
Applied Engineering Problem Solving (CHEN.3170)

Part I: Matlab Overview

Lesson 3: Programming in Matlab

After the first two lessons, you should now be well on your way to becoming comfortable with

Matlab for a variety of common tasks -- such as evaluating and plotting 1-D and 2-D functions,

f(x) and f(x,y), for example. Certainly, however, there is a need for more capability than what

has already been illustrated. In particular, all programming languages, including Matlab, have a

number of features that allow more advanced and more challenging tasks to be performed, and

the goal of this lesson is to highlight some of the most important of these programming features.

Your texts by Gilat and Chapra do a good job on this subject, so my role, as usual, will be to hit

the high points and then to give some practical examples that use the features discussed. After

finishing this lesson you should have carefully read Chapters 1-7 and 10 in Gilat’s text and

Chapter 1-3 in the book by Chapra. There is a lot of good stuff in these chapters, so I

recommend strongly that you take some quality time to give this material a thorough review with

particular attention to the following subjects for the current lesson:

• Processing input and output data within Matlab (including proper internal

documentation),

• Controlling the flow of a program via conditional tests and looping structures, and

• The use of function subprograms for developing well-structured programs.

We will begin our discussion with the difference between a Matlab script file and a function file.

We have already written several script files that simply contain a series of Matlab commands that

are interpreted and executed sequentially. Any variables defined in a script file are stored in the

Matlab workspace and these are available for manipulation and further processing within the

command window or another script file.

A function file, like a script file, always has a .m extension (i.e. an m-file), and it also contains a

series of Matlab commands -- and they allow for the development of modular well-structured

programs. However, there are several important differences, including the fact that all variables

within the function are local only to that function -- that is, when the function is complete, any

variables that were defined within the function are no longer available. The function

communicates with the command window and other functions via a list of input and output

arguments. Global variables can also be used to exchange information between functions and

the Matlab workspace.

The specific syntax that defines a function file is as follows:

function [output arguments] = function_name(input arguments)

 (do something useful, being sure to define the output arguments)

where the function… line must be the first executable line within the function file.

As an example, consider the following simple function file named fxy.m:

 function f = fxy(x,y)

 x = x+2; z = y*y;

 f = x*z;

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

2

This function file simply evaluates the function

 2f (x, y) (x 2)y (1)

for scalar variables x and y.

If x = 1 and y = 2, the result should be 2f (1,2) (1 2) 2 3 4 12 . We can execute the

function in the Matlab command window as follows:

>> x = 1; y = 2;

>> f = fxy(x,y)

f =

 12

and the answer that is returned is as expected.

Now, what are the values of x and y within the Matlab workspace? Inside the function file, the

input variable, x, was reassigned to be x = x + 2, so you might expect x = 3. However, y is not

re-defined inside fxy.m, so you would expect it has not changed. However, if we type the values

of x and y to the screen,

>> x,y

x =

 1

y =

 2

we see that neither x or y have changed. This is because any variable inside a function is local

only to that function. Thus, x inside fxy.m is not the same as x in the Matlab workspace and

therefore, x from the command line is unchanged by the function. In fact, inside the function,

the variable x could have any other name we choose, since what is important is the position of

the variable in the argument list. For example, consider the function fst.m that also evaluates

eqn. (1):

 function f = fst(s,t)

 f = (s+2)*t^2;

And, executing this from the Matlab command window gives the same result as before, or

>> f = fst(x,y)

f =

 12

Understanding this relatively straightforward behavior is critical for working with functions in

Matlab -- please make sure you have a good handle on what is happening here!!!

Now, as mentioned above, data exchange can also occur between global variables (type help

global in Matlab). To illustrate this, let’s evaluate the same expression given in eqn. (1) in

function fxyz.m:

 function f = fxyz(x,y)

 global z

 x = x+2; z = y*y;

 f = x*z;

where the only difference between this function and fxy.m is the definition, within the function,

that z is a global variable.

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

3

Now, to see how this works, let’s execute the following commands from the interactive

command line:

>> clear all

>> global z

>> x = 1; y = 2; z = 3;

>> f1 = fxy(x,y)

f1 =

 12

>> z

z =

 3

>> f2 = fxyz(x,y)

f2 =

 12

>> z

z =

 4

Is it clear what has happened here? The global z statement defines z as a global variable in the

Matlab workspace. Since a similar command is contained within function fxyz.m, when this

function is executed, the z = y*y assignment redefines the variable z and, since it is global, the

new value is passed back to the z variable in the Matlab workspace. Thus, there are only two

ways to get information into or out of a function file -- via the input and output argument lists

or by defining the appropriate variables as being global variables (in all files where they are

needed).

One additional feature of functions that offers a bit of flexibility in the design of a function is the

use of a variable number of input and output arguments. Many of Matlab’s built-in functions use

this feature and, if programmed properly, this can add significant flexibility to your function

files. In particular, Matlab defines two special variables, nargin and nargout, that are assigned

values equal to the number of input variables and the number of output variables in the calling

program, respectively. The values of nargin and nargout can be different each time the

function is called, depending upon how the function subprogram is being used. Of course, to

support the use of nargin and nargout, the functions must have the logic to decide how to

process the input and output depending upon the value of these variables -- and we will give a

brief example shortly as part of our study of the loadColData.m function (see below).

Program flow control is another essential ingredient of a full-featured programming language. In

addition, the ability to repeat mathematical evaluations or groups of commands many times is a

necessary part of many algorithms. Within Matlab, flow control is treated primarily with the if

… else … end structure, and repeated operation of various code segments is achieved with either

the for … end or the while … end constructs. In most cases, the for … end looping structure is

used when some fixed number of loops is desired, whereas the while … end syntax is used when

the loop is repeated until some test or condition is no longer valid. Note also that the switch …

end structure is sometimes useful as an alternative to a long sequence of elseif blocks within an

if … elseif … else … end structure.

Many of these programming features -- the if … else … end, switch … end, and while … end

structures, require some mechanism for determining whether a conditional test is true or false. If

the test it true, the loop is continued or the code segment within the if … else … end structure is

executed. If, however, the test is not satisfied, then program flow proceeds to the next elseif or

else condition or to the end of the structure. The tests are performed with a series of relational

and logical operators (see your texts or the Matlab help facility for a full list and for a discussion

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

4

of operator precedence), including an equality test, ==, a less than or equal to test, <=, the not

equal to test, ~=, etc., etc..

As a simple example, consider the following Matlab code:

>> format compact

>> x = [1 2 3 4 5]

x =

 1 2 3 4 5

>> y = [1 -2 3 -4 5]

y =

 1 -2 3 -4 5

>> z = x == y

z =

 1 0 1 0 1

>> z2 = x ~= y

z2 =

 0 1 0 1 0

After defining two arrays, x and y, we test to see if x is equal to y (note the double equal sign

within the Matlab code for the equality test but a single equal sign for the assignment operator)

and set the result to variable z. Similarly, a second test is made to determine if x is not equal to

y. The result of these two tests is a vector of ones and zeros (true and false values, respectively).

In particular, the z and z2 arrays are logical variables, which can be verified with the whos

command,

>> whos

 Name Size Bytes Class

 x 1x5 40 double array

 y 1x5 40 double array

 z 1x5 5 logical array

 z2 1x5 5 logical array

Grand total is 20 elements using 90 bytes

It is important to note that a conditional test on a logical array is true only if all the

elements are true. For example, the following code displays the second statement since the

if z == 1 statement fails,

>> if z == 1

 disp('x and y are identical')

 else

 disp('At least one corresponding value of x and y are not equal')

 end

At least one corresponding value of x and y are not equal

This means that, in most cases, you may want to check on individual elements of a logical array

within a looping structure. For example, testing if z(i) == 1 within a loop over i would give three

true results and two false answers when using the logical z array from the above illustration.

Clearly, these logical tests can get complicated -- and I suggest that you do your best to “keep it

simple”. I will certainly try to follow my own advice in subsequent examples, since code that is

easy to follow is always preferable to code that uses clever programming tricks, even though

they may give the same results…

The last major topic to be addressed in this lesson on Programming in Matlab deals with input

and output operations and the proper documentation of your programs and analysis results. In

practice, this is a very broad subject, because input and output operations can involve

communication between the user and the program as well as information exchange between

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

5

programs via data files -- and there are a lot of different options here. Thus, this discussion will

certainly not be exhaustive. Instead, we will try to stay as focused as possible on only the

primary techniques for information transfer to and from Matlab programs.

The first point to emphasize is the need for good documentation of your Matlab programs and

any analysis results that are generated within these programs. As noted above, it is important

that your programs are easy to follow, and proper internal documentation via comments should

help in this area. A brief discussion of the purpose and basic program logic at the top of the

program is always extremely helpful. Also, you should always define the key variables within

the program -- and please include units so that one knows exactly what the numbers mean. You

should also use meaningful variable names that match, as closely as possible, the external

documentation for your project or design study.

Also, you should always work with the base design variables within your programs. By this I

mean, don’t do a bunch of simple intermediate calculations by hand and then enter a numerical

value for some combination of variables into your programs. You should enter the primary

variables directly (dimensions, material properties, environmental inputs, conversion factors,

etc.) into the code and do the intermediate calculations in Matlab. Checking things by hand is

important and I certainly encourage this, but let Matlab do the calculations anyway, even if you

have done some prior hand computations. With this approach, you will have direct access to the

base design variables for future parametric studies and for good internal documentation.

Breaking a long program into several smaller script files and function subprograms, where each

does some part of the overall analysis, is also extremely useful. This keeps the main program

clean and the overall program logic straightforward -- with the details of the particular

calculations or input and output processing steps segregated within their own subprograms. This

approach also helps in debugging longer programs, since you can focus on one program unit at a

time -- remember the “divide and conquer” philosophy.

You should also extend your good internal documentation practices to any printed or plotted

results from your programs. We have already demonstrated some tools for annotating your plots

with the use of well labeled titles and legends (see the gtext, legend, title, num2str, …,

commands), and this practice should be routine for all your Matlab programs -- a picture is only

worth a thousand words if it is well annotated!!!

For printed output, Matlab has two primary functions -- the disp command and the fprintf

function -- and we have used both briefly in previous examples. The disp function is used for

relatively simple display tasks and the fprintf command, which is much more powerful, is used

for formatted print to the screen or to a file. Your texts should be consulted for further details

and for several short examples that use the fprintf function. And, of course, you should consult

the Matlab help facility for more information as needed. However, in my opinion, the easiest

way to see how to use these commands is via illustrative examples for practical problems, and

we will supply many such cases at the end of this section of notes as well as in most of the

subsequent lessons.

For simple user interaction with Matlab programs, the input and menu commands are quite

useful. These commands are discussed in your texts and in the Matlab help files. These two

commands are only useful when a few input variables are to be defined or a few options are to be

selected at run time. In all cases, however, when the number of user inputs exceeds 4 or 5

parameters, the program should directly access a data file that contains the information of

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

6

interest. Data files can take on several forms and be as simple as a separate Matlab script file

that defines the data and computational options for a specific problem, a simple space- or

comma-delimited ascii file with columns of data that can be read or written with dlmread or

dlmwrite, respectively, or a fairly complex ascii or binary file with mixed character and

numerical information. Typing help iofun at the Matlab prompt will give you a list of the many

file formats handled directly with specialized Matlab functions, and the various high-level and

low-level file handling utilities that are available -- don’t be too intimidated with the long list of

functions given, since most of these are only needed in special circumstances (but it is nice to

know that they are available, if needed).

As an example that uses many of the programming features discussed above, let’s do a simulated

Homework Problem (this problem was given as an actual student HW assignment in previous

years). The problem focuses on analysis and plotting of data from an existing data file. The data

describe the amount of rain that has fallen in Corvallis, Oregon for over 100 years. As part of

the HW assignment, the students were asked to perform the following tasks:

1. Download the files corvrain.dat and loadColData.m from the course website.

Note that these files were originally obtained from www.me.pdx.edu/~gerry/nmm/, which is

a website associated with a numerical methods textbook, Numerical Methods with Matlab:

Implementation and Application, by Gerry Recktenwald. This website contains lots of

supplementary information for this text, including the NMM toolbox (Numerical Methods

with Matlab Toolbox).

2. Once you have the needed files, write a Matlab program to do the following:

a. Read the data using the loadColData.m function (see documentation within the file).

b. Compute and plot the yearly precipitation in inches.

c. Determine the average, minimum, and maximum annual precipitation for the period

given. Also add a line on the above plot showing the average annual rainfall.

d. Finally, compute, plot, and tabulate the average rainfall by month.

The first part of the assignment asked the students to obtain two files from the course website.

The two files are listed for reference purposes in Tables 1 and 2, where only a partial listing of

the information in corvrain.dat is contained in Table 1 (the goal here is to show the file format

and to fit it on one page for ease of visualization and presentation). Notice that the data file

primarily contains columns of numerical data, with a single header line containing descriptive

information about the file contents, and a single line of text data containing the column labels

associated with each column of data in the file. This is a very common format used for storage

of data.

Prof. Recktenwald wrote a generic Matlab function called loadColData.m to facilitate working

with data files like that shown in Table 1. This function file is listed in Table 2. In addition to

achieving its intended purpose, it is also a great example for illustrating many of the

programming features mentioned above:

• It is a well-documented function file.

• It uses the nargin and nargout variables to handle variable input and output arguments.

• It has several if … end conditional tests.

http://www.me.pdx.edu/~gerry/nmm/

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

7

• It uses two nested for … end structures, with an outer loop over all the rows containing

column labels and an inner loop that processes each column label separately.

Table 1 Partial listing of the corvrain.dat data file.

Monthly Precipitation (hundredths of inches), Corvallis, Oregon

year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1890 1062 888 567 182 29 123 50 14 0 165 22 380

1891 375 782 248 240 170 211 0 55 80 410 735 1183

1892 455 177 320 465 45 61 45 0 168 205 527 620

1893 235 540 455 518 366 60 0 9 324 567 828 402

1894 1238 529 812 281 190 294 10 5 120 445 210 535

1895 1165 155 445 306 436 28 39 0 215 0 464 1121

1896 835 324 313 698 571 98 0 116 41 330 1669 781

1897 284 698 571 173 109 209 9 38 157 238 1166 709

1898 382 548 234 244 226 133 23 12 315 159 863 362

1899 626 561 516 364 226 42 7 276 104 397 1093 757

1900 474 401 466 172 316 203 13 20 251 588 346 599

1901 847 628 415 309 186 109 0 18 272 223 621 508

1902 425 1029 696 393 286 27 144 0 116 171 1123 992

1903 724 164 268 267 103 109 34 44 37 173 1182 308

1904 556 1523 1170 182 76 32 85 11 59 274 748 905

1905 497 295 705 67 212 142 0 0 125 475 305 616

1906 722 676 242 238 307 282 0 0 224 270 935 675

1907 897 538 539 298 127 111 24 115 117 132 792 1333

1908 424 410 433 199 289 138 0 100 23 434 401 478

1909 1361 945 193 26 139 30 110 11 116 451 1153 496

1910 654 754 121 247 83 173 0 1 85 256 1045 433

a portion of the data was omitted here to save space (format is identical)

1980 669 388 402 363 146 175 24 1 96 187 629 1133

1981 227 444 300 237 299 258 10 1 309 552 673 1398

1982 721 712 354 457 49 151 43 28 189 364 551 1056

1983 691 1031 878 301 151 139 255 221 53 105 993 735

1984 326 692 382 341 367 434 20 0 74 465 1355 401

1985 25 365 494 105 94 222 54 48 78 389 469 372

1986 653 990 304 184 250 31 115 0 356 280 862 350

1987 822 450 370 156 140 29 223 17 5 27 390 1142

1988 712 170 390 333 384 183 9 0 73 14 1087 397

1989 418 321 680 142 146 114 33 87 60 266 390 307

1990 950 579 221 238 143 153 45 172 83 456 487 354

1991 268 322 585 347 391 152 38 72 19 255 513 438

1992 452 454 104 408 0 118 118 44 55 352 499 738

1993 415 220 486 682 451 211 79 31 7 107 103 798

1994 389 559 346 194 113 189 1 0 89 384 903 626

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

8

Table 2 Listing of Matlab file loadColData.m.

function [x,Y,labout] = loadColData(fname,ncol,nhead,nrowl)

% loadColData Import a file containing header text, column titles and data

%

% Synopsis: [x,Y] = loadColData(fname)

% [x,Y] = loadColData(fname,ncol)

% [x,Y] = loadColData(fname,ncol,nhead)

% [x,Y] = loadColData(fname,ncol,nhead,nrowl)

% [x,Y,labels] = loadColData(fname)

% [x,Y,labels] = loadColData(fname,ncol)

% [x,Y,labels] = loadColData(fname,ncol,nhead)

% [x,Y,labels] = loadColData(fname,ncol,nhead,nrowl)

%

% loadColData can read plain text files with the following format

%

% header line 1 ...

% header line 2 ...

% ...

% col_1_label col_2_label col_3_label ...

% col_1_label2 col_2_label2 col_3_label2 ...

% ...

% number number number ...

% number number number ...

% number number number ...

% ...

%

% where ... indicates any number of similar lines or columns

%

% Input: fname = (string) name of the file containing the data (required)

% ncol = total number of columns of data. Default: ncol = 2

% nhead = number of lines of header information at the very top of

% the file. Header text is read and discarded. Default = 0.

% nrowl = number of rows of labels. Default: nrowl = 1

%

% Output: x = vector of values from the first column of data

% Y = matrix of values from the second through ncol column of data

% labels = (string) matrix of labels. To provide for labels of

% arbitrary length, THE LABELS FOR EACH COLUMN OF DATA

% ARE STORED IN SEPARATE ROWS OF THE labels MATRIX.

% Thus, label(1,:) is the label for the first column,

% label(2,:) is the label for the second column, etc.

% More than one row of labels is allowed. In this case

% the second row of the label for column one is

% label(1+ncol,:). NOTE: Individual column headings

% must not contain blanks.

% Gerald Recktenwald, gerry@me.pdx.edu

% Portland State University, Mechanical Engineering Department

% 24 August 1995, revised 29 April 1998, 27 Feb 1999

if nargin<2, ncol = 2; end

if nargin<3, nhead = 0; end

if nargin<4, nrowl = 1; end

% --- Open file for input, include error handling

fin = fopen(fname,'rt'); % read as plain text

if fin < 0

 error(['Could not open ',fname,' for input']);

end

% --- Read and discard header text one line at a time

for i=1:nhead, buffer = fgetl(fin); end

% --- Read column titles

labels = ''; % Initialize the labels matrix

for i=1:nrowl

 buffer = fgetl(fin); % Get next line as a string

 for j=1:ncol

 [next,buffer] = strtok(buffer); % Parse next column label

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

9

 labels = str2mat(labels,next); % Add another row to the labels matrix

 end

end

if nrowl>0

 labels(1,:) = []; % delete first row created when labels matrix initialized

end

% --- Read in the x-y data

data = fscanf(fin,'%f'); % Load values into a column vector

fclose(fin); % Close file, release handle

nd = length(data); % Total number of data points

nr = nd/ncol; % Number of data rows after reshaping

if nr ~= round(nd/ncol)

 fprintf('Error in loadColData:\n');

 fprintf('\tnumber of data points = %d does not equal nrow*ncol\n',nd);

 fprintf('\tdata: nrow = %f\tncol = %d\n',nr,ncol);

 fprintf('\nHere are the column labels\n\t');

 for j=1:ncol, fprintf('%s ',labels(j,:)); end, fprintf('\n');

 error(sprintf('data matrix cannot be reshaped into %d columns',ncol))

end

data = reshape(data,ncol,nr)'; % Notice the transpose operator

x = data(:,1);

Y = data(:,2:ncol);

if nargout>2, labout = labels; end

• It uses several IO routines (fopen, fgetl, strtok, fscanf, and fclose) to read the ascii data file,

and the fprintf and sprintf functions to write information to the screen and to a variable string

(for use in the error function).

• It introduces several useful built-in functions (str2mat, round, reshape, and error) that we

have not mentioned yet.

Thus, this relatively short program has two important roles; as a very useful function for reading

ascii data files and as an excellent example of programming in Matlab. I suggest that you review

this file carefully and use Matlab’s help facility to determine the purpose and syntax of each new

command or function whose use is not obvious.

Now, getting back to our simulated HW assignment, we want to use Prof. Recktenwald’s

loadColData.m function to read the corvrain.dat file for further processing. This was done in

the corvrain_hwdemo.m file as shown in Table 3. The tasks performed here directly follow the

HW description given above. Once the data file is processed in Task 1, the remaining processing

and plotting tasks are quite straightforward, using several Matlab commands which we have seen

before (sum, max, min, plot, bar, num2str, etc.). In addition, the fprintf function is used to

write some summary data to the screen (note that unit 1 defaults to the monitor screen).

The graphical output from our program is shown in Figs. 1 and 2 and the summary printed output

is presented in Table 4. As apparent, the average rainfall in Corvallis, Oregon is about 40 inches,

with yearly swings that can exceed 15 inches around this mean value. Also, as clearly indicated

in Fig. 2, the late fall and winter months have much more precipitation than the late spring to late

summer time frame. Thus, as a tourist visiting this part of the country, I suggest that the best

chance for good vacation weather is from May through September!

The above HW demo is a good example of the type of programs you will be asked to generate as

part of this course and in your various assignments as a working engineer. Performing data

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

10

processing and analyzing the performance of a particular process or product are common tasks

that you will face -- and many of these will require that you perform a variety of pre or post

processing manipulations of the original data.

Table 3 Listing of corvrain_hwdemo.m.

%

% CORVRAIN_HWDEMO.M MATLAB file to process summary data concerning the

% amount of rainfall in Corvallis, Oregon from 1890 to 1994

%

% Several tasks will be performed here given the data file corvrain.dat:

% (file obtained from the NMM toolbox at www.me.pdx.edu/~gerry/nmm/)

% 1. read the data file corvrain.dat using the loadColData.m file (also

% from the NMM toolbox)

% 2. compute and plot the total yearly precipitation in inches

% 3. determine the average, maximum, and minimum annual precipitation

% also add a line showing the average value to the plot from Task 2

% 4. compute, plot, and tabulate the average rainfall by month

%

% Reference: The idea for this problem was obtained from Prob. 3.28 on

% pgs. 145-146 of the text "Numerical Methods with Matlab: Implementation

% and Application," by G. Recktenwald, Prentice Hall, Inc., 2000.

%

% File prepared by J. R. White, UMass-Lowell (last update: Sept. 2017)

%

 clear all, close all, nfig = 0;

%

% Task 1: use loadColData to read the desired data file

% --> resulting data: yr = vector containing the date (year)

% rain = matrix containing the raninfall (in hundreds of

% an inch) for each month and year

 [yr,rain] = loadColData('corvrain.dat',13,1,1);

%

% Task 2: compute and plot the yearly total precipitation (inches)

 rain = rain/100; % converts hundreds of inch to inches

 yrrain = sum(rain'); % sums 12 months of data to get yearly total

%

 nfig = nfig+1; figure(nfig)

 plot(yr,yrrain,'r-','LineWidth',2), grid, hold on

 title('CorvRain_HWDemo: Yearly Rainfall for Corvallis, Oregon')

 xlabel('year'),ylabel('amount of rain (inches)')

%

% Task 3: determine the average, maximum, and minimum annual precipitation

% also add a line showing the average value to the plot from above

 nyr = length(yr); % number of years

 averain = sum(yrrain)/nyr; % average value

 [minrain,imin] = min(yrrain); yrmin = yr(imin); % min rain and year it occurred

 [maxrain,imax] = max(yrrain); yrmax = yr(imax); % max rain and year it occurred

%

 fout = 1;

 fprintf(fout,'\n\n');

 fprintf(fout,' CorvRain_HWDemo: Summary Rainfall Results (in inches) for Corvallis,

Oregon \n\n');

 fprintf(fout,' average annual rainfall: %8.1f \n',averain);

 fprintf(fout,' minimum annual rainfall and year: %8.1f %5d \n',minrain, yrmin);

 fprintf(fout,' maximum annual rainfall and year: %8.1f %5d \n',maxrain, yrmax);

%

 plot([1880 2000],[averain averain],'b-','LineWidth',2)

 gtext(['average rainfall = ',num2str(averain,'%4.1f'),' inches']), hold off

%

% Task 4: compute, plot, and tabulate the average rainfall by month

 monthrain = sum(rain); % sums over all years to get monthly totals

 avemrain = monthrain/nyr; % ave value by month

%

 nfig = nfig+1; figure(nfig)

 bar(avemrain), grid, range = axis; range(2) = 13; axis(range)

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

11

 title('CorvRain_HWDemo: Monthly Rainfall for Corvallis, Oregon')

 xlabel('month of the year'),ylabel('amount of rain (inches)')

%

 months = ['Jan. ';'Feb. ';'March';'April';'May ';'June ';

 'July ';'Aug. ';'Sept.';'Oct. ';'Nov. ';'Dec. '];

 fprintf(fout,'\n');

 fprintf(fout,' Average Monthly Rainfall Values (in inches)\n');

 fprintf(fout,' Month Amount \n');

 for n = 1:12

 fprintf(fout,' %8s %8.1f \n',months(n,:),avemrain(n));

 end

%

% end of program

 Fig. 1 Yearly rainfall for Corvallis, Oregon. Fig. 2 Average monthly rainfall for Corvallis, Oregon.

Table 4 Printed summary results from corvrain_hwdemo.m.

 CorvRain_HWDemo: Summary Rainfall Results (in inches) for Corvallis, Oregon

 average annual rainfall: 40.3

 minimum annual rainfall and year: 23.0 1944

 maximum annual rainfall and year: 58.7 1968

 Average Monthly Rainfall Values (in inches)

 Month Amount

 Jan. 6.5

 Feb. 5.1

 March 4.3

 April 2.5

 May 1.9

 June 1.2

 July 0.4

 Aug. 0.5

 Sept. 1.5

 Oct. 3.1

 Nov. 6.4

 Dec. 6.9

Applied Engineering Problem Solving -- Programming in Matlab

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Sept. 2017)

12

As in previous lessons, three additional worked-out examples provide more illustrative

applications where many of the Matlab programming features discussed in this lesson are used to

advantage. These examples are available as separate pdf files, as follows:

 ed96.pdf -- Hurricane Edouard (Aug. 21 – Sept. 3, 1996)

 rect1d_fin_1.pdf -- Heat Transfer in a Rectangular Fin

 pin_fin_1.pdf -- Measurement Error in a Temperature Probe

After you have finished your reading assignment for this lesson and after reviewing the above

examples, you should be ready to attempt HW #3 (see hw3xxx.pdf). This homework usually

involves 3 or 4 problems (sometimes separated into two homeworks, HW3a and HW3b) that

require writing Matlab programs that use several of the programming features discussed in this

lesson. Although the individual problems are not difficult, collectively they represent a

challenging HW assignment that will take some quality time to complete -- so give yourself

plenty of time to complete this assignment (or set of assignments, as appropriate).

As done for the previous homeworks, I prefer that you collect the Matlab m-files (don’t forget

the function files), the resultant plots and/or tabular results, any hand calculations, and a brief

description of the results of each problem in a separate solution packet for each HW problem.

Thus, for HW #3, you should prepare several separate solution packets, as appropriate, and put

these together in a professional manner for submittal to me by the posted HW deadline.

Well, this marks the end of the first part of this course -- Part I: Matlab Overview. With the

completion of this material, you should have a good understanding of programming in Matlab

and a good foundation for solving engineering-related problems with this programming tool. We

will see many more examples where Matlab can be utilized in addressing a variety of analysis

issues, but the focus will now shift towards highlighting several different numerical methods that

are needed as tools for solving realistic engineering design and analysis problems. As we shift to

the second part of the course -- Part II: Numerical Methods and Applications -- we will

continue to exploit the power of Matlab for a variety of problem-solving tasks. Unavoidably,

however, we will need to introduce a fair amount of mathematics into our discussions, but the

focus will always be on applied engineering problem solving, with Matlab as our primary

programming tool…

I am ready to jump to Part II -- are you???

