
Applied Engineering Problem Solving (CHEN.3170) 

Part II:  Numerical Methods and Applications 

Lesson 4:  Numerical Errors 

The first three lessons in this course focused on developing your skills with using Matlab as a 

problem-solving tool.  Most of the applications to date have centered on evaluation, plotting, and 

analysis of analytical functions or tabulated data.  In real engineering analysis, however, we are 

often faced with a variety of additional tasks that may involve finding the roots of high order 

polynomials and transcendental equations, solving a system of linear or nonlinear equations, 

performing a statistical analysis of experimental data, or applying various curve fitting 

techniques to help understand the data.  In addition, the need to evaluate derivatives and integrals 

of functions described via analytical expressions or numerical data also occurs quite frequently.  

And, of course, the solution of a variety of differential equations is often required for the design 

and analysis of real systems and processes!  Over many years, a series of numerical procedures 

have been developed to address each of these application areas and, as you might expect, Matlab 

has several built-in functions for handling many of these tasks.  Our goal, for the remainder of 

the semester, will be to highlight the basic ideas behind the various numerical algorithms used to 

solve these types of problems and to apply these concepts, with help from Matlab, to a variety of 

practical applications.  Thus, the second part of this course will focus on a variety of applied 

numerical methods within Matlab as an essential component of a flexible toolbox for engineering 

problem solving. 

However, before addressing each of the subject areas noted above, we need to discuss several 

basic concepts associated with numerical computations within the computer and the inherent 

errors that are associated with all numerical methods.  The subject of numerical errors is 

discussed in some detail in Chapter 4 of your numerical methods text by Chapra.  While reading 

Chapter 4, you should pay particular attention to the following subjects: 

• Computer representation of numbers (just the basics), 

• Round off error and machine precision, 

• The implication of round off error in the convergence of iterative schemes, 

• The Taylor series expansion and the truncation error associated with the finite 

approximation to infinite series, and  

• The tradeoff associated with round off and truncation errors. 

These subjects will also be briefly discussed in these notes, but I don’t really want to get caught 

up in too much detail.  The real goal of this lesson on numerical error is stated quite nicely with 

the following quote from a text by Recktenwald (pg. 188 of Numerical Methods with Matlab, 

Prentice Hall, 2000): 

Perhaps it is odd to some readers to start out a discussion of numerical methods with such a depressing topic 

as unavoidable errors.  Why should we begin with a consideration of what goes wrong before even 

presenting any useful algorithms?  This decision is more significant than choosing between good news or bad 

news first.  By examining the source of unavoidable numerical errors, the foundation is established for many 

algorithmic decisions taken to minimize the impact of these errors.  It is difficult to appreciate the design of 

good algorithms without a fundamental understanding of the errors that are inherent in numerical 

calculations. 
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Thus, the purpose here is to make you aware of some underlying concerns that can cause 

problems when applying numerical methods to practical applications.  As engineers and 

scientists, we are primarily interested in applying the methods to solve real problems, not in a 

detailed study of their effectiveness and robustness on certain classes of problems.  However, 

although the details usually can be left to the mathematicians and numerical analysis experts, as 

users, we always need to be aware of the potential for problems because of unavoidable errors in 

the numerical computations.  Thus, the purpose of this lesson is to identify the types of problems 

that can occur and to caution you to always keep a watchful eye for erroneous results due to 

unavoidable numerical errors. 

The two types of errors we want to discuss are round off error and truncation error.  Round off 

error is due to the fact that computers can only represent quantities with a finite number of digits  

-- that is, floating point arithmetic is not exact on the computer!  Truncation error, on the other 

hand, is associated with the approximations that are usually made when attempting to represent 

exact mathematical expressions or operations.  Since these approximations are usually related to 

truncating an infinite Taylor series expansion to a finite number of terms, the resulting errors are 

referred to as truncation errors.  This lesson will elaborate a little on each of these types of errors 

and show how they are inter-related in many practical numerical procedures.  And, of course, we 

are also interested in how to minimize these errors in routine analysis. 

We will start by discussing round off error which, as noted above, is related to the representation 

of numbers within the computer hardware.  To illustrate the problem, consider the following 

sequence of commands in Matlab: 

>> format long e 

>> format compact 

>> 5 + 0.125 

ans = 

    5.125000000000000e+000 

>> ans + 0.125 

ans = 

    5.250000000000000e+000 

>> ans + 0.125 

ans = 

    5.375000000000000e+000 

>> 5 + 0.126 

ans = 

    5.126000000000000e+000 

>> ans + 0.126 

ans = 

    5.252000000000001e+000 

 

 

What has happened here?  When 0.125 is continually added to the previous answer (the ans 

variable), the result is as expected.  However, we only have to add 0.126 twice before an 

anomalous digit appears in the 15th decimal place.  Clearly something is odd here!!!  Where did 

this digit come from?  Is this what it should be, or do I have a problem with my computer?  

Actually, my computer is just fine  --  and, unfortunately, the result that was obtained above, 

although clearly not correct, was not really unexpected!!! 

To understand what has happened, let’s briefly look at how the computer stores a floating point 

number.  Because transistor elements can be efficiently operated in an on-off manner, the natural 

way to store numbers is to use a binary or base 2 number system, where the on and off states 

correspond to the 1 and 0 digits within the base 2 system.  We can easily represent a decimal 

number, x.y, by a sequence of binary digits using the expressions 
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
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Thus, x.y could be written as …b5b4b3b2b1b0 . c1c2c3… using binary notation. 

It is important to realize that computers can only store a finite number of binary digits, with each 

digit as a single bit (which is either 0 or 1).  Eight bits make a byte and, on most computers after 

about 2013, 8 bytes are used to store a word (i.e. the numerical value of a variable in a program, 

for example).  In Matlab, the default arithmetic is done with 64-bit precision.   

Now, at this point, I am not so interested about the details of how the information is actually 

stored in the computer (there are many texts that do a good job describing this if you are really 

interested).  My focus, however, is on the fact that there are a finite number of bits (digits) 

and this is what leads to the round off error mentioned above and demonstrated in the brief 

Matlab sequence.  Working with a full 64-bit word to illustrate the problem here is too 

cumbersome.  Thus, we will illustrate the key ideas with a hypothetical computer that is limited 

to a 16-bit word for storing both the x and y values  --  that is, we will write the numbers x and y 

in the decimal number x.y using eqn. (1), where the summations will contain a maximum of 16 

terms.  This is done in Table 1 for the cases that include x = 5 and y = 0.125 and 0.126. 

As shown in Table 1, x = 5 is written as 101 in binary [sometimes written as (101)2], and this can 

be represented exactly in a computer which has 16 bits per word.  Similarly, y = 0.125 can be 

written exactly as (0.001)2.  However, we see that y = 0.126 can only be given approximately as 

(0.0010000001000001)2.  And, because of this approximate representation, any further 

arithmetic with this value will also give approximate results.  Thus, in general, floating point 

arithmetic with a finite number of digits gives some round off error!  This is the error associated 

with not being able to store all the digits required to exactly represent the numbers of interest in 

binary form. 

Clearly, with a larger word size, more digits can be stored, and the ramifications associated with 

round off error decrease.  Since Matlab is a numerically based computational system, it was 

decided to use a 64-bit word size for all numerical variables within the code.  This decision was 

made to minimize the effects of round off in all of Matlab’s numerical computations. 

An important ramification of floating point arithmetic is that two real numbers that are nearly 

equal cannot be distinguished if their difference is less than the least significant bit in their 

computer representation (farthest bit to the right in the binary form).  For example, if we limited 

the representation of y1 = 0.125 and y2 = 0.126 to 8 bits, then, on the computer, y1 and y2 would 

be equal  --  since, as shown in Table 1, they have the same bit pattern.  Fortunately, all 

computers use greater than 8 bits to represent a word  --  and today, most computers use 64 bits!   

However, even with 64-bits, this represents a finite precision limit.  This limit is characterized by 

a number called machine epsilon, m.  It is defined precisely as the smallest floating point 

number, m, such that 

m1 1             (2) 

If some number, , is less than m, then, on the computer, we have 

x = x +  

or, an alternate way to say this is 
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y = x – (x+) = 0 

Thus, since  < m, the computer cannot distinguish between the two numbers, x and x+. 

 

 

Table 1  Binary representation of some decimal numbers. 

  x = 5   

k 2k bk 
cumulative 

sum 
  

0 1 1 1   

1 2 0 1   

2 4 1 5   

      

  y = 0.125 y = 0.126 

k 2-k ck 
cumulative 

sum 
ck 

cumulative 

sum 

1 0.5 0 0 0 0 

2 0.25 0 0 0 0 

3 0.125 1 0.125 1 0.125 

4 0.0625   0 0.125 

5 0.03125   0 0.125 

6 0.015625   0 0.125 

7 0.0078125   0 0.125 

8 0.00390625   0 0.125 

9 0.001953125   0 0.125 

10 0.0009765625   1 0.1259765625 

11 0.00048828125   0 0.1259765625 

12 0.000244140625   0 0.1259765625 

13 0.0001220703125   0 0.1259765625 

14 6.103515625e-005   0 0.1259765625 

15 3.0517578125e-005   0 0.1259765625 

16 1.52587890625e-005   1 0.125991821289063 
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We can easily estimate machine epsilon, m, on any computer by continually reducing a number 

(say, by a factor of two) until the condition given in eqn. (2) is no longer valid.  For example, the 

following Matlab script file, meps.m, 

% 

%   MEPS.M    Estimate Machine Epsilon  

% 

%   Machine epsilon is defined as the smallest floating point number 

%   such that  

%      1 + epsilon > 1 

% 

%   We can estimate this quantity by continually decreasing a number until this 

%   condition is no longer valid.  This is what is done here in this simple 

%   program. 

% 

%   Note that Matlab has a built-in value of machine epsilon, called eps. 

% 

%   Written by J. R. White, UMass-Lowell (last update: Oct. 2017) 

% 

 

      clear all,   close all 

% 

%   initialize epsilon and continue to divide by two until condition is not met 

      epsilon = 1.0; 

      while epsilon + 1.0 > 1.0 

        epsilon = epsilon/2; 

      end 

% 

%   multiply estimate by two to be conservative 

      epsilon = 2*epsilon; 

      disp('Estimate of machine epsilon is'),   disp(epsilon) 

% 

%   edit Matlab's built-in value 

      disp('   ') 

      disp('Matlab''s internal value of machine epsilon is'),   disp(eps) 

% 

%  end of problem 

 

gives an approximate value of 2.22e-16 as machine epsilon.  Actually, since this number is so 

important, Matlab has a built-in variable, eps, that gives the value of m for the particular 

computer architecture on which Matlab is running.  From the last part of the above program, eps 

is given as 2.22e-16 (this is the same value we computed in our algorithm!). 

Before leaving our brief discussion of the inherent errors associated with finite precision 

arithmetic, it is important to note that, although proper algorithm design and 64-bit arithmetic 

tend to minimize round off error, it is always something that you should be aware of when doing 

numerical computations and code development.  For example, as we will see in many of the 

subsequent numerical methods to be studied, some form of iteration will often be needed to 

implement a particular procedure.  The iteration scheme is stopped when some condition is met   

--  that is, when some measure of the error in the calculation is small.  Because of round off 

error, we almost never ask the question “Is x = y?”.  Instead, we ask “Is x close to y?” and this is 

often implemented as follows: 

rerr = 1; 

while rerr > tol 

 

  continue iterative calculation 

 

  rerr = abs((x-y)/y); 

end 

where tol is some user-defined tolerance for the absolute relative difference between x and y. 
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As mentioned at the beginning of this lesson, another important type of numerical error that is 

inherent in most of our computational work is truncation error.  However, unlike round off error, 

which is related to the computer hardware and software, truncation error can be controlled to 

some extent by the programmer.  As you know, for computer implementation, we always need to 

discretize the quantities of interest  --  and we have already seen this in the simple evaluation of a 

function, f(x): 

   Continuous Form:  Given f(x), plot f(x) vs. x. 

   Discrete Form: Let x  xi and f(x)  f(xi)  fi, then plot fi vs. xi. 

where the discrete form is what we implement on the computer.  Although there are no new 

errors introduced for simple functional evaluation, truncation error is often introduced when 

we approximate continuous mathematical functions and operations with a discrete 

algebraic representation.  This error is usually associated with the actual truncation of an 

infinite series expansion for the quantity of interest to a finite number of terms  --  thus the term, 

truncation error. 

For example, we are all familiar with the simple exponential function, f1(x) = ex or f2(x) = e-x, 

where f1 grows exponentially without bound for positive x, and f2 decreases exponentially to 

zero as x  .  These functions, however, are really infinite series expansions, 

2 3 4 k 1
x

k 1

x x x x
e 1 x

2! 3! 4! (k 1)!





      


       (3) 

and 

2 3 4 k 1
x

k 1

x x x ( x)
e 1 x

2! 3! 4! (k 1)!







      


       (4) 

where the ex and e-x representations are usually used because they are easier to write and to 

visualize than the actual series expansions. 

One form of truncation error occurs when we simply truncate the infinite series expansion to a 

finite number of terms (which, of course, we must do in practice).  As a short example, consider 

the computation of e3 and e-3 using eqns. (3) and (4) truncated to 8 terms.  In addition, we will 

only use 5 significant digits in our calculations.  Doing the calculations gives: 

Case 1:   

3 9 27 81 243 729 2187
e 1 3

2 6 24 120 720 5040

1 3 4.5 4.5 3.375 2.025 1.0125 0.43393 19.846

       

        

 

and my calculator gives e3 = 20.086  --  thus, our 8-term estimate has an error of about –1.2%. 

Case 2: 

3e 1 3 4.5 4.5 3.375 2.025 1.0125 0.43393 7.1430e-2            

and the actual value is e-3 = 4.9787e-2  --  which shows that our estimate is terrible with about    

–243% error (we didn’t even get the correct sign!!!). 
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The error for Case 1 is dominated by truncation error, with only a minor loss in accuracy 

associated with rounding the individual calculations to 5 figures.  In this case, the addition of a 

few more terms in the series would give very accurate results.  Case 2, on the other hand, has a 

serious case of both truncation error and round off error.  In particular, notice that some of the 

individual terms are a factor of 100 larger than the final result.  Although additional terms in the 

series would help considerably, we could never get 5 significant figures of accuracy, because the 

subtraction of nearly equal terms leads to the loss of significant digits (this is often referred to as 

catastrophic cancellation). 

Notice, however, that if we compute the result for e-3 using the inverse of the Case 1 result, we 

have 

3

3

1 1
e 5.0388e-2

19.846e

     

which only represents an error of 1.2%.  This is an example of what I mean by “proper algorithm 

design” as mentioned above.  In our example, the computational algorithm given in the Case 2 

calculation for e-3 is not a well-designed algorithm because of the catastrophic cancellation that 

occurs.  Clearly a better way to compute e-x would use 1/ex to avoid much of the round off error 

associated with an infinite series expansion whose individual terms alternate in sign.  Many 

times, however, “proper algorithm design” is not so simple, so we will leave much of the hard-

core development of various numerical algorithms to the mathematicians and numerical analysis 

experts.  In fact, that is why we will use Matlab to do many of the needed computations, since 

many years of experience has shown that most of Matlab’s built-in algorithms are quite efficient 

and robust for a wide range of applications. 

The infinite series expansion for ex and e-x in eqns. (3) and (4) are examples of Taylor series 

expansions.  Knowledge of the Taylor series is absolutely essential for the study of numerical 

methods and mathematical modeling.  In general, it provides a means for predicting the value of 

a function at some point, xi+1 = xi + h, in terms of the value of the function and its derivatives at 

the point xi, where h is the step size.  In addition, it also allows us to derive formulae for a 

variety of derivative approximations and to estimate the order of error in many approximations.   

The basic formulation for the Taylor series can be written as 

2i
i 1 i i i 1 i i 1 i

(n)
3 ni i

i 1 i i 1 i n

f ''(x )
f (x ) f (x ) f '(x )(x x ) (x x )

2!

f '''(x ) f (x )
(x x ) (x x ) R

3! n!

  

 

     

    

   (5) 

where the remainder, upon truncation after the nth order term, is given by 

(n 1)
n 1

n i 1 i i i 1

f ( )
R (x x ) with x x

(n 1)!




 


    


    (6) 

This notation is a little cumbersome and we will now go about simplifying this somewhat.  First, 

we will simply use fi to denote f(xi), fi = f (xi), etc. and let the step size or interval width be 

denoted by h, where h = xi+1 – xi.  In addition, the remainder, Rn, is the truncation error upon 

dropping all the terms after the nth order term.  Since, in general, we don’t know the precise value 

of  (only its range) and we don’t know the (n+1)th derivative, this term is often written as 
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n 1 n 1
nR h O(h )             (7) 

where  is a proportionality constant (which we don’t know) and the notation, O(hn+1), says that 

the truncation error is “on the order of hn+1”  --  that is, Rn is proportional to hn+1. 

------------------------ 

Note:  In formal error analysis, the independent variable, x, is always normalized over the range 

(0, 1).  Therefore, h is always less than unity  --  a small fraction of the total interval.  Thus, since 

h < 1, hn+1 < hn.  For example, let’s say that h = 0.1, then h3 = 0.001 and h2 = 0.01.  Thus, 

truncation error on the order of h3 is better than O(h2), and O(h2) is much better than O(h), etc..  

This implies that reducing h can significantly reduce Rn for a given order of approximation.  

Therefore, as mentioned above, we have some control over the error associated with truncating a 

Taylor series expansion to a finite number of terms.  In particular, the two methods are: 

1. Use a smaller step size, h. 

2. Use additional terms in the series expansion (i.e. a higher order approximation). 

------------------------ 

Now, with these notation changes, eqn. (5) can be written as 

2 3 (n) n
n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h O(h )

2! 3! n!


            (8) 

and this is a more manageable expression for practical application.  This is often referred to as a 

forward Taylor series expansion for fi+1 about the point xi. 

We can also take a backward step from the point xi.  Since the step size is negative, x = xi-1 – xi, 

we can simply replace h in eqn. (8) with –h, where h is now given by |x|.  Doing this gives 

2 3 (n) n
n n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h ( 1) O(h )

2! 3! n!


            (9) 

This is a backward Taylor series for f(xi-1) about the point xi. 

One of the most important uses of the Taylor series expansions given in eqns. (8) and (9) is the 

derivation of appropriate finite difference approximations for first-order and second-order 

derivatives at a point.  In particular, we can derive several of the more common discrete 

derivative approximations as follows: 

Forward Approximation to fi 

Here we use eqn. (8) truncated after the 1st order term, 

2
i 1 i if f f 'h O(h )     

and solve this for fi, giving 

i 1 i
i

f f
f ' O(h)

h

 
           (10) 

where we note that this is said to be a first-order forward approximation to f (x) at x = xi because 

the error in the estimate of fi is proportional to h.  Note also that the O(h2) term in the original 
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equation becomes O(h) upon division by h (and we also ignore the sign of this error term  --  

since the focus is only on the “order of the error”). 

Backward Approximation to fi 

Performing similar manipulations with eqn. (9) gives 

2
i 1 i if f f 'h O(h )     

or  

i i 1
i

f f
f ' O(h)

h


           (11) 

and again, we see that this is a first-order estimate using a backward differencing scheme. 

Central Approximation to fi 

This time, we start by subtracting eqn. (9) from eqn. (8), and truncate the series after the 2nd 

order term (note that the 2nd order terms cancel exactly), giving 

3
i 1 i 1 if f 2f 'h O(h )     

and solving this for fi gives 

2i 1 i 1
i

f f
f ' O(h )

2h

 
          (12) 

Notice that this approximation has an error that is proportional to h2.  Thus, this gives a more 

accurate estimate of fi for a given step size, h.  However, function information on both sides of 

xi is needed, so it cannot be used at the left or right boundaries of a given domain. 

Central Approximation to fi 

We can also determine discrete derivative approximations for higher-order derivatives.  For 

example, the 2nd derivative evaluated at xi can be obtained by simply adding eqns. (8) and (9).  

Doing this gives 

2 4
i 1 i 1 i if f 2f f ''h O(h )      

and solving this for fi gives 

2i 1 i i 1
i 2

f 2f f
f '' O(h )

h

  
          (13) 

This is said to be a 2nd order central approximation for f (x) at xi, since the error term is 

proportional to h2. 

Higher order approximations (better than 1st and 2nd order) can also be derived.  However, in 

practice, these are more cumbersome to develop and use, and one usually applies the simple 1st 

and 2nd order derivative approximations for f  and f  given here in practical problems (see 

examples below).  If one needs to reduce the truncation error beyond that obtained with second 

order accuracy, then the step size is usually decreased as needed. 
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As a simple example, let’s compute the first and second derivatives of ex at x = 0 using the 

formulas from above.  Since all derivatives of ex are simply ex, then, at x = 0, both the first and 

second derivatives should have the value of unity (i.e. e0 = 1).  A short Matlab program, 

deriv_approx.m, was written to do the actual finite difference calculations and a listing is given 

in Table 2.  This program produces a short table of results for a series of 5 step sizes that start at 

h = 0.5 and decreases by a factor of two for each new value.  The summary results are given in 

Table 3, which highlights two key points from the above discussion: 

1. The error decreases as the step size is reduced. 

2. The error in the second-order approximation is less than the error in the first-order 

approximation (compare column 4 with columns 2 and 3). 

Also, you should note that, for the 1st order approximations where the error is O(h), we should 

expect the error to decrease roughly by a factor of two for each new step size  --  since each new 

h is simply one-half of the previous value.  And, for the two 2nd order estimates (the last two 

columns in Table 3), the error should decrease by nearly a factor of 4 each time, since the error is 

O(h2), with h decreasing by a factor of 2 each time.  As apparent from Table 3, the results 

obtained here match expected trends perfectly [compare (derivative value – 1) vs. step size].  

Isn’t it great when mathematical theory really works in practice!!!  

 

 

Table 2  Listing of the deriv_approx.m program. 

% 

%   DERIV_APPROX.M  Calculate approximation to the derivatives of exp(x) at x = 0  

%                      for different step sizes 

%                 (used to generate data for Table 3 in Lesson 4 Lecture Notes) 

% 

%   Written by J. R. White, UMass-Lowell (last update: Oct. 2017) 

 

      clear all,   close all 

% 

%   set different step sizes (decreasing by a factor of two) 

      h = [0.5 0.25 0.125 0.0625 0.03125]'; 

% 

%   evaluate fi-1, fi, and fi+1 for each step size (where xi = 0) 

      fm = exp(-h);                   % fm = fi-1 = exp(0-h) = exp(-h) 

      f = ones(size(h));              % f = fi = exp(0) = 1 

      fp = exp(h);                    % fp = fi+1 = exp(0+h) = exp(h) 

% 

%   now form different derivative approximations 

      fpb = (f - fm)./h;              % backward approx to f' 

      fpf = (fp - f)./h;              % forward approx to f' 

      fpc = (fp - fm)./(2*h);         % central approx to f' 

      fp2c = (fm - 2*f + fp)./(h.*h); % central approx to f'' 

%     

%   create short table of results 

      fprintf('       h       fpb       fpf       fpc       fp2c \n') 

      for n = 1:size(h) 

      fprintf('  %8.5f  %8.5f  %8.5f  %8.5f  %8.5f \n', ... 

              h(n),fpb(n),fpf(n),fpc(n),fp2c(n)); 

      end 

% 

%  end of problem 
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Table 3  Approximate derivatives for ex at x = 0 (from deriv_approx.m). 

step size, h i i 1
i

f f
f '

h


  i 1 i

i

f f
f '

h

 
  i 1 i 1

i

f f
f '

2h

 
  i 1 i i 1

i 2

f 2f f
f ''

h

  
  

0.50000 0.78694 1.29744 1.04219 1.02101 

0.25000 0.88480 1.13610 1.01045 1.00522 

0.12500 0.94002 1.06519 1.00261 1.00130 

0.06250 0.96939 1.03191 1.00065 1.00033 

0.03125 0.98454 1.01579 1.00016 1.00008 

 

 

Well, the last point I want to make in this lesson is associated with the relationship between 

round off error and truncation error.  Remember that round off error occurs because of the finite 

number of digits used for storing floating point numbers in the computer.  Every time a 

computation is performed some small error is introduced and the round off error continues to 

accumulate as more and more computations are performed.  Also, as just noted, truncation error 

is directly related to the step size  --  that is, as the step size decreases, the truncation error 

decreases (usually  = hn, where the effective n is usually between 1 and 2). 

However, there is usually a tradeoff that can become important when one continually reduces the 

step size to minimize the truncation error, since in many applications a small step size implies 

that many computations will be required, and increased numerical operations leads to greater 

round off error. 

For example, let’s say we want to solve the following initial value problem (IVP), 

xdy
e with y(0) 1

dx
   

Of course, this simple IVP has an exact solution y(x) = ex, but here, we are interested in a 

numerical solution to demonstrate the tradeoff between round off error and truncation error as 

described above. 

A simple numerical scheme can be developed by evaluating both sides of the differential 

equation at discrete point xi, or 

i
i

x

x
x

dy
e

dx
  

Now, using the 1st order forward approximation for the first derivative from eqn. (10), we have 

ixi 1 iy y
e

h

 
   or    ix

i 1 iy y e h    

This recursive expression represents a discrete approximation to the original continuous ODE  --  

you may recognize this from your Differential Equations course as the simple Euler formula,    

yi+1 = yi + f(xi,yi)h, for solving IVPs of the form, y = f(x,y), using numerical methods. 
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Now, let’s evaluate the discrete recursive equation over the range x = (0, 2) for several different 

step sizes, starting at h = 0.1 and decreasing by a factor of 10 each time until h = 10-10. Note that, 

to reach a value of xf = 2, the number of steps required is N = 20 for h = 0.1.  However, for         

h = 10-10, we will need to do 20 billion steps (i.e. 20x109 steps)!  Thus, although the truncation 

error is expected to be negligible when h is very small, the very large number of arithmetic 

operations required to integrate the IVP to the desired xf may start to show some appreciable 

round off error  --  even with 64-bit arithmetic. 

The tradeoff.m Matlab program listed in Table 4 implements the above ideas and compares the 

relative error in the numerical result for y(x) at x = xf = 2 relative to the exact value.  A short 

table of numerical results from tradeoff.m is presented below and a plot of the relative error vs. 

step size on log-log axes is shown in Fig. 1.  Note that this case was run in Oct. 2017 on my 

Surface Pro 4 tablet and, as you can see, the last step took nearly 7 minutes to run  (however, just 

two years ago my Intel I7 desktop took over 30 minutes to run this last step  --  computer 

processing speed just keeps getting better and better!!!): 

>> tradeoff 

      h             N                  xf                   yf           rel error     time(s) 

   1.00e-01              20     2.0000000000e+00     7.0749266202e+00     4.25e-02     0.00e+00  

   1.00e-02             200     2.0000000000e+00     7.3571640605e+00     4.32e-03     0.00e+00  

   1.00e-03            2000     2.0000000000e+00     7.3858621033e+00     4.32e-04     0.00e+00  

   1.00e-04           20000     2.0000000000e+00     7.3887366514e+00     4.32e-05     0.00e+00  

   1.00e-05          200000     2.0000000000e+00     7.3890241537e+00     4.32e-06     0.00e+00  

   1.00e-06         2000000     1.9999999999e+00     7.3890529042e+00     4.32e-07     4.70e-02  

   1.00e-07        20000000     2.0000000003e+00     7.3890557798e+00     4.32e-08     3.91e-01  

   1.00e-08       200000000     1.9999999962e+00     7.3890560623e+00     4.96e-09     3.92e+00  

   1.00e-09      2000000000     2.0000000753e+00     7.3890562860e+00     2.53e-08     3.90e+01  

   1.00e-10     20000000000     2.0000001522e+00     7.3890567090e+00     8.26e-08     4.13e+02 

 

   The exact result should be yf = exp(2) =     7.3890560989e+00 

 

 

Fig. 1  Relative error vs. step size for solution of a simple IVP using the Euler method. 
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Table 4  Listing of the tradeoff.m program. 

% 
%   TRADEOFF.M  Show trade-off in truncation and round off error when solving 
%                  a simple IVP:   y' = exp(x)   with  y(0) = 1 
%   (used to generate plot of error vs step size for Fig. 1 in Lesson 4 Lecture Notes) 
% 
%   Written by J. R. White, UMass-Lowell (last update: Oct. 2017) 
% 

  
      clear all,   close all 
% 
%   set different step sizes (decreasing by a factor of 10) 
%   this is what I really want  (note h = 1e-10 only works for 64-bit machines) 
      h = [1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10]';      
%   use the next line for debugging (this runs in a minute or so) -- comment out  
%   for real case 
%     h = [1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 ]';    
      N = round(2./h);                   % number of steps 
% 
%   solve IVP for each h 
      xf = zeros(size(h));    yf = zeros(size(h));   
      rerr = zeros(size(h));  time = zeros(size(h)); 
      for n = 1:length(h) 
        t = clock;                       % start timer 
        x = 0;  y = 1;                   % initial conditions 
        for i = 1:N(n) 
          y = y + exp(x)*h(n);           % increment y 
          x = x + h(n);                  % increment x 
        end 
        time(n) = etime(clock,t);        % elasped time (s) 
        xf(n) = x;   yf(n) = y;          % final conditions 
        rerr(n) = abs((yf(n)-exp(2))/exp(2)); % absolute relative error at xf = 2 
      end 
%     
%   create short table of results 
      fprintf('       h             N                  xf                   yf           rel 

error     time(s)\n') 
      for n = 1:size(h) 
        fprintf('  %10.2e   %13i   %18.10e   %18.10e   %10.2e   %10.2e \n', ... 
                h(n),N(n),xf(n),yf(n),rerr(n),time(n)); 
      end 
      fprintf('\n   The exact result should be yf = exp(2) = %20.10e \n',exp(2)); 
% 
%   make plot of results 
      loglog(h,rerr,'ro','LineWidth',2),grid 
      title('TradeOff:  Relative Error vs Step Size for given IVP -- y'' = e^x with y(0) = 1') 
      xlabel('Step Size'), ylabel('Relative Error in y_f = y(x_f) = y(2)') 
% 
%  end of problem 

 

There are several interesting points to note in these data.  First, for large h, the truncation error 

dominates the calculation, and the total relative error is directly proportional to h (as expected for 

the 1st order Euler method), where we see a factor of 10 decrease in the relative error in yf each 

time we decrease h by a factor of 10.  This behavior is also shown in Fig. 1, where the right 

portion of the graph of relative error vs. step size has a slope of unity (on a log-log plot, a 1 

decade change in h leads to a 1 decade change in relative error  --  thus, a slope of +1).  

However, the decreasing error does not continue indefinitely.  When h = 10-8, we start to see a 

slight deviation from the unity slope and clearly, when h is less that 10-9, the slope is now    

nearly –1  --  that is, a decrease in h leads to an increase in the relative error!!! 

The abrupt change when h becomes very small (about 10-8 for this case) is due to the fact that the 

truncation error is now totally negligible and the round off error is the dominant component of 
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the total error.  And, as we know, decreasing the step size further only increases the number of 

computations, which, in turn, increases the round off error.  Thus, there is clearly a point of 

diminishing returns, where decreasing the step size further actually increases the inherent error in 

the computations  --  and this is something you should always keep in mind!!! 

From this simple example, it should be clear that, in most practical calculations with well-written 

algorithms and a 64-bit word size (double precision arithmetic), truncation error will probably be 

the dominant concern.  Ideally, for the best calculation possible, it would be optimum to operate 

in the region just to the right of the minimum in Fig. 1  --  a step size of about 10-6 – 10-7 for this 

problem.  However, in practical engineering analysis, it is rare that this level of accuracy is 

needed.  Instead, maximum relative errors on the order of 10-4 – 10-5 are usually more than 

sufficient for most problems, which relaxes the constraint on h considerably (h = 10-3 – 10-4 

would be a good choice for this problem).  Also, in many real engineering analysis problems, the 

computational time is the dominant issue, so usually one relaxes the accuracy requirement 

somewhat to obtain increased computational efficiency.  Thus, in most practical situations, the 

typical operating region is near the top right portion of the relative error vs. step size graph, 

where truncation error is definitely the dominant error component.  However, although we are 

more often concerned about the tradeoff associated with truncation error versus computational 

efficiency, please do not forget about round off error  --  because it can really cause headaches 

when it becomes a dominate issue… 

------------------------ 

Note:  I should note that, because of round off error, the tradeoff.m program gave me a number 

of problems when I first wrote this routine for a 32-bit machine.  For example, even though the 

statement N = 2./h should give an integer for the values of h chosen, because of round off error, 

N was not exactly an integer for all cases.  This became a problem in the for … end loop, when 

trying to reach the precise value of xf = 2.  The round command resolved this issue.  Also notice 

how round off error affects the value of xf for large N (for N greater than 2 million).  Even the 

simple expression, xi+1 = xi + h, gives noticeable error when repeated enough times!  You should 

also notice the use of the clock and etime commands in program tradeoff.m,.  These functions 

can be used when you are interested in obtaining timing information for a given algorithm or 

when comparing the efficiency of two or more methods.  Finally, note that the times given in the 

above output from the tradeoff.m program are associated with my 1-year old Surface Pro 4 

laptop as of Oct. 2017  --  your results, if you run the program, may be different... 

------------------------ 

Well, this completes our brief overview of the inherent errors associated with all numerical 

computations on the computer.  You should now have a reasonable understanding of round off 

error and truncation error, and on the relationship of these two error components.  As noted 

above, truncation error is usually the dominant error component in most engineering 

calculations, so this is something you should always consider in routine analysis  --  and we will 

discuss this again, as needed, in subsequent lessons.  Round off error, on the other hand, is 

usually quite small when using 64-bit arithmetic and well-written algorithms.  It can be a real 

problem, on occasion, so you should also keep a watchful eye for anomalous results.  My motto 

is that “Everything I do is wrong, until proven to be correct!”  --  so I always take a critical look 

at any computer results before I believe them.  I strongly encourage you to also be very critical 

with any computer generated results, and to use your engineering judgment and intuition to help 
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you interpret the data and to identify any subtle problems with your analysis.  With a critical eye, 

you will be able to spot most anomalous numerical behavior that occurs, as well as other logic 

and coding bugs within your programs. 

To expand on some of the concepts introduced in this lesson, I have also included three 

additional worked-out examples that provide some further insight into working with infinite 

series on the computer and on the Finite Difference method for solving differential equations. 

These examples are available as separate pdf files, as follows: 

 infinite_series.pdf  --  On Evaluating Infinite Series – An Example 

 planewall_1.pdf  --  Evaluating and Plotting Space-Time Temperature Distributions 

 fd_intro.pdf  --  Introduction to Finite Difference Methods 

After you have finished your reading assignment for this lesson and after reviewing the above 

examples, you should be ready to do HW #4 (see hw4xxx.pdf).  This homework involves several 

problems that require some discussion as well as the development of a few Matlab programs that 

use several of the concepts and techniques discussed in this lesson.   

As done for the previous assignments, I prefer that you collect the Matlab m-files, the resultant 

plots and/or tabular results, any hand calculations, and a brief description of the results of each 

problem in a separate solution packet for each HW problem.  Note, however, that for this 

assignment, Problems 1 and 2 do not require any Matlab programming (wow, this is a change!), 

so only the discussions and manipulations requested are required for these two problems.   

Well, with a brief introduction into the subject of numerical error behind us, we are now ready to 

jump into a sequence of traditional subjects from the field of applied numerical methods.  Our 

first subject will be on Root Finding and Polynomial Operations, which will open the door for 

solving a wide range of engineering analysis problems.  Since solving real problems is our 

ultimate goal in this course, we are finally ready to have some fun!  So, let’s do it…  


