which reduces to 

 
 

2 3

2 3

3 2xy y1 dg 3

g dy yy 2xy y

 
  


 

Thus, g is indeed only a function of y, and the solution of this separable ODE is given as 

dg dy
3

g y
   

which integrates to 

3ln g 3ln y ln y    

or 
3g(y) y           (14) 

Now, with g(y) known, we multiply the original ODE in eqn. (10) by g(y), giving 

3(2x y)dx (x 2y )dy 0            (15) 

With the new correspondence between eqn. (15) and the M(x,y) and N(x,y) functions in eqn. 

(11), we can recheck to determine if the new equation is indeed exact.  Doing this gives 

 
M

2x y 1
y y

 
  

 
 

and 

 3N
x 2y 1

x x

 
  

 
 

Therefore, the ODE defined by eqn. (15) is now exact! 
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Now, since the LHS of eqn. (15) is exact, we know that M u x   , which gives 

2u
u(x, y) x M(x, y) x (2x y) x x xy f (y)

x


         

      (16) 

where the constant of integration, f(y), can be a function of y (because of the partial integration 

with respect to x). 

But, we also know that N u y   , which leads to the following equality 

2 3u df
x xy f (y) x N(x, y) x 2y

y y dy

 
          

 

and, from this series of relationships, we have 

3df
2y

dy

   

which gives 

2f (y) y c            (17) 

where c is now just a simple constant of integration. 

Finally, we can write the general solution to eqn. (8) as the combination of eqns. (16) and (17), 

2 2u(x, y) x xy y c 0            (18) 

Now, to get the final result  --  the unique solution  --  we simply apply the initial condition,    

y(0) = 1, or 

u(0,1) 0 0 1 c 0 or c 1        

Thus, the unique solution to the given IVP is  

2 2u(x, y) x xy y 1 0      

and this is the implicit solution that was simply given in the original problem statement  -- which 

completes our derivation. 

Note:  All this detail was given here for two reasons: 

1. As a refresher from your Differential Equations course, and 

2. So you appreciate how easy the numerical solution of an IVP is relative to the analytical 

solution  --  since we will revisit this example again in Lesson 8 when we are discussing 

numerical solutions to ODEs (if we get that far in the course…). 

------------------------- 
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Problem 4:  Roots of the Characteristic Equation 

Find the general solution to the following 4th order ODE: 

(4)y 3y ' 4y 0            (19) 

Since this is a homogeneous linear constant coefficient system, you know from your Differential 

Equations class that a solution of the form y  erx is valid.  Upon substitution into eqn. (19), this 

gives the characteristic equation, 

4r 3r 4 0             (20) 

This is a 4th order polynomial that has 4 roots, r1, r2, r3, and r4, and, if the roots are distinct, the 

general solution can be written as 

31 2 4r xr x r x r x
1 2 3 4y(x) c e c e c e c e           (21) 

Thus, our real goal here is to find all four roots of eqn. (20)  --  since doing so will allow us to 

write eqn. (21) with explicit values for the ri terms. 

Clearly, this problem falls into our second class of root finding problems  --  find all the roots of 

a polynomial equation  --  and we will briefly discuss some general methods for addressing such 

problems later in this section of notes. 

 

Root Finding Methods 

Hopefully, the above four problem scenarios have demonstrated the need for the development of 

root finding techniques.  Now, with an established need, the remainder of this section will 

highlight some basic strategies for solving this class of problems.  Once we have a good handle 

on the basic solution methodology, we will overview some of Matlab’s built-in capability for 

root finding.  Finally, with the appropriate tools at our disposal, we will actually solve the four 

problems posed above!!! 

To start our discussion of root finding methods, let’s first focus on the problem of “finding real 

values of x such that f(x) = 0”.  There are two general approaches for finding real roots of 

nonlinear equations  --  Bracketing Methods and Open Methods  --  and they both have certain 

advantages and disadvantages.  Bracketing methods require two initial guesses that are on either 

side of a root.  This bracketing of the root is maintained as the solution algorithm continually 

reduces the size of the bracket containing the root until convergence is reached [i.e., when the 

value of f(xr) < tol].  Bracketing methods are always convergent, but the rate of convergence is 

usually relatively slow.  Open methods, on the other hand, use an initial guess or guesses that do 

not need to bracket a root.  Information about the function and its derivative at the root estimate 

are usually used to extrapolate to a new root location.  However, open methods are not 

guaranteed to converge, and the success of the method may be dependent on the goodness of the 

initial guess.  Thus, 

 Bracketing Methods  --  always converge, but are relatively slow, and 

 Open Methods  --  may diverge, but they usually converge quite rapidly when they work. 

Note, however, that at the expense of some additional programming detail, it is possible to 

combine a particular bracketing method and an open technique to give a Hybrid Method that 
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keeps the best qualities of both methods  --  producing a fast method which always converges.  In 

particular, the fzero routine in Matlab uses a hybrid approach to give a practical tool that is both 

robust and efficient. 

We will now explore the basic ideas behind bracketing and open methods and then briefly 

overview how fzero incorporates elements from both these techniques to create a powerful 

hybrid method for general root finding applications. 

Bracketing Methods 

All bracketing methods are based on the fact that, if f(x) is continuous, there is at least one zero 

crossing (i.e., a root) within the interval a  x  b if f(a)f(b) < 0.  This says that, if the product of 

the function evaluated at points a and b is negative (i.e., f(a) and f(b) have different signs), then 

there must be at least one zero crossing within the interval [a,b].  In fact, as seen in the sketches 

in Fig. 1, if there is a sign change in the function from point a to point b, then there must be an 

odd number of roots within the interval, and this knowledge can be used to develop an algorithm 

that will always converge on a root. 

 

 

Fig. 1  Basic concept for Bracketing Methods. 
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In particular, the Bisection Method is the most commonly employed bracketing algorithm.  In 

this method, one simply estimates the root to be at the midpoint of the current interval, 

rx a (b a) 2 (a b) / 2             (22) 

Then, if f(xr)f(a) < 0, the root is in the left half of the current interval, and we move the upper 

limit down to xr (i.e., redefine b = xr).  If instead, f(xr)f(a) > 0, the root is in the right half of the 

interval [a,b], and we reset the lower limit to a = xr.  This sequence is repeated until f(xr) is less 

than some user-specified value, at which time the method is said to have converged. 

The sequence of steps for the Bisection Method is illustrated in the sketch shown below, which 

includes the function graph from the lower left plot in Fig. 1 with three interval-halving steps 

shown explicitly on the plot.  In addition to this graphical representation, an algorithm for actual 

implementation of the method is outlined below: 

1. Choose b > a such that f(a)f(b) < 0 which 

guarantees at least one root within the 

interval [a,b].  Also set the convergence 

criterion, tol, and the maximum number of 

iterations, M. 

2. Evaluate eqn. (22) and compute f(xr). 

3. If f(xr)f(a) < 0, set b = xr (root is in the first 

half interval). If not, set a = xr. 

4. Increment iteration counter, k = k+1. 

5. If k  M and |f(xr)| > tol, go to Step 2. 

6. At this point, if k-1  M, xr is the desired 

estimate of the root  --  use it as needed. 

This sequence is fairly simple and easy to program and use  --  and it works!!!  This algorithm 

has been implemented into the bisection.m program listed in Table 1. 

As an illustration of how to use the Bisection Method, let’s use the bisection.m function to find 

the roots of 

xf (x) e x            (23) 

To do this we need to write a function file to evaluate eqn. (23) for any input x.  This is a simple 

task, and the resultant function, rroots_1.m, is listed below: 

% 

%  RROOTS_1.M   Function evaluation for sample root finding problem 

% 

%  Function of interest:    f(x) = exp(-x) - x   

% 

     function f = rroots_1(x) 

     f = exp(-x) - x; 

% 

%  end of function 
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Table 1  Listing of the bisection.m Matlab routine. 

% 

%   BISECTION.M  Routine to implement the Bisection Method 

% 

%   Inputs:  f   = function handle for user-supplied function.   

%                  The function f is of the form:  function y = f(x) 

%            a,b = lower and upper limits (where b > a) 

%            tol = convergence criterion  (tol > 100*eps) 

%            M   = maximum number of iterations (M >= 2) 

%        display = intermediate results are displayed if > 0                     . 

% 

%   Outputs:   x = estimated root of f(x) = 0  

%              k = number of iterations performed  (note that the number  

%                  of function evaluations is k + 2) 

%    

%   Note that a and b must be selected such that f(a)*f(b) < 0 to ensure that   

%   there is a root in [a,b] 

% 

%   File prepared by J. R. White, UMass-Lowell (last update: Nov. 2017) 

% 

      function [x,k] = bisection(f,a,b,tol,M,display) 

% 

%   check bounds, tolerance, # iterations, and display switch 

      fa = f(a);   fb = f(b); 

      if fa*fb >= 0 

        fprintf ('\n  Warning -- In bisection.m it is required that f(a)f(b) < 0.\n\n'); 

        return 

      end 

      if tol < 100*eps,  tol = 100*eps;  end 

      if M < 2,  M = 2; end 

      if display > 0 

        fprintf('\n\n Intermediate edit from the Bisection Method:  \n\n'); 

        fprintf('    k       a         f(a)        b         f(b)       xr       f(xr)    

sign(fa*fr)\n'); 

      end 

% 

%   find root  

      k = 1;      err = tol + 1; 

      while (err > tol) && (k <= M) 

        xr = a + (b-a)/2;   fr = f(xr); 

        if display > 0 

          fprintf('  %3i %10.6f %10.6f %10.6f %10.6f %10.6f %10.6f  %6i  \n', ... 

                  k,a,fa,b,fb,xr,fr,sign(fa*fr)); 

        end 

        if fa*fr < 0 

          b = xr;   fb = fr; 

        else  

          a = xr;   fa = fr; 

        end 

        err = abs(fr);   k = k + 1;     

      end 

      x = xr;  k = k-1;   % save outputs 

      if k == M  

        fprintf('\n\n  Warning: The maximum number of iterations was reached!!! \n'); 

      end 

% 

%   end of function 

 

 

 

Now, to find the roots of the nonlinear function given in eqn. (23), we can simply call 

bisection.m as follows: 

      [xr,k] = bisection(@rroots_1,0,1,1e-6,30,1); 

      fprintf('\n  Zero of f(x) = exp(-x) - x  occurs at x = %12.7f \n',xr); 

      fprintf('  The value of f(x) at this point is =      %12.7f \n',rroots_1(xr)); 

      fprintf('  The number of function evaluations needed was = %6i \n',k+2); 
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where we have chosen the bounds to be a = 0 and b = 1, set the convergence limit to tol = 10-6, 

set the maximum number of iterations to 30, and turned on the intermediate edit capability in 

bisection.m.  The result from the above the commands (without the intermediate edit) is: 

  Zero of f(x) = exp(-x) - x  occurs at x =    0.5671434  

  The value of f(x) at this point is =        -0.0000002  

  The number of function evaluations needed was =     22 

 

Thus, the result is xr = 0.56714 and this is usually all that is needed from a root finding routine.  

However, in this example, we are trying to illustrate the overall procedure associated with 

bracketing methods, in general, and the Bisection Method, in particular.  As such, the 

intermediate edit capability was turned on and the resultant edit is reproduced below: 

Intermediate edit from the Bisection Method:   

 

    k       a         f(a)        b         f(b)       xr       f(xr)    sign(fa*fr) 

    1   0.000000   1.000000   1.000000  -0.632121   0.500000   0.106531       1   

    2   0.500000   0.106531   1.000000  -0.632121   0.750000  -0.277633      -1   

    3   0.500000   0.106531   0.750000  -0.277633   0.625000  -0.089739      -1   

    4   0.500000   0.106531   0.625000  -0.089739   0.562500   0.007283       1   

    5   0.562500   0.007283   0.625000  -0.089739   0.593750  -0.041498      -1   

    6   0.562500   0.007283   0.593750  -0.041498   0.578125  -0.017176      -1   

    7   0.562500   0.007283   0.578125  -0.017176   0.570313  -0.004964      -1   

    8   0.562500   0.007283   0.570313  -0.004964   0.566406   0.001155       1   

    9   0.566406   0.001155   0.570313  -0.004964   0.568359  -0.001905      -1   

   10   0.566406   0.001155   0.568359  -0.001905   0.567383  -0.000375      -1   

   11   0.566406   0.001155   0.567383  -0.000375   0.566895   0.000390       1   

   12   0.566895   0.000390   0.567383  -0.000375   0.567139   0.000007       1   

   13   0.567139   0.000007   0.567383  -0.000375   0.567261  -0.000184      -1   

   14   0.567139   0.000007   0.567261  -0.000184   0.567200  -0.000088      -1   

   15   0.567139   0.000007   0.567200  -0.000088   0.567169  -0.000041      -1   

   16   0.567139   0.000007   0.567169  -0.000041   0.567154  -0.000017      -1   

   17   0.567139   0.000007   0.567154  -0.000017   0.567146  -0.000005      -1   

   18   0.567139   0.000007   0.567146  -0.000005   0.567142   0.000001       1   

   19   0.567142   0.000001   0.567146  -0.000005   0.567144  -0.000002      -1   

   20   0.567142   0.000001   0.567144  -0.000002   0.567143  -0.000000      -1   

 

You should really take a few minutes to follow the basic algorithm, step by step, to assure that 

you understand what is happening here.  We see that it takes 20 iterations to meet the specified 

tolerance for this problem, and careful examination of the above table shows how the lower or 

upper limit was reset on each step to always bracket the actual root within the bounds set by the 

current a and b values.  Note that the last column, with either a +1 or –1, simply indicates 

whether the root is in the right or left half of the current interval and which bound needs to be 

adjusted.  Overall, the method is easy to understand and to use, and it always works if the 

original bounds satisfy the constraint that f(a)f(b) < 0. 

Open Methods 

As indicated above, open methods tend to converge more rapidly than bracketing methods when 

they work but, unfortunately, they don’t always work!  The basic idea behind all open techniques 

is quite straightforward.  Instead of looking for a zero crossing as done for bracketing methods, 

open methods search for a value of x where two functions are equal.  To see this, let’s start with 

the original statement that f(x) = 0, where our goal, of course, is to find a real value of x that 

satisfies this condition.  Now, we can always write f(x) as the difference between two functions, 

or 

f (x) h(x) g(x) 0           (24) 
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which leads to  

h(x) g(x)           (25) 

In this form, our goal is to find the real value of x such that functions h(x) and g(x) are equal. 

Now, we are free to choose h(x) and g(x) as desired as long as eqn. (24) is satisfied.  In most 

cases, we simply let h(x) = x, and eqn. (25) becomes 

x g(x)           (26) 

This form of an equation, where the quantity of interest appears on both sides of the equation, 

suggests that an iterative process should be used to find x (the quantity of interest).  To 

emphasize the iterative nature of the algorithm that will be used to solve eqn. (26) for x, we often 

add a subscript (or sometimes a superscript) to the dependent variable to display the iteration 

counter.  After doing this, eqn. (26) becomes 

k 1 kx g(x )            (27) 

In this expression, g(x) is called the iteration function and the method is often referred to as the 

One-Point Iteration or Fixed-Point Iteration scheme.  The subscript k is the iteration counter. 

This method is particularly simple, and it is often the method of choice when doing hand 

calculations.  For example, if our goal is to find the root of f(x) as given in eqn. (23), then we 

could solve it as 

kxx
k 1 1 kx e which gives x e g (x )


        (28a) 

or as 

k 1 k 2 kx ln x which gives x ln x g (x )         (28b) 

If we make our first guess x1 = 1.0, the following iteration table can be generated: 

k  xk kx
1 kg (x ) e


   xk 2 k kg (x ) ln x   

1  1.0 0.36788  1.0 0.0 

2  0.36788 0.69220  0.0 undefined 

3  0.69220 0.50047  (we have divergence) 

4  0.50047 0.60625    

5  0.60625 0.54539    

6  0.54539 0.57962    

7  0.57962 0.56011    

8  0.56011 0.57115    

9  0.57115 0.56488    

10  0.56488 0.56843    
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Clearly, we see that eqn. (28a) is converging where, after 10 manual iterations, we have two 

significant digits of accuracy (recall that the actual root occurs at xr = 0.56714).  However, 

although mathematically equivalent, eqn. (28b) fails miserably.  This is a good example of the 

primary disadvantage associated with all open methods  --  sometimes they work and sometimes 

they don’t! 

Now, the one-point iteration scheme outlined above is not usually implemented in this fashion 

for computer analysis because of the somewhat arbitrary nature for choosing the iteration 

function, g(x).  Instead, the most common one-point iteration algorithm used in practice, which 

has a specific representation for g(x), is the Newton-Raphson (NR) method (often simply 

referred to as Newton’s method).  The iteration formula for this method is easily derived using a 

truncated Taylor series expansion for the original function, f(x), evaluated at the root estimate, 

xk.  Rewriting eqn. (8) from the Lesson 4 Lecture Notes for the Taylor series using the current 

notation, gives 

  2
k 1 k k k 1 kf f f ' x x O( x )             (29) 

where we have truncated the series after the 1st order term.  Dropping the error term and solving 

this expression for xk+1 gives 

k 1 k
k 1 k

k

f f
x x

f '





   

or 

k 1 k
k 1 k

k

f f
x x

f '





           (30) 

Now, the next guess for a root, xk+1, will be chosen so that, by definition, f(xk+1) = fk+1 = 0 (i.e., if 

xk+1 is the root, then fk+1 = 0).  Thus, eqn. (30) reduces to 

k
k 1 k

k

f
x x

f '
            (31) 

which is the iteration equation for Newton’s method. 

For general purpose use, it is often inconvenient to require the evaluation of both f(x) and f (x) at 

each root estimate, xk.  Because of this, the Newton method, which formally requires user-

defined functions to evaluate both f(xk) and f (xk), is often replaced by the Secant method  --  

which is similar to the NR method except that f k is approximated by a finite difference formula.  

In particular, we can use a first-order backward approximation to f k (see eqn. (11) in the Lesson 

4 Lecture Notes), or 

k k 1
k

k k 1

f f
f '

x x









         (32) 

Now, substitution of eqn. (32) into eqn. (31) gives the Secant method, 

k k 1
k 1 k k

k k 1

x x
x x f

f f






 
   

 
        (33) 
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This iteration formula now requires two starting guesses like a bracketing technique but, since 

this is an open method, there is no requirement that the original two guesses bracket a root.  

However, it does make sense to provide reasonable guesses, as appropriate, for the problem of 

interest. 

A formal algorithm for implementation of the Secant method is given below: 

1. Make two guesses for the root, xk-1 and xk, for k = 1.  Also set the convergence criterion, 

tol, and the maximum number of iterations, M. 

2. Evaluate eqn. (33) and compute f(xk+1) = fk+1. 

3. Increment the iteration counter, k = k+1. 

4. If k  M and |f(xk+1)| > tol, go to Step 2. 

5. At this point, if k-1  M, xk+1 is the desired root estimate  --  use it as desired. 

This sequence is quite simple and easy to program.  This algorithm for the Secant method has 

been implemented into the secant.m Matlab function file listed in Table 2. 

To illustrate the use of the secant.m function and to show how the iteration sequence for an open 

method differs from a bracketing method, we can re-solve eqn. (23) using the Secant method.  

Of course, we will use the same equation file, rroots_1.m, as before for evaluating f(x) (see pg. 

10 of these notes).  We can also call secant.m using a similar sequence of commands from the 

Matlab prompt as done previously for the Bisection method (by simply replacing the call to 

bisection.m with a call to secant.m): 

      [xr,k] = secant(@rroots_1,0,1,1e-6,20,1); 

      fprintf('\n  Zero of f(x) = exp(-x) - x  occurs at x = %12.7f \n',xr); 

      fprintf('  The value of f(x) at this point is =      %12.7f \n',rroots_1(xr)); 

      fprintf('  The number of function evaluations needed was = %6i \n',k+2); 

 

where the two initial guesses are x0 = 0 and x1 = 1, the convergence criterion is again set to 10-6, 

the maximum number of iterations is 20, and the intermediate edit switch has been activated.  

With these settings, the above commands give the following output (including the intermediate 

edit): 

Intermediate edit from the Secant Method:   

 

    k       x0         f0         x1         f1         x2         f2 

    1   0.000000   1.000000   1.000000  -0.632121   0.612700  -0.070814  

    2   1.000000  -0.632121   0.612700  -0.070814   0.563838   0.005182  

    3   0.612700  -0.070814   0.563838   0.005182   0.567170  -0.000042  

    4   0.563838   0.005182   0.567170  -0.000042   0.567143  -0.000000 

 

  Zero of f(x) = exp(-x) - x  occurs at x =    0.5671433  

  The value of f(x) at this point is =        -0.0000000  

  The number of function evaluations needed was =      6 

 

 

Clearly, the Secant method gives the correct result since it is the same as for the Bisection 

method.  However, it arrived at the same answer with only 4 iterations (and 6 function 

evaluations), which is significantly faster than for the Bisection method (which required 22 

function evaluations), and this is typical of the improved efficiency of an open method over a 

bracketing technique. 
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Also of interest here is the actual sequence of intermediate results from the Secant method for 

this problem.  As before, I strongly encourage you to review this short table of results, step by 

step, so that you have a good handle of the actual computational algorithm for the Secant 

method!!! 

 

Table 2  Listing of the secant.m Matlab routine. 

% 

%   SECANT.M  Routine to implement the Secant Method 

% 

%   Inputs:  f   = function handle for user-supplied function.   

%                  The function f is of the form:  function y = f(x) 

%          x0,x1 = two initial guesses for the root location 

%            tol = convergence criterion  (tol > 100*eps) 

%            M   = maximum number of iterations (M >= 2) 

%        display = intermediate results are displayed if > 0                     . 

% 

%   Outputs:   x = estimated root of f(x) = 0  

%              k = number of iterations performed   (note that the number  

%                  of function evaluations is k + 2) 

%    

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

      function [x,k] = secant(f,x0,x1,tol,M,display) 

% 

%   check tolerance, # iterations, initial guesses, and display switch 

      if tol < 100*eps,  tol = 100*eps;  end 

      if M < 2,  M = 2; end 

      if abs(x1-x0) < tol 

         fprintf ('The Secant Method requires that x1 be different from x0.\n'); 

         return 

      end 

      if display > 0 

        fprintf('\n\n Intermediate edit from the Secant Method:  \n\n'); 

        fprintf('    k       x0         f0         x1         f1         x2         f2\n'); 

      end 

% 

%   find root  

      f0 = f(x0);   f1 = f(x1); 

      k = 1;   err = tol + 1; 

      while (err > tol) && (k <= M); 

        x2 = x1 - (x1-x0)*f1/(f1-f0);   f2 = f(x2); 

        if display > 0 

          fprintf('  %3i %10.6f %10.6f %10.6f %10.6f %10.6f %10.6f \n', ...  

                  k,x0,f0,x1,f1,x2,f2); 

        end  

        err = abs(f2);   k = k + 1; 

        x0 = x1;  f0 = f1;  x1 = x2;  f1 = f2; 

      end 

      x = x2;  k = k-1;   % save outputs 

      if k == M  

        fprintf('\n\n  Warning: The maximum number of iterations was reached!!! \n'); 

      end 

% 

%   end of function 

 

 

The fzero Routine 

Matlab has a built-in function, fzero, for finding real roots of nonlinear equations.  It is a 

particularly useful hybrid method that incorporates a combination of a bracketing method for 

guaranteed convergence and an open method (actually two open methods) for overall fast 

operation.  The algorithm implemented within fzero is quite complicated (at least relative to the 
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simple ones we have discussed here), but the formal details are not really necessary for practical 

application of the routine.  Chapra does a nice job of summarizing the basic hybrid root finding 

strategy within fzero in Section 6.5 of your text, and he also provides a detailed example of its 

use.  I suggest that a review of this material, a quick look at the output that you get by typing 

help fzero in Matlab, and a few practical examples should be sufficient for most users to become 

proficient with using fzero for realistic applications. 

In particular, the most common syntax for using fzero is given below: 

set xg  --  where xg is a single guess for the root or a two element vector that contains the 

lower and upper limits that bracket the root.  If you only supply a single guess, 

fzero automatically searches for a bracket near the supplied guess. 

set options  --  where options is a particular data structure that allows the user to set the 

convergence tolerance and the output edit level.  In most cases this is not 

needed. 

 solve for the root, xr, with the following command: 

         xr = fzero(@function_name, xg, options, p1, p2,…) 

In the above command, function_name is the name of a user-defined Matlab function file that 

evaluates f(x) for any scalar input x (and @function_name generates a function handle for use 

in fzero), and p1, p2, … are additional optional parameters that can be passed to the function 

file.   

As a particular example, let’s solve for the root of the function given by eqn. (23) using fzero, 

since we are already familiar with this function with the Bisection and Secant methods.  The 

needed command sequence can be input at the Matlab prompt as: 

      xr = fzero(@rroots_1,[0 1]); 

      fprintf('\n  Zero of f(x) = exp(-x) - x  occurs at x = %12.7f \n',xr); 

      fprintf('  The value of f(x) at this point is =      %12.7f \n',rroots_1(xr)); 

 

with the following result echoed back to the screen, 

  Zero of f(x) = exp(-x) - x  occurs at x =    0.5671433  

  The value of f(x) at this point is =         0.0000000 

 

Here, we have used the built-in default options, did not require any additional parameters, and 

set the brackets directly within the fzero command.  This format is the easiest and most common 

structure to use.  And, of course, it gives the correct root for this problem!!! 

Overall, the fzero function is easy to use, it works every time (if you have a well-behaved 

function), and it is quite efficient for most problems.  In short, unless you have a very special 

problem that requires special attention, there is no reason to use anything but fzero for finding 

real roots of nonlinear equations.  I have used it successfully, in every case, for the past 30+ 

years!!! 

Polynomial Roots and Other Such Things… 

As indicated previously (see Problem 4 under the Motivation Section), finding all the roots of 

polynomial equations is also an important task that needs to be addressed as part of many 

engineering analysis and design applications.  In addition, performing a variety of algebraic 

manipulations with polynomials, such as addition, subtraction, multiplication, and division, as 

well as simple polynomial evaluation, are quite routine for many applications.  Thus, we need to 
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provide some techniques and tools for performing these operations.  Unfortunately, however, 

although polynomial evaluation and algebraic manipulation are quite straightforward, 

polynomial root finding is not  --  and some fairly advanced techniques are needed to accomplish 

this task.  At this point in our study of numerical methods we do not have all the necessary 

background so, in this course, we will not go into any real details of the polynomial root finding 

methods.  Instead, we will only briefly overview the basic ideas and then focus on using the 

built-in capability within Matlab!  Thus, we will leave the formal methodology behind Matlab’s 

roots command for another day  --  possibly as individual study for the interested student, or as 

part of a more advanced numerical methods course taken as a senior elective or as part of your 

graduate studies… 

To start our discussion of polynomials, we first recall that an nth order polynomial can always be 

written as 

 n n 1
1 2 n n 1f (x) a x a x a x a

          (34) 

Note, in particular, that we have written the polynomial with decreasing powers of x  --  since 

this is consistent with the way Matlab works with these functions.  Now, if we know that f(x) is a 

polynomial function, we can summarize the function by simply listing the coefficients in eqn. 

(34), 

  1 2 3 n n 1f a a a a a   

This sequence of numbers forms a row vector and, of course, this is a simple structure to 

represent in Matlab. 

Now, with the polynomial coefficients stored in a row vector, the addition or subtraction of two 

polynomials is quite simple.  For example, let’s consider the following three polynomials: 

5 4 3 2
1f x 3x 10x 10x 44x 48       

2
2f x 2x 2    

2
3f x 2x 1    

To add f2 and f3, the Matlab sequence is 

>> f2 = [1 2 2];  f3 = [1 2 1]; 

>> f2+f3 

 

which gives 

ans = 

     2     4     3 

 

and, as expected, this is the proper representation of 

2
2 3f f 2x 4x 3     

Note that, to add or subtract polynomials of different order, we need to pad the lower order 

polynomial with the appropriate number of leading zeros (since the vectors must be the same 

size).  For example, 

>> f1 = [1 -3 -10 10 44 48];  f2 = [0 0 0 1 2 2]; 

>> f1-f2 
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gives 

ans = 

     1    -3   -10     9    42    46 

 

which is consistent with expectations. 

Now, polynomial multiplication and division, although conceptually straightforward, are not so 

easy to do via hand calculations  --  you probably remember the dreaded long multiplication and 

division problems from your junior high school days.  Of course, Matlab makes these tasks easy 

for us with the conv (multiplication) and deconv (division) commands.  To illustrate these 

functions, let’s do some simple cases with Matlab and by hand (just to jog your memory).   

Dividing f1 by f3 gives 

       3 2x 5x x 17    

2x 2x 1    | 5 4 3 2x 3x 10x 10x 44x 48      

           

5 4 3

4 3 2

4 3 2

3 2

3 2

2

2

x 2x x

5x 11x 10x

5x 10x 5x

x 15x 44x

x 2x x

17x 45x 48

17x 34x 17

11x 31

 

  

  

  

  

 

 



 

where we see that the answer is 3 2x 5x x 17    with a remainder of 11x + 31.  Thus, f3 is not a 

factor of f1  --  since the remainder is nonzero. 

And, multiplying f2 by f3 gives the following 4th order polynomial 

2

2

2

3 2

4 3 2

4 3 2

x 2x 2

x 2x 1

x 2x 2

2x 4x 4x

x 2x 2x

x 4x 7x 6x 2

 

 

 

 

 

   

 

Now, these two operations in Matlab are rather trivial (and certainly easier to type than the above 

hand examples): 

>> f1 = [1 -3 -10 10 44 48];  f2 = [1 2 2];  f3 = [1 2 1]; 

>> [Q,R] = deconv(f1,f3) 

Q = 

     1    -5    -1    17 
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R = 

     0     0     0     0    11    31 

 

>> conv(f2,f3) 

ans = 

     1     4     7     6     2 

 

which give the same results as above!!! 

For the division example, note that, if the denominator is a factor of the numerator, then we 

expect the remainder to be zero.  For example, evaluating f1/f2 gives 

>> [QQ,RR] = deconv(f1,f2) 

QQ = 

     1    -5    -2    24 

RR = 

     0     0     0     0     0     0 

 

Since RR is zero, f2 is indeed a factor of f1  --  a quadratic factor! 

Evaluating polynomials is also an easy task.  Of course we could write a simple function file to 

evaluate f(x) at a vector of x values.  However, Matlab has a built-in function, polyval, that does 

this quite efficiently using a technique known as Horner’s Rule.  This method is simply a clever 

way to efficiently evaluate the polynomial.  An algorithm for Horner’s Rule is given below: 

1. Define polynomial coefficients:    a = [a1 a2  an an+1] 

2. Define vector of independent variables:   x = linspace(xo, xf, Nx) 

3. Determine length of coefficient array:    M = length(a) 

4. Initialize function:      f = zeros(size(x)) 

5. Evaluate polynomial:      for i = 1:M,   f = f.*x + a(i);   end 

To see exactly what this algorithm does, let’s assume a 3rd order polynomial (M = 4).  Thus, 

there will be four passes through the for … end loop with the following results after each pass: 

 i = 1,  f = a1 

 i = 2,  f = a1x + a2 

 i = 3,  f = (a1x + a2)x + a3 

 i = 4,  f = [(a1x + a2)x + a3]x + a4 

and, written out in detail, we have 

3 2
1 2 3 4f a x a x a x a     

Thus, we see that, after M passes, we have the desired polynomial evaluated at all desired x 

values! 

This algorithm is really quite efficient, and it has been implemented within Matlab’s polyval 

function.  Therefore, if you need to evaluate a polynomial, you should definitely use polyval  --  

that is, don’t re-invent the wheel each time it is needed! 

As an example that uses polyval, the following code plots f1(x) over the range [-3,5]: 

      a = [1 -3 -10 10 44 48] 

      x = linspace(-3,5,101);   f = polyval(a,x); 

      subplot(2,1,1),plot(x,f,'LineWidth',2),grid,axis([-3 5 -200 200]); 
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      title('PRoots:  Plot of f(x) = x^5 - 3x^4 - 10x^3 + 10x^2 + 44x + 48') 

      xlabel('x value'),ylabel('f(x)') 

 

Another common task involves the evaluation of derivatives of polynomials.  This, of course, is 

easy to do by hand, but Matlab has a built-in function, polyder, that is also easy to use.  As an 

example, the derivative of f1(x) can be plotted as follows (assumes a and x have been defined): 

      ap = polyder(a);  fp = polyval(ap,x); 

      subplot(2,1,2),plot(x,fp,'LineWidth',2),grid,axis([-3 5 -200 200]); 

      title('PRoots:  Plot of f''(x)') 

      xlabel('x value'),ylabel('f''(x)') 

 

The resulting plot from the above two polynomial evaluation examples is given in Fig. 2. 

 

Fig. 2  Plot of f1(x) and its first derivative. 

 

As defined above, f1(x) is a 5th order polynomial and its derivative is of order 4.  Clearly, we 

expect that f1 should have 5 roots and its derivative should have 4 (an nth order polynomial will 

have n roots).  However, from Fig. 2 there are only 3 zero crossings in the upper plot (at –2, 3, 

and 4) and only 2 zeros in the lower subplot for f1.  This implies that there is a set of complex 

conjugate roots for each case.  To find all the roots with Matlab, we can simply use the built-in 

roots command.  For example, the roots of f1(x) = 0 are 

>> a = [1 -3 -10 10 44 48];   roots(a) 

ans = 

   4.0000           

   3.0000           

  -2.0000           

  -1.0000 + 1.0000i 

  -1.0000 - 1.0000i 
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where, as expected, we see 3 real roots at the locations indicated in Fig. 2 and a pair of complex 

conjugate roots (note that these are also the roots of the quadratic factor, x2 + 2x + 2, as 

discovered above).  Thus, with Matlab, finding polynomial roots is quite simple. 

------------------------- 

Note:  There are several different techniques for finding roots of polynomials.  Many of the 

methods try to find linear or quadratic factors of the original polynomial (e.g., Muller’s method 

and Bairstow’s method).  Once a factor is found, one can divide by the factor to reduce the order 

by 1 or 2 (this process is called polynomial deflation).  Using this approach, one can eventually 

break an nth order polynomial into a series of linear and quadratic factors  --  from which the 

roots are easily obtained. 

Another approach, which is the one implemented in the Matlab roots command, uses well 

established techniques for finding the eigenvalues of a particular matrix  --  referred to as the 

companion matrix  --  where one can show that the eigenvalues of the companion matrix and the 

roots of the original polynomial are identical.  We have already briefly discussed the subject of 

eigenvalues and eigenvectors of a matrix in an earlier lesson and we are familiar with the use of 

Matlab’s eig command to find these quantities.  In particular, since the eig function is highly 

optimized, Matlab’s roots command first forms the companion matrix and then calls the built-in 

eig function to find the associated eigenvalues  --  which gives us the roots of the original 

polynomial. 

Well, if all this seems a little confusing, don’t be too concerned.  For now, I only require that you 

to be able to use the roots function properly  --  since we do not have time in this course to go 

into the details of the methods… 

------------------------- 

To complete our brief discussion of polynomial roots, we should also note that a polynomial can 

also be written in its factored form, 

1 2 3 n 1 nf (x) (x r )(x r )(x r ) (x r )(x r )           (35) 

and multiplying out all the factors will give the form of the polynomial written in eqn. (34).  As 

you might expect, Matlab has a built-in function, poly, that will convert the factored form given 

in eqn. (35) (represented by a column vector of roots) into the coefficient form given in eqn. (34) 

(which is written as a row vector of coefficients).  For example, the following sequence of 

Matlab commands takes f1(x) written in coefficient form, finds its roots, and then uses these 

roots to reconstruct the coefficient form of the polynomial: 

>> a = [1 -3 -10 10 44 48],   r = roots(a),   p = poly(r) 

a = 

     1    -3   -10    10    44    48 

r = 

   4.0000           

   3.0000           

  -2.0000           

  -1.0000 + 1.0000i 

  -1.0000 - 1.0000i 

p = 

    1.0000   -3.0000  -10.0000   10.0000   44.0000   48.0000 

 

 

And, of course, the initial and final coefficient forms of the polynomials are identical! 
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Solution of the Motivation Problems 

Now that we have reviewed several basic methods for root finding and have discussed, in 

particular, Matlab’s fzero and roots commands, we should be able to solve the problems 

presented earlier to motivate the need for such techniques.  In particular, several Matlab script 

and function files were written to solve the four problems posed earlier.  Each problem is briefly 

discussed in the following subsections (please refer, as needed, to the problem descriptions given 

at the beginning of this lesson): 

Problem 1 Solution 

This problem deals with the volume of fluid in a horizontal cylindrical tank.  There were two 

parts to the problem.  For Part a, the height, h, radius, R, and length, L, are given, and the explicit 

expression for the volume of fluid, V, was simply evaluated as given in eqn. (2) in the first part 

of horizontal_cyl_1.m (see Table 3 for a listing of the Matlab files for this problem).  The 

program output for this part of the problem is given below: 

  Lesson 5 Prob. #1a  --> Height of fluid in tank =  3.00000 m   

                      --> Volume of fluid in tank = 61.50354 m^3   

 

In Part b, an additional 1.5 m3 of fluid is added and the goal is to determine the new fluid height.  

Thus, the volume is now known (Vb = 63.00354 m3), and the implicit form of eqn. (2), f(h) = 0, 

was implemented in function file, horizontal_cyl_1a.m.  This file was called by fzero to find a 

zero of f(h) within the bracket [0, 2R].  This range makes physical sense for this problem since 

the height of fluid must be within these limits.  The result from the call to fzero is given below: 

  Lesson 5 Prob. #1b  --> Volume of fluid in tank = 63.00354 m^3   

                      --> Height of fluid in tank =  3.06140 m   

 

Thus, we see that an additional 1.5 m3 of fluid increases the fluid height from 3.0 m to about   

3.06 m (a 6 cm increase).   

The Matlab implementation for this problem was quite straightforward and a listing of the 

associated files is given in Table 3. 

 

 

Table 3  Listing of the programs to solve Problem 1. 

% 

%   HORIZONTAL_CYL_1.M     Find the volume & height of fluid  

%                          in a horizontal cylindrical tank 

% 

%   The volume of fluid in a horizontal cylindrical tank is given by: 

%       V = L*(R*R*acos((R-h)/R)-(R-h)*sqrt(2*R*h-h*h)) 

%   where V = volume, R = radius, h = height of fluid, and L = length of tank. 

% 

%   Problem description:   

%      a.  If h, R, and L are known, find V.  --  this is explicit 

%      b.  If V, R, and L are known, find h.  --  this is implicit 

% 

%   The explicit problem is simple and uses a single explicit evaluation.  The 

%   implicit problem uses fzero, with the function file HORIZONTAL_CYL_1A.M to 

%   find the value of h that satisfies the implicit form, f(h) = 0, of the above 

%   equation. 

% 

%   File prepared by J. R. White, UMass-Lowell  (last update:  Nov. 2017) 

% 
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      clear all,   close all 

      global R L Vol 

% 

%   Part a:  Find Volume of Fluid in a Horizontal Cylindrical Tank 

      R = 2.5;  L = 5;    % radius and length of tank (m) 

      ha = 3.0;           % height of fluid for Part a of problem  (m) 

      Va = L*(R*R*acos((R-ha)/R)-(R-ha)*sqrt(2*R*ha-ha*ha)); 

      fprintf('\n\n  Lesson 5 Prob. #1a  --> Height of fluid in tank = %8.5f m  \n ',ha); 

      fprintf('                     --> Volume of fluid in tank = %8.5f m^3  \n ',Va); 

% 

%   Part b:  Find Height of Fluid in a Horizontal Cylindrical Tank 

      Vb = 1.5+Va;      % volume after adding another 1.5 m^3 of fluid 

      fprintf('\n\n  Lesson 5 Prob. #1b  --> Volume of fluid in tank = %8.5f m^3  \n ',Vb); 

      Vol = Vb;         % volume of fluid to pass to function subroutine used by fzero 

      hb = fzero(@horizontal_cyl_1a,[0 2*R]); 

      fprintf('                     --> Height of fluid in tank = %8.5f m  \n ',hb); 

% 

%  end of problem 

 

 

 

 

 

% 

%  HORIZONTAL_CYL_1A.M   Function evaluation for Root Finding Exercise  

% 

%  The volume of fluid in a horizontal cylindrical tank is given by: 

%      V = L*(R*R*acos((R-h)/R)-(R-h)*sqrt(2*R*h-h*h)) 

%  where V = volume, R = radius, h = height of fluid, and L = length of tank. 

% 

% 

      function f = horizontal_cyl_1a(h) 

      global R L Vol 

      f = Vol - L*(R*R*acos((R-h)/R)-(R-h)*sqrt(2*R*h-h*h)); 

% 

%  end of function 

 

 

 

Problem 2 Solution 

In this problem, the van der Waal equation of state is compared to the ideal gas law for ammonia 

over a range of temperatures and pressures.  The ideal gas law is the simple explicit relationship 

given in eqn. (3) and van der Waal’s equation is a more complicated implicit expression that 

interrelates the molar volume, , the pressure, P, and the gas temperature, T, as given in eqn. (4).  

Since we want to plot the equation of state for a range of temperatures at three different 

pressures, a double loop is needed with a separate call to fzero to evaluate the implicit form of 

eqn. (4) for each P and T combination.  In the call to fzero, the value of  obtained from the ideal 

gas law is used as a guess for the root finding algorithm.  Once the molar volume is determined, 

the compressibility factor, Z, is easily determined via eqn. (5). 

The Matlab program listed in Table 4, eqofst_1.m, implements the above solution algorithm.  

The first part of the main program sets the desired pressure and temperature values.  Then, in 

separate code segments, the ideal gas law and van der Waal’s equation of state are evaluated, 

where we see that the implicit form of the equation of state requires a little more effort than the 

explicit ideal gas law representation (note that an anonymous function was used here).  Finally, 

the output section creates the desired plot of molar volume versus temperature for the three given 

values of P and a graphical representation of the compressibility factor for the temperatures and 

pressures of interest in this problem.  The Matlab generated plots are reproduced below as Fig. 3. 
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Fig. 3  Graphical representation for the equation of state for ammonia for Problem 2. 
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Table 4  Listing of the programs to solve Problem 2. 

% 

%   EQOFST_1.M    Plot equation of state for ammonia over selected range 

%                       using van der Waal's equation 

% 

%   This demo evaluates and plots the equation of state for ammonia over a 

%   range of pressures and temperatures.  In this case, the ideal gas law is  

%   compared to van der Waal's equation, which is given by  

%       (P + a/v^2)(v - b) = RT 

%   where a and b are constants for a particular gas.  For ammonia, given some 

%   value of P and T, the goal is to find the value of molar volume (v in liters/ 

%   gmole) that satisfies the above equation.  Note that an anonymous function is  

%   used for the implicit form of van der Waal's equation, f(v) = 0 

% 

%   The compressibility factor, Z = Pv/RT, can be used to compare how close van 

%   der Waal's equation is to the ideal gas law.  Note that, for the ideal gas 

%   law, Z is always unity, but other (more accurate) forms for the equation of  

%   state will deviate somewhat from unity. 

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

  

      clear all,   close all,   nfig = 0; 

% 

%   setup range of variables 

      press = [1 3 5];               % pressure (atm) 

      temp = linspace(250,400,16)';  % temperature (K) 

      R = .08205;                    % universal gas constant (liters-atm/gmole-K) 

      Np = length(press);   Nt = length(temp); 

% 

%   evaluate ideal gas equation (Pv = RT) 

      v1 = zeros(Nt,Np); 

      for i = 1:Np 

        v1(:,i) = R*temp/press(i); 

      end 

% 

%   evaluate van der Waals equation 

%   (need a little extra work here because of implicit form) 

      v2 = zeros(Nt,Np);   Z = zeros(Nt,Np); 

      a = 4.19;  b = .0372;   % constants for ammonia 

      for i = 1:Np 

        P = press(i); 

          for j = 1:Nt 

            T = temp(j); 

            fv = @(v) (P + a/(v*v))*(v - b) - R*T; % anonymous function used in fzero 

            v2(j,i) = fzero(fv,v1(j,i)); 

            Z(j,i) = P*v2(j,i)/(R*T); 

          end 

      end 

% 

%  plot molal volume  -  ideal (dash), van der Waals (solid) 

     nfig = nfig+1;   figure(nfig) 

     plot(temp,v1,'--',temp,v2,'-','LineWidth',2) 

     title('Eqofst\_1:  Equations of State for Ammonia') 

     xlabel('Temperature (K)'),ylabel('Molal Volume (liters/gmole)'),grid 

     for i = 1:Np,   gtext(['P = ',num2str(press(i)),' atm']),   end 

     v = axis;  xt = temp(1)+10;  yt = v(3) + 0.85*(v(4)-v(3)); 

     txt1 = ['Ideal Gas (dashed line)  '; 'van der Waal (solid line)']; 

     text(xt,yt,txt1) 

% 

%  plot compressibility factor   

     nfig = nfig+1;   figure(nfig) 

     plot(temp,Z(:,1),'r-',temp,Z(:,2),'b--',temp,Z(:,3),'g:','LineWidth',2) 

     title('Eqofst\_1:  Compressibility Factor for Ammonia (Van der Waals)') 

     xlabel('Temperature (K)'),ylabel('Compressibility'),grid 

     for i = 1: Np,  txt2(i) = {['P = ',num2str(press(i)),' atm']};  end 

     legend(txt2,'Location','SouthEast') 

% 

%   end of problem 
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As apparent from the plots, the ideal gas approximation for ammonia for the temperatures and 

pressures given here is not too bad.  Even at the highest pressure (5 atm) and lowest temperature 

(250 K), the ideal gas law only deviates from the more accurate van der Waal equation by a little 

over 4%.  This is probably acceptable for most applications  --  but if higher accuracy is needed, 

we can always use fzero to help evaluate a more complicated form of the equation of state!!! 

Problem 3 Solution 

The goal here was simply to plot the solution of a particular IVP, where the solution, given by 

eqn. (9), is written in implicit form, u(x,y) = 0.  However, for a given value of the independent 

variable, x, this becomes a classical root finding problem  --  that is, “What is the value of y such 

that f(y) = 0?”.  As such, we simply need to define a vector of x values and then call fzero for 

each value.  Also, for a small x increment, we expect the current y value, yi, for point xi, to be 

close to the previous value, yi-1.  Thus, we can use yi-1 as an estimate of the root for the current 

value, yi.  This relatively simple solution scheme was implemented within Matlab file 

analytical_ivp1.m as seen in Table 5 and the resultant plot of y(x) vs. x is given in Fig. 4. 

This solution is actually quite interesting because of the discontinuity that is observed at              

x = 0.3256 (this value was obtained to 4 significant digits by using the zoom feature within the 

Matlab figure window).  We will see later (in Lesson 8) that the numerical solution of the given 

IVP has a problem at this point because the slope goes to infinity.  In fact, the IVP cannot be 

numerically integrated past this singular point without knowledge of the analytical solution (so 

that we can cheat a little by jumping over the singularity).  However, for now, our focus is on 

root finding, and we see that the use of fzero allows us to easily plot the exact implicit solution 

(even with a discontinuity within the range of interest)! 

 

Fig. 4  Plot of implicit solution to the IVP given in Problem 3. 
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Table 5  Listing of the programs to solve Problem 3. 

% 

%   ANALYTICAL_IVP1.M   Plot Implicit Solution to a given IVP 

% 

%   This problem illustrates how to evaluate and plot a function in implicit 

%   form.  The function of interest here is the analytical solution to the IVP  

%   given by 

%               -(2xy^3 + y^4) 

%        y' = --------------------    with y(0) = 1 

%                  xy^3 -2) 

% 

%   The goal is to plot y(x) vs x for the implicit solution to the IVP given by: 

%        u(x,y) = x^2 + xy + y^(-2) - 1 = 0 

% 

%   This requires use of Matlab's fzero root finding routine with the implicit 

%   function evaluated within an anonymous function.  To plot y versus x, we find  

%   the 'root' of this implicit equation for each value of x, and then plot the  

%   results. 

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

  

      clear all, close all,  nfig = 0; 

% 

%   initial setup  

      xo = 0;   xf = 2;   yo = 1;  Nx = 2001;    

      xe = linspace(xo,xf,Nx);    ye = zeros(size(xe));    

% 

%   now evaluate the implicit eqn at each point (uses previous y-value as guess) 

      xe(1)= xo;    ye(1) = yo; 

      for i = 2:Nx 

        x = xe(i);   

        fy = @(y) x^2 + x*y + y^(-2) - 1;  % anonymous function for used in fzero 

        ye(i) = fzero(fy,ye(i-1));   

      end 

% 

%   now plot results  

      nfig = nfig+1;   figure(nfig) 

      plot(xe,ye,'b-','LineWidth',2) 

      title('Analytical\_IVP1:  Plot of Implicit Solution to given IVP') 

      xlabel('x values'),ylabel('y(x)'), grid, hold on 

% 

%   end of simulation 

 

 

 

Problem 4 Solution 

The solution to this problem involves finding the roots to the characteristic equation for a 4th 

order ODE.  The polynomial of interest is given in eqn. (20), and we can easily find all four roots 

with Matlab’s roots command, as follows: 

>> a = [1  0  0  3 -4];  roots(a) 

ans = 

  -1.7430           

   0.3715 + 1.4687i 

   0.3715 - 1.4687i 

   1.0000             

 

where we should note that two zeros were needed in the coefficient representation of the 

polynomial to account for the missing r3 and r2 terms in eqn. (20). 

Now, with the roots known, we can write the general solution to the ODE by substituting explicit 

values for the roots in eqn. (21), or 
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1.7430x (0.3715 1.4687i)x (0.3715 1.4687i)x 1.0000x
1 2 3 4y(x) c e c e c e c e         (36) 

This form, however, is somewhat cumbersome because of the complex roots.  This can be 

rewritten, however, using Euler’s formulas for the complex exponentials (see Chapter 3 of the 

Differential Equations text by Edwards and Penny, for example) to give 

 1.7430x 0.3715x x
1 2 3 4y(x) a e e a sin(1.4687x) a cos(1.4687x) a e      (37) 

and this is the way I would write the general solution to the given ODE.  Note that four unique 

conditions would be required to determine the arbitrary coefficients in this general solution to 

give a unique solution (but this is another problem  --  see Lesson 6)…   

Summary and Additional Applications 

Well, this completes our brief overview of some root finding techniques and polynomial 

manipulations within Matlab.  You should have a basic understanding of the various methods for 

finding real roots of nonlinear equations (i.e. using both bracketing and open methods) and be 

comfortable with using the hybrid algorithm within Matlab’s fzero routine to solve a range of 

practical problems.  In addition, you should also be able to solve problems that involve 

polynomial root finding, evaluation, and algebraic manipulation using a variety of built-in 

functions in Matlab (roots, polyval, conv, deconv, poly, etc.).  I think you will find this capability 

to be very useful in a variety of areas… 

To give some further experience with root finding applications, I have also included three 

additional worked-out examples that show how fzero can be used to help solve some interesting 

engineering problems in the areas of fluid flow, heat transfer, and fluid statics.  These examples 

are available as separate pdf files, as follows: 

 pipe_friction_1.pdf  --  Friction Effects in Pipe Flow 

 conducting_rod_1.pdf  --  Energy Balance on a Conducting Rod 

 slanted_gate_1.pdf  --  Comprehensive Analysis of a Slanted Gate 

After you have finished your reading assignment for this lesson and after reviewing the above 

examples, you should be ready to do HW #5 (see hw5xxx.pdf).  This homework usually 

involves several problems that require you to use a root finding routine (i.e. fzero) and possibly 

several of the polynomial-related functions in Matlab to solve a variety of practical problems.  

As before, I prefer that you collect the Matlab m-files, the resultant plots and/or tabular results, 

and a brief description of the results of each problem in a separate solution packet for each HW 

problem.   

Well, good luck with HW #5  --  I think you will find the problems to be both interesting and 

challenging!!! 


