
Applied Engineering Problem Solving  (CHEN.3170) 

Part II:  Numerical Methods and Applications 

Lesson 6:  Solution of Linear and Nonlinear Equations 

In Lesson #5 we addressed techniques for the solution of a single nonlinear equation of the form 

f(x) = 0 by asking the question “What is x such that f(x) = 0?”.  In this lesson we extend this 

methodology to the case of multiple equations and multiple unknowns (where we will restrict our 

analysis, at present, to the case where the number of equations and number of unknowns are the 

same).  We can represent the case of n equations and unknowns by allowing n independent 

variables, x1, x2,  , xn, and writing each equation with different functional relationships, f1, f2,   

fn, or 

1 1 2 n

2 1 2 n

n 1 2 n

f (x , x , , x ) 0

f (x , x , , x ) 0

f (x , x , , x ) 0







         (1) 

Using the notation from Lesson #2 where a lower case bold letter represents a vector quantity 

and an upper case bold letter denotes a 2-D array, we have x = [x1, x2,  , xn]
T and f = [f1, f2,   

fn]
T.  Now, with this simple notation, we can write the sequence of n equations and their 

dependence on n variables as a single vector equation, or 

f(x) = 0          (2) 

Thus, the matrix/vector notation in eqn. (2) simply allows writing eqn. (1) in a more concise 

form.  With this form, we can solve this system of equations by asking a similar question as 

before, “What is x such that f(x) = 0?”.  Here, of course, we need to find all n elements of the 

vector x by simultaneously forcing each function, fj(x), to zero for j = 1, 2,   n.  

Equation (2) is a general relationship that is often used for general nonlinear systems.  If, 

however, the system is linear with respect to the elements of x (i.e. the xi only appear to the 1st 

power and there are no products of the form xixj), then eqns. (1) and (2) are usually written as  

1 1 2 n 11 1 12 2 1n n 1

2 1 2 n 21 1 22 2 2n n 2

n 1 2 n n1 1 n2 2 nn n n

f (x , x , , x ) a x a x a x b 0

f (x , x , , x ) a x a x a x b 0

f (x , x , , x ) a x a x a x b 0

    

    

    

     (3) 

or Ax = b           (4) 

where 

 

11 12 1n 1 1

21 22 2n 2 2

n1 n2 nn n n

a a a x b

a a a x b
and

a a a x b

     
     
       
     
     
     

A x b  
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Equation (4) is the linear subset of the more general relationship given in eqn. (2). 

In this lesson we will address the solution of eqns. (2) and (4) via a number of methodologies 

(with focus on a series of numerical techniques  --  recall that analytical hand computations for 

the linear case was already discussed in the Linear Algebra section of Lesson #2).  We will 

focus on the linear case first [i.e. the solution of eqn. (4)] and then briefly introduce some 

techniques for the solution of a system of nonlinear equations written in the form of eqn. (2). 

We have already introduced a bunch of notation associated with linear algebra in Lesson #2 and 

clearly, you should review this material, as needed, before continuing here.  The current section 

of lecture notes introduces the key techniques for computer solution of a system of linear or 

nonlinear equations and provide some further explanation and insight into Matlab’s backslash 

operator for the solution of linear equations. 

Most of the specific subjects of interest here are treated in some detail in Part 3 of your 

Numerical Methods text by Chapra.  This section of the text includes Chapters 8 – 12 which 

discuss several keys concepts and the basic terminology of linear algebra (which we have already 

discussed), various direct elimination methods and iterative techniques for linear equations, and a 

brief overview of two methods for the solution of nonlinear equations.  These lecture notes will 

summarize the key points from Chapters 8 – 12 in Chapra and also provide some additional 

terminology, insight, and applications experience (also please refer back to the Lesson #2 

Lecture Notes, as needed). 

Upon completion of this lesson you should have a good understanding of both direct and 

iterative methods for the solution of linear equations, and a basic overview of various nonlinear 

solution strategies.  You should leave this lesson with increased insight and confidence in 

applying a variety of techniques for the solution of both linear and nonlinear systems  --  and be 

able to apply Matlab (and other software tools) for the solution of practical applications 

involving a system of coupled equations (either linear or nonlinear). 

Motivation 

Providing motivation for understanding the material from this lesson is easy since systems of 

simultaneous equations occur in every field of science and engineering.  Here we provide three 

straightforward illustrative examples where one needs the terminology and tools discussed in this 

lesson to analyze the system of interest.  Actual solution and discussion of these systems will be 

addressed after the theory and methods have been presented. 

Problem 1:  Resistive Networks 

Electric circuits containing only resistors lead to 

coupled linear algebraic equations.  Kirchhoff's 

voltage law, which states, “the algebraic sum of the 

voltage drops around a closed loop must be zero,” and 

Kirchhoff's current law, which says, “the sum of the 

currents entering a node is zero,” are often used to 

develop these equations.  For resistors, the voltage 

drop is given by Ohm’s law, v Ri , where R is the 

resistance (ohms), i is the current (amperes), and v is 

the voltage drop (volts).   
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In particular, for the resistive network shown in the sketch, we can apply Kirchoff’s voltage law 

in each of the four loops to write four independent equations containing the four unknown 

currents, i1 through i4, and known values for the resistances, R1 – R9, and voltage sources, v1 

through v5.  Note that if there is a voltage rise (i.e. an increase in voltage) in the direction of the 

loop current, then we treat this as a negative voltage drop.  Also, in common elements which are 

contained in more than one loop, the net current in that element in the direction of the loop 

current is used within the given loop equation.   

To illustrate these comments within a real application, let’s write the voltage law equations for 

the specific circuit shown in the sketch on the previous page, as follows: 

Loop 1: 1 1 1 2 1 2 3R i v R (i i ) v 0            (5a) 

Loop 2: 2 2 1 3 2 2 4 2 5 2 4R (i i ) R i v R i R (i i ) 0           (5b) 

Loop 3: 6 3 3 8 3 4 4 7 3R i v R (i i ) v R i 0           (5c) 

Loop 4: 4 8 4 3 5 4 2 9 4 5v R (i i ) R (i i ) R i v 0            (5d) 

where, for example, in Loop 1 i1 – i2 is the net current through R2, v1 is a voltage drop, and v3 is 

a voltage rise all in the direction of i1 (and the other equations are developed in a similar 

fashion). 

Now we simply rewrite these equations in a more convenient form [i.e. collecting the 

coefficients of the four unknown currents in sequential order and putting the known voltage 

sources on the right-hand side (RHS) of the equations].  Doing this gives 

Loop 1: 1 2 1 2 2 3 1(R R )i R i v v           (6a) 

Loop 2: 2 1 2 3 4 5 2 5 4 2R i (R R R R )i R i v             (6b) 

Loop 3: 6 7 8 3 8 4 3 4(R R R )i R i v v            (6c) 

Loop 4: 5 2 8 3 5 8 9 4 4 5R i R i (R R R )i v v            (6d) 

Finally, writing this in standard matrix/vector form, we have 

     

1 2 2 3 11

2 2 3 4 5 5 22

6 7 8 8 3 43

5 8 5 8 9 4 54

R R R 0 0 v vi

R (R R R R ) 0 R vi

0 0 R R R R v vi

0 R R R R R v vi

      
    

     
     
        
    

        

 (7) 

or simply 

Ax = b           (8) 

where the formal definitions of the A and b coefficient matrices and the solution vector x are via 

a one-to-one correspondence with eqn. (7).  The solution of this linear system of equations gives 

the desired loop currents 
T

1 2 3 4[i i i i ]x  for this problem!!! 
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Problem 2:  Geometry of a Parabolic Fin 

Consider the physical design of a cylindrical fin with a parabolic shape (see sketch below).  The 

purpose of the fin’s extended surface is to increase the heat transfer area and to enhance the 

overall heat transfer from the cylindrical tube.  As part of a team assigned to design a fin for peak 

efficiency, your job is to determine the fin surface area versus length.  For this analysis we will 

keep most of the geometry parameters constant, allowing only the length, L, to vary (that is, Ro, 

H, and h are fixed parameters, and L is known in any particular case, but it will be allowed to 

vary so that the surface area vs. length can be determined). 

 

The shape of the fin is given by 

2
1 2 3y(r) a a r a r            (9) 

with the constraints 

o

o o

r R L

H h dy
y(R ) , y(R L) , and 0

2 2 dr  

       (10) 

These three constraints give three equations for the unknown coefficients, a1, a2, and a3  --  which 

vary as a function of the fin’s length, L.  For a given set of geometry parameters, Ro, H, h, and L, 

applying the above constraints gives 

2
1 2 o 3 o

H
a a R a R

2
           (11a) 

   
2

1 2 o 3 o

h
a a R L a R L

2
            (11b) 

 2 3 o0 a 2a R L            (11c) 

Now, noting that the unknowns of interest are the a1, a2, and a3 coefficients, we can write these 

three equations in standard Ax = b form, where  
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 

 

2
o o

1
2

o o 2

o 3

1 R R a H 2

1 R L R L a and h 2

0 1 2 R L a 0

 
   

 
   

     
   

 
        

A x b    (12) 

and the solution vector x gives the needed a1, a2, and a3 coefficients and the desired y(r) profile 

as given by the quadratic expression in eqn. (9).  Thus, we see that the solution of a linear system 

of equations in the form Ax = b is required here. 

However, for this problem, knowing y(r) for each value of L is not the final result  --  since here 

we are interested in the fin’s surface area vs. L (since the heat loss from the fin is related to its 

heat transfer surface area, A).  From the sketch, we can compute A for each L from the following 

expression: 

A = 2*top surface area +  tip area        (13) 

or oA 2 2 rds 2 (R L)h             (14) 

where ds is the differential length along the surface at position r.  From basic calculus, we know 

that 

 

2
dy

ds 1 dr
dr

 
   

 
 

Therefore, upon substitution we have 

 
o

o

2
R L

o
R

dy
A 4 r 1 dr 2 (R L)h

dr

  
      

 
       (15) 

This integral can be evaluated numerically using Matlab’s quadl or integral function (we will 

elaborate on this further when we solve this problem within Matlab later in these notes).   

Thus, to solve/analyze this problem, a general outline of the solution algorithm would be as 

follows: 

1. Setup basic problem parameters (Ro, H, h, and range of L values) 

2. Loop over number of L values 

a. Setup coefficient matrices as defined in eqn. (12) 

b. Solve system of equations to find the a1, a2, and a3 coefficients for the y(r) expression 

c. Use quadl or integral to evaluate the fin’s surface area via eqn. (15) 

3. Plot and tabulate the key results [i.e. y(r) and A for several L values]  

Again, we see that the analysis of this design problem requires the setup and solution of a system 

of linear equations (which we will solve later in this section of notes)!!!   
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Problem 3:  Fin Heat Transfer via the FD Method (Revisited) 

One of the illustrative applications from Lesson #4 introduced the Finite Difference Method (see 

fd_intro.pdf) for solving both Initial Value Problems (IVPs) and Boundary Value Problems 

(BVPs).  In that example we saw that the numerical solution of BVPs leads directly to a set of 

coupled equations where, in general, very large systems are often encountered (it was noted that 

having greater than 1 million unknowns is fairly routine in multidimensional problems).  This 

application area, by itself, clearly emphasizes the need for efficient numerical schemes to solve 

large linear systems of the form Ax = b.  However, in most real engineering problems, the 

defining equations have nonlinear elements, which usually increases the computational demands 

by an order of magnitude or more.  Thus, instead of solving n linear equations given by Ax = b, 

we must often solve n nonlinear equations of the form f(x) = 0. 

To illustrate the added complexity associated with nonlinear problems (and to motivate our need 

to discuss methods for solution of these problems), let’s revisit the rectangular fin heat transfer 

problem discussed previously (see rect1d_fin_1.pdf and fd_intro.pdf).  However, this time we 

will add a new twist to the problem  --  by imposing a temperature dependent heat transfer 

coefficient, h(T), instead of a constant h.  This slight change to the problem specification 

modifies the problem solution algorithm significantly!!! 

To be specific, consider the fin geometry shown in the 

sketch with a linear dependence of the heat transfer 

coefficient with temperature, or  

1 2h h(T) a a T      (16) 

Previously we showed that the defining steady state 

energy balance equation was given by 

2
2

2

d T
m (T T ) 0

dx
      (17) 

with 2

c

hP
m

kA
     (18) 

and that the specific BCs for this problem included a fixed temperature on the left (at x = 0) and 

convection to the environment on the right (at x = L), or 

bT(0) T         and        
x L

x L

dT
k h (T T )

dx
 



        (19) 

These expressions are still valid for the present problem if we recognize that h = h(T) is given by 

eqn. (16) [instead of being constant as done previously]. 

We will use the Finite Difference (FD) solution method to solve this nonlinear BVP.  In 

particular, in the Lesson #4 example where h was constant, we showed that discretization of the 

1-D problem lead to the following discrete equations for the nodal temperature values (see 

fd_intro.pdf): 
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Linear FD Equations  (for constant h) 

Node 1:   2 2 2 2
1 2 b2 m x T T m x T T            (20a) 

Node 2 to N-1:  2 2 2 2
i 1 i i 1T 2 m x T T m x T             (20b) 

Node N:  2 2 2 2
N 2 N

2h x 2h x
T 2m x 1 T 2m x T

k k
 

    
          
   

  (20c) 

where N is the number of unknown 

temperature points in the discrete model (the 

general nodal discretization for this problem 

is illustrated in the sketch to the right for the 

case of N = 5).  These linear equations can be 

assembled into standard form  

 AT = b   (21) 

where T is the desired temperature vector and 

A and b are constant coefficient matrices for 

the case where the heat transfer coefficient is 

constant. 

Now, for the case where the heat transfer coefficient is temperature dependent [i.e. h = h(T)], the 

only required change in the model is associated with the fact that, since h varies with T, and T 

varies with position x, then h is indeed spatially dependent  --  that is, h(T)  h(x)  h(xi)  hi.  

Thus, the m2 parameter in the base model is also space dependent and eqn. (18) needs to be 

written as 

 2 i
i 1 2 i

c c

h P P
m c c T

kA kA
           (22) 

where the last equality is valid for this specific problem because of our assumption that h varies 

linearly with T. 

Now to incorporate this new behavior into the discrete FD model, we simply need to include a 

subscript i on the m2 and h parameters in the nodal balance equations to denote their dependence 

on space.  Doing this gives: 

Nonlinear FD Equations  (for variable h) 

Node 1:   2 2 2 2
1 1 2 1 b2 m x T T m x T T            (23a) 

Node 2 to N-1:  2 2 2 2
i 1 i i i 1 iT 2 m x T T m x T             (23b) 

Node N:  2 2 2 2N N
N 2 N N N

2h x 2h x
T 2m x 1 T 2m x T

k k
 

    
          
   

 (23c) 

where m2
i and hN are defined as above in eqns. (22) and (16), respectively. 
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Clearly the resultant equations for this problem are nonlinear because of the many Ti
2 terms that 

occur explicitly if the actual expressions for m2
i and hN are substituted into the discrete 

equations.  Thus, the sequence of N coupled nonlinear equations given in eqn. (23) can be 

written symbolically as f(T) = 0, or as A(T)T = b(T), where this latter form explicitly shows that 

the A and b coefficient matrices are temperature dependent [implying a general nonlinear 

dependence on T because of the multiplication of the A(T) matrix into the T vector].   

Well, from the above discussion, it should be clear that we will need to solve a system of 

nonlinear equations to compute the discrete temperature profile within the fin for the case of a 

temperature dependent heat transfer coefficient.  We will use this challenge as the motivation for 

studying solution methods for nonlinear systems as part of this lesson.  Once we have discussed 

the methods in some detail, we will come back and solve this motivation problem as an explicit 

example of the basic methodology. 

------------------- 

Note:  I personally prefer using the notation A(x)x = b(x) for many nonlinear problems [instead 

of f(x) = 0] because it suggests an iterative solution technique for solving the system of nonlinear 

equations.  Recall the One-Point or Fixed-Point Iteration scheme from Lesson #5 for solving a 

single nonlinear equation.  In this case, because the quantity of interest appeared on both sides of 

the equation, we added an iteration index k to denote that the kth estimate of the solution, xk, 

would be used to get a new estimate, xk+1  --  that is, xk+1 = g(xk) for the One-Point Iteration 

method.   

Now, for the case of n nonlinear coupled equations, we can envision an iterative strategy where 

the current estimate of the solution, xk, is used to estimate the coefficient matrices, A(xk) and 

b(xk), and then these are used to write a linear system (with known A and b) that can be solved 

for a new estimate of the solution vector, xk+1.  Symbolically this scheme can be written as 

A(xk)xk+1 = b(xk)         (24) 

This basic idea is referred to as the Linearized Iteration Method or the Successive Substitution 

Method and we will discuss this method in more detail in a subsequent subsection of these notes 

(and then actually use this method to solve this motivation problem). 

------------------- 

Solution Techniques for Linear Systems 

Hopefully the above three problems have indeed increased your interest in studying solution 

techniques for both linear and nonlinear systems  --  these methods are needed in many analysis 

situations and they represent essential tools for every practicing engineer.  We will focus first on 

linear systems and, near the end of the lesson, briefly overview some common methods for 

nonlinear systems.  Finally, once we have a good handle on all the terminology and techniques  -

-  especially those available within Matlab  --  we will come back and actually solve the 

motivation problems discussed in the previous section (as well as present some additional cases 

studies for further illustration of the variety of practical situations where these methods are 

needed). 

Our study of linear systems is broken into two subsections that highlight elimination methods 

and general iterative techniques, respectively, as practical computational approaches for 
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computer implementation.  A simple example of a 3x3 linear system will be used to illustrate the 

basic ideas from each method. 

Direct Elimination Methods 

There are two general schemes for solving linear systems using the computer:  Direct 

Elimination Methods and Iterative Methods.  All the direct methods are, in some sense, based 

on the standard Gauss Elimination technique, which systematically applies row operations to 

transform the original system of equations into a form that is easier to solve.  This subsection of 

notes overviews a formal algorithm for implementation of the basic Gauss Elimination scheme, 

and it also highlights the LU Decomposition method which, although functionally equivalent to 

the Gauss Elimination method, does provide some additional flexibility for computer 

implementation.  Thus, the LU decomposition method (or variations of the base methodology) is 

often the preferred direct solution method for low to medium sized systems (up to a few 

thousand equations or so). 

For very large systems, iterative methods (instead of direct elimination methods) are almost 

always used.  This switch is required from accuracy considerations (related to round-off errors), 

from memory limitations for physical storage of the equation constants, from considerations for 

treating nonlinear problems, and from overall efficiency concerns.  There are several specific 

iterative schemes that are in common use, but most methods build upon the base Gauss Seidel 

method, usually with some acceleration scheme to help convergence.  Thus, our focus on 

iterative methods as part of the Lesson #6 Lecture Notes is on the basic Gauss Seidel scheme and 

on the use of Successive Relaxation (SR) to help accelerate convergence.  Our introductory study 

of iterative methods will follow the current subsection on direct elimination methods. 

As noted in the introductory paragraphs, direct elimination methods formally implement the 

three standard “row operations” that were discussed in Lesson #2 to transform the original 

system of linear equations into a form that is easier to solve.  In our previous illustrations of the 

basic procedure (see the hand examples starting on pages 14 and 19 of the Lesson #2 Lecture 

Notes), we only used the last two row operations (normalization by a constant and addition of a 

constant times one row to another) to achieve the desired goals within the given examples.  In 

particular, the first row operation in our list, the interchange of two rows, was not utilized in our 

previous examples.   

To illustrate the importance of this row operation (i.e. the interchange of two rows), let’s take 

our example from Lesson #2 for solving Ax = b and re-order (i.e. interchange) the sequence of 

the equations, as follows; 

        Original System:             Revised System: 

1

2

3

3 2 0 x 7

1 3 2 x 9

0 1 3 x 5

     
    

  
    
         

    

1

2

3

0 1 3 x 5

1 3 2 x 9

3 2 0 x 7

     
    

  
    
         

 

where, in the revised system, we have simply interchanged rows 1 and 3  --  and, clearly, this re-

ordering of the equations does not alter the basic equalities present in the original system. 
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However, if we now try to impose the remaining two row operations to put the revised system 

into upper triangular form, we see that a problem quickly develops.  For example, in the revised 

system, if we multiply the 2nd equation by 3 and add this to the 3rd equation, we get 

1

2

3

0 1 3 x 5

1 3 2 x 9

0 7 6 x 20

     
    

  
    
        

 

Now, remembering that our goal here is to put the system in upper triangular form, the pertinent 

question is, “How do we make the 2,1 element zero?”.  The answer, of course, is that we simply 

cannot achieve this goal  –  at least, not without a suitable row interchange.  What has happened 

here is that the a11 pivot element (i.e. the aii element in row or column i) in the revised system is 

zero, and this is a big no-no!!!  This element is needed to make the 2,1 element zero, but this is 

not possible if it is zero.  In fact, if a system has one or more diagonal elements that are zero, and 

these zeros cannot be removed via suitable row interchanges, then the A matrix is singular and 

there is no solution to the system given by Ax = b.  Clearly, an interchange of rows 1 and 2 in 

the above systems rectifies the temporary dilemma, and allows one to proceed with applying 

additional row operations to achieve the desired upper triangular form. 

Now, in general system modeling and during subsequent manipulation of the original equations, 

it is not uncommon to have a temporary zero appear in one of the diagonal pivot elements.  This 

is not usually a concern, however, since a simple row interchange can remedy the temporary 

situation (unless the matrix is indeed singular).  The procedure for checking and performing the 

row interchange, if it is needed, is referred to as the partial pivoting process.  The procedure 

sequentially searches for the coefficient with the largest absolute value in the column below the 

pivot element, and then the rows are switched so that the largest element becomes the pivot 

element.  The procedure is relatively simple to implement, and it is an absolutely essential 

component of any general-purpose solution algorithm!!! 

It is important to emphasize that, in addition to avoiding a zero diagonal element (and subsequent 

division by zero during the normalization and back substitution processes), partial pivoting is 

also used to help minimize the round off error that occurs in each arithmetic computation that is 

performed.  This feature is illustrated nicely in Ex. 9.4 in your text by Chapra  --  you should take 

a look if you haven’t already done so… 

Well, with the above emphasis on partial pivoting and our previous examples of the other row 

operations, we can now present a formal direct algorithm for solving linear systems on the 

computer.  The formal procedure is referred to as the Gauss Elimination Method and, as we 

have already seen, it involves a forward elimination step followed by the back substitution step.  

With reference to a system of n equations and n unknowns,  

Ax = b 
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the Forward Elimination Step (with partial pivoting) becomes: 

Step 0 -- Create an augmented matrix,  A A b  

Step 1 -- Determine the coefficient in the ith column with the largest absolute value and 

interchange rows such that this element is the pivot element (i = 1, 2, 3, to n-1) 

Step 2 -- Normalize the pivot equation (i.e. divide by the i,i element) 

Step 3 -- Multiply normalized eqn. i by the j,i element of eqn. j 

Step 4 -- Subtract the resultant equation in Step 3 from eqn. j 

repeat Steps 3 and 4 for j = i+1 to n 

go to Step 1 for next i = i+1 to n-1 

and the Back Substitution Step is given by: 

Step 5 -- ' '
n n nnx b a  

Step 6 -- 
ij

n
' ' '

i i j ii

j i 1

x b a x a
 

 
   
 

  

repeat for i = n-1, n-2, to 1 

where the primes indicate that the coefficients at this stage are different from the original 

coefficients. 

To illustrate this formal procedure, let’s re-do the example from page 14 of the Lesson #2 

Lecture Notes.  Note that, although the two cases are very similar, here we follow the above 

algorithm religiously, whereas in our earlier hand computation we were more interested in 

finding the solution for a specific problem.  However, when implementing a general-purpose 

algorithm on the computer, the code follows the same sequence of steps every time, independent 

of the specific problem being solved.  Thus, the purpose of the example here is to illustrate the 

precise steps noted in the above Gauss Elimination procedure: 

Given 

 
1

2

3

3 2 0 x 7

1 3 2 x 9

0 1 3 x 5



     
    

  
    
         

        A       x    b

 

Step 0 -- form augmented matrix 

 

3 2 0 7

1 3 2 9

0 1 3 5

  
 
 
 
   
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Step 1 -- i = 1 perform partial pivoting  

 

3 2 0 7

1 3 2 9

0 1 3 5

  
 
 
 
   

   (no change – no row interchange needed) 

Step 2 -- i = 1 normalize pivot equation  

 

1 2 / 3 0 7 / 3

1 3 2 9

0 1 3 5

  
 
 
 
   

 

Step 3+4 -- multiply eqn. i = 1 by -1 and subtract from eqn. j = i+1 = 2  

 

1 2 / 3 0 7 / 3

0 7 / 3 2 20 / 3

0 1 3 5

  
 


 
   

 

Step 3+4 -- multiply eqn. i = 1 by 0 and subtract from eqn. j = i+2 = 3 

 

1 2 / 3 0 7 / 3

0 7 / 3 2 20 / 3

0 1 3 5

  
 


 
   

  (no change) 

Step 1 -- i = 2 perform partial pivoting  

 

1 2 / 3 0 7 / 3

0 7 / 3 2 20 / 3

0 1 3 5

  
 


 
   

  (no change – no row interchange needed) 

Step 2 -- i = 2 normalize pivot equation  

 

1 2 / 3 0 7 / 3

0 1 6 / 7 20 / 7

0 1 3 5

  
 


 
   

 

Step 3+4 -- multiply eqn. i = 2 by -1 and subtract from eqn. j = i+1 = 3  

 

1 2 / 3 0 7 / 3

0 1 6 / 7 20 / 7

0 0 15 / 7 15 / 7

  
 


 
  

 

Stop elimination phase since i = 2 = n-1 = 2 

Step 5 – evaluate the last element of the vector 

 3

15 / 7
x 1

15 / 7


    
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Step 6 – evaluate all other elements (in reverse order) 

 2 3

20 6 20 6
x x 2

7 7 7


     

 1 2

7 2 7 4
x x 1

3 3 3

 
       

Therefore the final result is x = [-1  2  -1]T and clearly, this is the same result as before.  The only 

difference here is that we followed a very formal procedure at each step of the process  --  and, if 

we can do this by hand, then it can be coded into the computer for general purpose use!!! 

One slight disadvantage of the above algorithm is that the b vector is manipulated along with the 

A matrix as part of the augmented matrix formed in Step 0 of the procedure.  What if we wanted 

to solve several systems with the same A but different b vectors?  For example, we might be 

interested in solving 

 Ax1 = b1,          Ax2 = b2,          Ax3 = b3,          etc. 

Clearly, we could simply use the above algorithm multiple times, but this would be quite 

inefficient, since the same manipulations to transform the A matrix would be done each time.  

Certainly it would be better if we could devise a method to modify the A and b matrices 

separately. 

In fact, the so-called LU Decomposition Method has the desired property that the matrix 

modification (or decomposition) step can be performed independent of the right-hand side (RHS) 

vector.  This feature is quite useful in practice  --  therefore, the LU Decomposition Method, as 

outlined below, is usually the direct scheme of choice in most applications. 

To develop the basic LU Decomposition method, let's break the coefficient matrix into a product 

of two matrices, 

 A = LU          (25) 

where L is a lower triangular matrix and U is an upper triangular matrix. 

Now, the original system of equations, Ax = b, becomes 

 LUx = b          (26) 

This expression can be broken into two problems, 

 Ly = b          and          Ux = y       (27) 

The rationale behind this approach is that the two systems given in eqn. (27) are both easy to 

solve; one by forward substitution and the other by back substitution.  In particular, because L is 

a lower triangular matrix, the expression Ly = b can be solved with a forward substitution step.  

Similarly, since U has upper triangular form, Ux = y can be evaluated with a simple back 

substitution algorithm. 

Thus, the key to this method is the ability to find two matrices, L and U, that satisfy eqn. (25).  

Doing this is referred to as the Decomposition Step and there are a variety of algorithms 

available (note that this is performed without knowledge of the b vector).  For example, Doolittle 

Decomposition (for a 44 system) would be written as 
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11 12 13 1411 12 13 14

21 21 22 23 2422 23 24

31 32 31 32 33 3433 34

41 42 43 41 42 43 4444

1 0 0 0 a a a au u u u

1 0 0 a a a a0 u u u

1 0 a a a a0 0 u u

1 a a a a0 0 0 u

    
    
     
    
    

    

  (28) 

and, because of the specific structure of the matrices, a systematic set of formulae for the 

components of L and U results. 

For example, a simple scheme (i.e. no partial pivoting) for computing L and U via Doolittle 

Decomposition can be developed by simply doing the indicated multiplication of L into U in a 

systematic fashion, noting that there is only one unknown per equation (that is, the specific form 

of L and U lead to n2 sequential evaluations  --  and the equations are completely decoupled!!!).  

A few of the steps are as follows: 

   row 1 of L into column 1 of U:   u11 = a11 

   row 1 of L into column 2 of U:   u12 = a12 

   or     u1j = a1j     for j = 1, 2, …, n 

   row 2 of L into column 1 of U:   21 21
21 11 21 21

11 11

a a
u a or

u a
    

   row 2 of L into column 2 of U:   

21 12 22 22 22 22 21 12

21
22 12

11

u u a or u a u

a
a a

a

   

 
 

   etc… 

and this can be developed into an efficient computational scheme for the unknown elements of 

the L and U matrices (with only one unknown per equation).   

Note that, since the diagonal elements of L are unity, these do not require storage, and one can 

store all the remaining elements of L and U within a single nn matrix.  Also note that, in any 

general-purpose implementation, partial pivoting will be required to avoid a division by zero and 

to minimize associated round-off errors in the calculations.  Within this context, we should note 

that the row interchange information is often stored in a row permutation matrix, P, where P = I 

for no row interchanges.  To see this, consider a 33 system, where initially A = IA = PA , or 

 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a a a 1 0 0 a a a 1 0 0

a a a 0 1 0 a a a with 0 1 0

a a a 0 0 1 a a a 0 0 1

      
      

  
      
            

PA P  

Now if we interchange rows 1 and 3, for example, the new matrix becomes 

 

31 32 33 11 12 13

21 22 23 21 22 23

11 12 13 31 32 33

a a a 0 0 1 a a a 0 0 1

a a a 0 1 0 a a a with 0 1 0

a a a 1 0 0 a a a 1 0 0

      
      

  
      
            

PA P  
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Thus, we can think of PA as the original matrix with all the row interchanges included within the 

permutation matrix, P.  Therefore, in practical implementations that include partial pivoting, the 

LU decomposition technique is really solving a problem of the form 

 PAx = LUx = Pb         (29) 

So that PA = LU in practice, and the permutation matrix is needed to solve for the solution 

vector x.   

Now, the original system of equations, PAx = Pb, becomes 

 LUx = Pb          (30) 

This expression can be broken into two problems (as discussed above), 

 Ly = Pb          and          Ux = y       (31) 

These equations still only require simple forward and back substitution algorithms once the L 

and U (and P) matrices are known. 

-------------------- 

As you might expect, Matlab has a built-in lu function that does the LU factorization discussed 

above.  To illustrate its use, let’s solve the “revised” system example from above (I chose this as 

the test system here since I know that it requires some partial pivoting and that the original 

system model does not  --  thus, the resultant permutation matrix should not be the identity 

matrix).  The revised system model is 

 

1

2

3

0 1 3 x 5

1 3 2 x 9

3 2 0 x 7

     
    

  
    
         

 

and the solution is given by x = [-1 2 -1]T, as expected based on our previous work.  The Matlab 

commands needed to generate this result via the lu function are: 

%   define matrices for demo 

      disp('Matrices for the LU demo'),  A = [0 -1 3;-1 3 -2;3 -2 0],  b = [-5 9 -7]'    

% 

%   illustrate use of lu function 

      disp('Output from lu(A) function'), [L,U,P] = lu(A) 

      disp('Intermediate y solution'), y = L\(P*b) 

      disp('Solution vector x for revised system'), x = U\y 

 

and the Matlab screen output using these commands is listed below: 

Matrices for the LU demo 

A = 

     0    -1     3 

    -1     3    -2 

     3    -2     0 

b = 

    -5 

     9 

    -7 

Output from lu(A) function 

L = 

    1.0000         0         0 

   -0.3333    1.0000         0 

         0   -0.4286    1.0000 
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U = 

    3.0000   -2.0000         0 

         0    2.3333   -2.0000 

         0         0    2.1429 

P = 

     0     0     1 

     0     1     0 

     1     0     0 

Intermediate y solution 

y = 

   -7.0000 

    6.6667 

   -2.1429 

Solution vector x for revised system 

x = 

    -1 

     2 

    -1 

 

Note here that the permutation matrix is given as expected (an interchange of rows 1 and 3 was 

required) and that the use of eqn. (31) is required to compute the x vector (y is simply an 

intermediate result that is not really useful  --  other than to demonstrate the basic method).   

-------------------- 

Before completing this subsection on Elimination Methods, we need to elaborate slightly upon 

the equivalency of the Gauss Elimination and LU Decomposition methods and the use of 

Matlab’s backslash operator.  The first item is illustrated nicely in Section 10.2 in your text by 

Chapra.  Here the author shows that the L and U factors can be determined via the same series of 

row operations as performed in the Gauss Elimination procedure.  Thus, the two elimination 

methods are strongly linked  --  and their differences are more of a matter of perception and code 

implementation.  In fact, the LU Decomposition method is often just considered a specific 

implementation of Gauss Elimination!!! 

This last statement brings us to the discussion of Matlab’s backslash operator.  In practice, 

solving a system of linear equations of the form Ax = b is accomplished within Matlab as 

 x = A\b 

The backslash operator (the \ symbol) represents a very sophisticated set of procedures that, after 

performing a test to determine the specific structure of the matrix, uses a variety of methods 

depending on the nature of the system.  Matlab’s command level help for the mldivide function 

simply says that “Gaussian elimination” is used to solve the problem (mldivide stands for matrix 

left division and this command is invoked when using the \ operator): 

help mldivide 

\   Backslash or left matrix divide. 

    A\B is the matrix division of A into B, which is roughly the 

    same as INV(A)*B , except it is computed in a different way. 

    If A is an N-by-N matrix and B is a column vector with N 

    components, or a matrix with several such columns, then 

    X = A\B is the solution to the equation A*X = B computed by 

    Gaussian elimination. A warning message is printed if A is 

    badly scaled or nearly singular.   
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However, when using the full help documentation for mldivide, a discussion of the algorithm 

details gives a list of several rules and their order of precedence, where a portion of one of the 

latter (catch all) rules is listed below (see Matlab’s full documentation for complete details): 

If A is square and does not satisfy criteria 1 through 6, then a general 

triangular factorization is computed by Gaussian elimination with partial 

pivoting (see lu).  This results in A = L*U where L is a permutation of a 

lower triangular matrix and U is an upper triangular matrix. Then X is 

computed by solving two permuted triangular systems:  X = U\(L\B) 

 

Thus, we see that a combination of the basic Gauss Elimination and LU Decomposition methods 

discussed above do indeed form the basis for Matlab’s backslash operator.  The specific 

implementation in Matlab  --  we simply solve Ax = b by using x = A\b  --  makes it easy for 

the user but, in practice, there is a fair amount of linear algebra, numerical methods, and clever 

programming behind this “simple” operation.  Much of the discussion in this subsection of notes 

was given so that, as a user, you have a good understanding of what procedures are actually used 

to solve your problem… 

Iterative Methods 

As noted in the introduction to this section of Lecture Notes, for large systems of equations, an 

iterative solution scheme for the unknown vector is often used.  The iterative techniques of 

interest here are similar to the One-Point Iteration Scheme discussed in Lesson #5, but now we 

have a system of simultaneous equations instead of a single nonlinear equation.  For linear 

systems, the one point iterative formulation can always be written in the general form 

 
p 1 p  x Bx c           (32) 

where B is the iteration matrix, c is a constant vector, and p is an iteration counter.  In this 

formulation, the current estimate of the solution vector, xp, is used to get a new (hopefully better) 

estimate of the solution, xp+1. 

As you may recall, the disadvantage of one-point iteration schemes is that they are not 

guaranteed to converge (i.e. they may or may not work)  --  so the convergence properties of a 

particular scheme is of considerable interest.  In particular, for the iterative scheme given by eqn. 

(32), detailed theoretical analysis has shown that convergence is guaranteed if the largest 

eigenvalue of the iteration matrix is less that unity, where 

 = spectral radius = max  

Therefore, if  < 1 the iterative scheme will converge.  If  << 1, the iterative scheme converges 

very rapidly.  If   1 but less than unity, the scheme will be slowly converging.  The iteration 

algorithm will diverge if the spectral radius is greater than unity.  Note, however, that  is not 

normally known for large systems, but the above convergence criterion is useful for formal 

analyses and for the evaluation of the utility of various iterative schemes on model problems 

(relatively small systems). 

Since the spectral radius is only practical to compute for small test systems, convergence is 

tested in real engineering systems during the actual iterative process by computing the largest 

relative change in the solution vector from one iteration to the next, and comparing the absolute 

value of this result with some desired user-specified tolerance.  If the maximum relative change 

is less than the specified accuracy, then the process is terminated.  If this condition is not 
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satisfied, then another iteration is performed.  If the relative change continually increases from 

iteration to iteration, then the process is diverging and some alternate method or a change in 

formulation is needed. 

To illustrate the above ideas, we will discuss the so-called Gauss Seidel Method in some detail, 

since this is the most common one-point iteration scheme in use for linear systems.  To start, 

let’s take the original system of equations given by Ax = b and convert it into the classical Gauss 

Seidel iterative scheme.  To do this, we break the original matrix into three specific components, 

or  

 A = L + D + U         (33) 

where the three matrices on the right hand side, in sequence, are strictly lower triangular, 

diagonal, and strictly upper triangular matrices.  Note that the primary non-zero elements of L, 

D, and U correspond directly to the original elements of A.  For example, for a generic 33 

system, we have 

11 12 13

21 22 23

31 32 33

0 0 0 a 0 0 0 a a

a 0 0 0 a 0 0 0 a

a a 0 0 0 a 0 0 0

     
       
     

    

L D U   (34) 

 

Now, substituting eqn. (33) into the original balance expression gives 

 (L + D)x + Ux = b 

or 

 (L + D)x = b  Ux         (35) 

If we pre-multiply by (L + D)-1 and notice that the solution vector appears on both sides of the 

equation, we can write the resultant equation in an iterative form, with p as the iteration counter, 

as 

 p 1 1 p 1( (      x L D) Ux L D) b        (36) 

Clearly this is in the standard form for iterative solutions as defined in eqn. (32), where the 

iteration matrix is given by 

 B = (L + D)-1U         (37) 

and the constant vector is written as 

 c = (L + D)-1b          (38) 

This form of the iteration strategy is useful for the study of the convergence properties of model 

problems.  It is, however, not particularly useful as a program algorithm for code implement-

tation, since explicit evaluation of the inverse matrix is computationally intensive. 

For actual implementation on the computer, one writes these equations differently, never having 

to formally take the inverse as indicated above.  In practice, eqn. (35) is written in iterative form 

as  

 (L + D)xp+1 = b  Uxp 

and manipulated to give 
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 Dxp+1 = b  Lxp+1  Uxp 

or 

 xp+1 = D-1(b  Lxp+1  Uxp)        (39) 

This specific form is somewhat odd at first glance, since xp+1 appears on both sides of the 

equation.  This formulation is justified because of the special form of the strictly lower triangular 

matrix, L.  This can be seen more clearly if the matrix equations are written using discrete 

notation. 

In particular, in discrete form eqn. (39) can be expanded as 

 
i 1 n

p 1 p 1 p
i i ij j ij j

j 1 j i 1ii

1
x b a x a x

a


 

  

 
    

 
         (40) 

where the diagonal elements of D-1 are simply 1/aii and the limits associated with the summations 

account for the special structure of the L and U matrices. 

As a specific example, consider the generic 33 system shown below: 

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b

a a a x b

a a a x b

     
     


     
          

        (41) 

The iterative equations for this case can be written individually as 

  p 1 p p
1 1 12 2 13 3

11

1
x b a x a x

a

           (42a) 

  p 1 p 1 p
2 2 21 1 23 3

22

1
x b a x a x

a

           (42b) 

  p 1 p 1 p 1
3 3 31 1 32 2

33

1
x b a x a x

a

            (42c) 

Thus, if the equations are taken in sequence, all the terms on the right hand side are known, 

thereby allowing computation of a new estimate for the full solution vector in terms of the very 

latest information available for the calculation.  This is the basic idea behind the Gauss Seidel 

method. 

------------------- 

A Note about Diagonal Dominance:   

A matrix is said to be diagonally dominant if the diagonal element is greater that the absolute 

sum of all the other elements in a row  --  and this must be true for every row!  This condition 

can be stated mathematically as 

ii ij

j i

a a for all i


         (43) 
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Now, within this context, studies have shown that diagonal dominance of the original A matrix is 

a sufficient (but not necessary) condition for convergence of the Gauss Seidel method.  This 

means that, if the system is diagonally dominant, it will converge using the Gauss Seidel 

method!  However, if the system is not diagonally dominant then it may or may not converge 

(we simply do not know).   

Unfortunately, most engineering systems are not strictly diagonally dominant.  However, since 

most systems are derived from formal balance equations (where the loss terms are along the 

diagonal and the production terms appear in the off-diagonal elements), they tend to be nearly 

diagonally dominant, and these systems usually converge.  Of course, this last statement is 

purposely very vague, since every system is different, and convergence is certainly not 

guaranteed unless the A matrix is strictly diagonally dominant as indicated by eqn. (43).  

However, a general rule of thumb is that systems derived from physical balance equations 

“usually” converge using the Gauss Seidel approach  --  and this is what makes this method so 

popular  (it actually works more often than not)… 

------------------- 

Now, since the convergence properties of a system are so important, to improve the rate of 

convergence, one might consider using a weighted average of the results of the two most recent 

estimates to obtain the next best guess of the solution.  If the solution is converging, this might 

help extrapolate to the real solution more quickly.  If the solution is diverging, this might help it 

to converge.  This idea is the basis of the successive relaxation (SR) method. 

In particular, let  be some weight factor with a value between 0 and 2.   Now, let’s compute the 

next value of xp+1 to use in the Gauss Seidel method as a linear combination of the current value, 

xp+1, and the previous solution, xp, as follows: 

  p 1 p 1 p

new
1 with 0 2       x x x                (44) 

Note that if  is unity, we simply get the standard Gauss Seidel method (or whatever base 

iterative scheme is in use).  When  is greater that unity, the system is said to be over-relaxed, 

indicating that the latest value, xp+1, is being weighted more heavily (here the weight for xp is 

negative).  If, however,  is less than unity, the system is under-relaxed, this time indicating that 

the previous solution, xp, is more heavily weighted (positive weight values). 

Note that the formal iteration process using successive relaxation coupled with the Gauss Seidel 

method is given by 

      
1 1p 1 p(1 )
          x L D D U x L D b     (45) 

which is in the standard form for iterative solutions as defined in eqn. (32).  Thus, we see that the 

iteration matrix for the SR method is given by 

    
1

(1 )


    B L D D U        (46) 

Thus, eqn. (46) could be used in a formal study involving the spectral radius and the convergence 

properties of the SR method (for a small system). 

The idea, of course, is to choose the relaxation parameter to improve convergence (reduce the 

spectral radius).  In large problems, an optimum choice for  is most often estimated in a trial 
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and error fashion for certain classes of problems (since determining the spectral radius for real 

systems is not practical).  Some more advanced codes do try to estimate this quantity as part of 

the iterative calculation, although this is not particularly easy. 

To illustrate some of these concepts and how the relaxation parameter affects convergence, let’s 

implement the SR method for the same standard 33 sample problem we have discussed 

previously.  In particular, we would like to analyze the spectral radius, ,  and the convergence 

rate  --  in terms of the number of iterations needed for convergence (called k)  --  as a function 

of .  The problem to be solved is the same one that we have discussed earlier, or 

 
1

2

3

3 2 0 x 7

1 3 2 x 9

0 1 3 x 5



     
    

  
    
         

        A       x    b

 

The first step here is to implement a basic SR scheme into a Matlab function file.  This was done 

within routine sr.m, which is listed in Table 3.  This routine is a simple implementation (i.e. no 

partial pivoting) of eqns. (40) and (44).  Because no row interchanges are made internal to the 

routine, the original A matrix cannot have any zeros along the diagonal (since the 1/aii term 

would cause a divide by zero).  Thus, a check is made and an appropriate warning message is 

given if needed.  Note also that explicit variables for xp+1 and xp are not retained, and the form,   

x = x  +  , is used to update the current estimate of x based on all the best values available at 

the time.  Also, since two complete iterates of x are not available, we have chosen to evaluate 

convergence based on the maximum residual, rmax, on iteration p, which is defined as 

p p p p
maxr max | | where  r r b Ax       (47) 

In sr.m, when rmax < tol = 10-5, we say the problem has converged! 

Now, to perform the desired analyses, we start by comparing the solution given by Matlab’s 

backslash operator with the use of our sr.m function for  = 1 (i.e. the standard Gauss Seidel 

method).  At the Matlab prompt, we have 

>> clear all, format compact 

>> A = [3 -2 0;-1 3 -2;0 -1 3];  b = [-7 9 -5]'; 

>> x1 = A\b 

x1 = 

    -1 

     2 

    -1 

>> [x2,k] = sr(A,b,[0 0 0]',1.0,1.0e-5,1000) 

x2 = 

   -1.0000 

    2.0000 

   -1.0000 

k = 

    15 

 

and we see that the sr.m routine gives the correct answer (to within the convergence criterion) in 

15 iterations.  Thus, we have benchmarked the base methodology! 
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Table 3  Listing of the sr.m function file. 

 

% 

%   SR.M   Function to implement the Successive Relaxation (SR) Method 

% 

%   This routine implements a simple version of the SR method -- that is, 

%   no partial pivoting is performed.  Thus, the user must be sure to arrange 

%   the equations appropriately so that the diagonal elements do not have any zeros. 

% 

%   Inputs:  A     = n by n coefficient matrix (with nonzero diagonal elements)   

%            b     = n by 1 right-hand side vector 

%            x     = n by 1 vector containing initial guess 

%            alpha = relaxation parameter (alpha > 0) 

%            tol   = error tolerance used to terminate search 

%            M     = maximum number of iterations  

% 

%   Outputs: x = n by 1 solution vector 

%            k = number of iterations performed  

%                    

%   Note:  This file is a modified version of a similar routine from the 

%   text "Applied Numerical Methods for Engineers Using Matlab and C," by  

%   Schilling and Harris, Brooks Cole Publishing (2000). 

% 

%   File generated by J. R. White, UMass-Lowell (last review:  Nov. 2017) 

% 

      function [x,k] = sr(A,b,x,alpha,tol,M) 

% 

%   set some iteration parameters 

      k = 0;   rmax = 1; 

% 

%   check for zeros along diagonal 

      n = length(x); 

      for i = 1:n 

        if abs(A(i,i)) < 100*eps 

          disp('   WARNING:  Check A matrix for a zero along the diagonal!!!') 

          disp(' ') 

          return; 

        end 

      end 

% 

%   perform iteration 

      while (k < M && rmax >= tol) 

        for i = 1:n; 

          d = A(i,i); 

          x(i) = (1 - alpha)*x(i) + alpha*b(i)/d; 

          for j = 1:n 

            if j ~= i 

              x(i) = x(i) - alpha*A(i,j)*x(j)/d;  

            end 

          end 

        end 

        rmax = max(abs(b - A*x)); 

        k = k + 1; 

      end 

% 

%   end of function 

 

Now, to do the desired analyses, a series of computations are required and they have been 

implemented within Matlab script file srdemo_lesson6.m  --  see the code listing in Table 4.  

The program systematically solves the above 3rd order system for several values of  in the range     

0.2 <  < 1.8 and stores the number of iterations required for convergence.  In addition, for each 

value of , an explicit value for the spectral radius is computed.  Note that this task is 

straightforward conceptually, but it is very computationally intensive for large systems.  

However, for a simple 33 system, this is a rather trivial, but very informative, computation.  
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Finally, with the stored values of k and  for several values of the relaxation parameter, , we 

can create a series of plots  --  k vs. ,  vs. , and k vs.   --  and these are summarized within 

three subplots in Fig. 1. 

 

 

 

Table 4  Matlab script file to solve sample problem using the SR method. 

% 

% 

%   SRDEMO_LESSON6.M   Analyze SR Method for a Simple 3x3 System 

% 

%   This program solves a system of equations using the successive  

%   relaxation (SR) method for a range of relaxation parameters.  It also 

%   computes the spectral radius for each case.  The idea here is to 

%   illustrate several key points concerning iterative methods for the  

%   solution of linear equations (as discussed in the Lesson #6 Lecture Notes). 

% 

%   This script file calls the SR.M routine to apply the SR method. 

% 

%   File written by J. R. White, UMass-Lowell (last update:  Nov. 2017)) 

% 

      clear all,  close all,  nfig = 0; 

% 

%   define system of interest and vector of relaxation parameters 

      A = [3 -2 0;-1 3 -2;0 -1 3];  b = [-7 9 -5]'; 

      alf = 0.2:0.025:1.8;   Nalf = length(alf); 

% 

%   solve system for range of alf and save k = # of iterations to convergence 

      tol = 1e-5;   M = 1000;   k = zeros(Nalf,1); 

      for j = 1:Nalf 

        xo = zeros(size(b));  [x,k(j)] = sr(A,b,xo,alf(j),tol,M); 

      end 

% 

%   now compute the spectral radius 

      L = tril(A,-1);  D = diag(diag(A));  U = triu(A,1); 

      p = zeros(Nalf,1); 

      for j = 1:Nalf 

        B = inv(alf(j)*L + D)*((1-alf(j))*D - alf(j)*U); 

        ev = eig(B);   p(j) = max(abs(ev)); 

      end 

% 

%   plot results 

      nfig = nfig+1;   figure(nfig) 

      subplot(2,1,1), plot(p,k,'b.','LineWidth',2),grid 

      xlabel('spectral radius'),ylabel('# iterations') 

      title('SRDemo:  Results for Analysis of Convergence Rates for SR Method') 

      subplot(2,2,3), plot(alf,k,'r-','LineWidth',2),grid 

      xlabel('relaxation parameter'),ylabel('# iterations') 

      subplot(2,2,4), plot(alf,p,'g-','LineWidth',2),grid 

      xlabel('relaxation parameter'),ylabel('spectral radius') 

% 

%   end of program 
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Fig. 1  Summary results for the SR demonstration example. 

 

As apparent, we see that the optimum relaxation parameter for this problem is near  = 1.15.  At 

this point, it takes only 9 iterations to converge (recall that the base Gauss Seidel method with    

 = 1.0 took 15 iterations).  We also see that, as expected, the spectral radius has a minimum at 

the optimum .  Finally, in the upper subplot, we see that there is a direct relationship between 

convergence rate and spectral radius  --  with increased convergence rate (smaller # of iterations) 

with decreasing .  This is all quite consistent with expected trends, and this example shows 

quite vividly the usual behavior associated with iterative methods for solving linear equation.  

Unfortunately, however, most realistic analyses have many thousands of equations and the 

spectral radius is usually much closer to unity  --  which leads to much slower convergence rates 

and significantly increased computational times.  Thus, finding a near optimum relaxation 

parameter, although not easy to do, is usually quite advantageous in larger more realistic 

applications.  Although the methods used in this example are not practical in large more-realistic 

systems, they do allow us to illustrate many of the concepts discussed above! 

A variety of schemes for improving convergence have been developed over the years, with many 

taking advantage of the particular structure of the algebraic equations or some characteristic of 

the physical system under study.  The specifics of these algorithms are beyond the scope of this 

introductory treatment of the subject, but the interested student is encouraged to see a good text 

on advanced numerical methods for further details as desired. 
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Solution Techniques for Nonlinear Systems 

In general, nonlinear equations are much more difficult to solve relative to linear equations.  In 

all cases, the various techniques that are available involve some form of iteration, where a 

current guess is used to get a new (hopefully better) estimate of the solution.  In many cases, the 

success of a particular method is sensitive to the starting guess and, because nonlinear equations 

can have multiple solutions, a different starting point can lead to a different solution.  In all, the 

user must invest more thought, effort, and care when dealing with a system of nonlinear 

equations  --  whereas, for linear systems, a simple x = A\b is all that is needed in most cases! 

To illustrate some of the issues and techniques associated with nonlinear equations we will 

modify our 33 linear example from the previous section to include several nonlinear terms, and 

then we will go about solving these equations using several methods. 

To start, let’s consider our previous linear example: 

Linear Example: 

1 23x 2x 7            (48a) 

1 2 3x 3x 2x 9             (48b) 

2 3x 3x 5             (48c) 

Now, let’s arbitrarily modify this case with the addition of a few nonlinear terms, as follows: 

Nonlinear Example: 

2
1 23x 2x 7            (49a) 

1 2 2 3x x 3x 2x 9             (49b) 

2 3 3x x 3x 5             (49c) 

Our goal is to solve this set of equations for the solution vector x = [x1  x2  x3]
T. 

First we should note that there is no simple way to know if a solution even exists and, if there are 

solutions, how many are there?  To illustrate this point, let’s work with eqn. (49) a little.  In 

particular, solving eqn. (49a) for x1 and eqn. (49c) for x3 gives 

2
2

1 3

2

7 2x 5
x and x

3 3 x

  
 


     (50) 

Now, putting these expressions into eqn. (49b) gives 

2
2

2 2

2

7 2x 5
x 3x 2 9

3 3 x

     
      

  
 

or 

      2
2 2 2 2 2 27 2x 3 x x 9x 3 x 30 27 3 x             (51) 

which clearly shows that x2 can be found by determining the roots of a 4th order polynomial. 
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In general, a 4th order polynomial has four roots, but these are not necessarily real valued.  In 

fact, the possible combinations are: 4 real roots, 2 real roots and a pair of complex conjugate 

roots, or two pairs of complex conjugate roots (i.e. no real roots).  Thus, if we focus only on the 

real solutions to eqn. (49), this analysis says that we should expect four, two, or no solutions to 

the original nonlinear equations. 

Well, further manipulation of eqn. (51) shows that there are two real roots for the particular set 

of coefficients in the current problem and, upon substitution into eqn. (50), we get two real 

solutions to the original nonlinear system: 

1 2

1.80843 5.20859

0.887328 and 3.36346

2.36667 0.785736

   
     
   
    

x x  

These represent analytical solutions to the system of three nonlinear equations.  However, for a 

large system of nonlinear equations, the above analytical manipulations are not practical, so we 

need to develop some numerical techniques for solving general problems of this type  --  that is, 

problems of the form 

 f(x) = 0          or          A(x) x = b(x)       (52) 

Linearized Iteration Method 

We have already noted that the matrix formulation [2nd form in eqn. (52)], where the A and b 

coefficient matrices are expressed as functions of the solution vector x, can be easily written in 

iterative form as 

A(xk) xk+1 = b(xk)         (53) 

With this iterative strategy, the current estimate of the solution, xk, is used to estimate the 

coefficient matrices, A(xk) and b(xk), and then these are used to write a linear system (with 

known A and b) that can be solved for a new estimate of the solution vector, xk+1.  This basic 

idea is referred to as the Linearized Iteration Method or the Successive Substitution Method.  

Our sample problem, given by eqn. (49), can be expressed in this fashion with different matrix 

representations.  Two obvious choices are 

   Form #1:     

k k 1
2 1

k k 1
2 2

k k 1
3 3

3 2x 0 x 7

x 3 2 x 9

50 x 3 x







     
            

        

      (54a) 

   Form #2:     

k k 1
2 1
k k 1
1 2

k k 1
2 3

3 2x 0 x 7

0 3 x 2 x 9

50 0 3 x x







     
            

        

      (54b) 

With a known estimate of the solution vector xk, the A matrix can be evaluated, and the resultant 

“linear equations” can be easily solved for xk+1.  The process is continued with successive 

substitution of the new estimate, to compute a better estimate, etc. until the maximum relative 

change in two successive estimates is less than some specified tolerance (here tol = 10-5). 
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This scheme was implemented in Matlab script file nldemo1_lesson6.m (see Table 5).  The code 

asks the user to select the form of eqn. (54) to use and to input an initial guess for x2  --  with x2 

we can then compute initial values of x1 and x3 via eqn. (50).  With the matrix formulation and 

initial solution vector fixed, the code simply executes the above algorithm, giving intermediate 

edit along the way (so that we can monitor the progress of the iterative process). 

 

Table 5  Listing of the nldemo1_lesson6.m file (uses the Linearized Iteration Method). 

% 

%   NLDEMO1_LESSON6.M  Solve nonlinear demo using the linearized iteration method 

% 

%   This file computes the solution for a 3rd order nonlinear system via 

%   the linearized iteration (successive substitution) method.  In this method,  

%   the coefficient matrix is a function of the solution vector.  However, with  

%   a given guess for x, A(x) can be determined, and the solution of a linear  

%   system, A(x) * x = b, can be obtained.  This process is continued until  

%   convergence (or we hit the max number of iterations). 

% 

%   Note that NLDEMO2 and NLDEMO3... solve this same problem using different methods. 

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

 

      clear all;   close all;   nfig = 0; 

% 

%   set reasonable initial guess  

      x2 = input(' input a guess for x2: ');   

      if x2 == 3, x2 = 3.001; end   % don't allow x2 = 3 as guess 

      x1 = (-7+2*x2*x2)/3;          % satisfies eqn. 1 

      x3 = -5/(3-x2)  ;             % satisfies eqn. 3 

      xold = [x1 x2 x3]';      

%    

%   select eqn form (there were two obvious forms for A(x)) 

      form = menu('Select Equation Form', ... 

                  '        Form #1        ', ... 

                  '        Form #2        '); 

% 

%   start iteration loop 

      itmax = 30;   it = 0;   tol = 1e-5;   emax = 1;   n = length(xold); 

      fprintf(1,'\n Intermediate edit for NLDemo1 (Form #%1i) \n',form); 

      while emax > tol && it <= itmax 

        it = it+1;   

        x = xold; 

%    

%   set up A and b matrices given current guess and solve for new solution vector 

        switch form 

          case 1 

            A = [  3    -2*x(2)     0;          % coefficient matrix (form #1)  

                 -x(2)     3       -2; 

                   0      -x(3)     3]; 

          case 2 

            A = [  3    -2*x(2)     0;          % coefficient matrix (form #2) 

                   0     3-x(1)    -2; 

                   0       0       3-x(2)]; 

        end 

        b = [-7 9 -5]';                         % RHS vector (constant for this case) 

        xnew = A\b;                             % find solution vector 

% 

%   calc & edit error (intermediate results) 

        emax = max(abs((xnew-xold)./xnew)); 

        fprintf(1,'  it = %3d      max error = %8.3e \n',it,emax); 

        fprintf(1,'      xnew         xold     \n'); 

        for j = 1:n 

          fprintf(1,' %10.5f   %10.5f    \n',xnew(j),xold(j)); 

        end 

% 
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        xold = xnew;  % use current estimate as guess for next iteration 

      end 

% 

%   print final max relative error and iteration count 

      fprintf(1,'\n Number of iterations to convergence = %3d\n',it); 

      fprintf(1,' Max relative error at convergence =  %8.3e\n',emax); 

      if it >= itmax  

        fprintf(1,' ***** WARNING  --  Hit max number of iterations!!!  *****\n'); 

      end 

% 

%   end of file 

 

Selected code output for o
2x 1.0  with Form #1 [eqn. (54a)] is: 

>> nldemo1_lesson6 

 input a guess for x2: 1.0 

 

 Intermediate edit for NLDemo1 (Form #1)  

  it =   1      max error = 2.000e-01  

      xnew         xold      

   -1.77778     -1.66667     

    0.83333      1.00000     

   -2.36111     -2.50000     

  it =   2      max error = 7.960e-02  

      xnew         xold      

   -1.83033     -1.77778     

    0.90541      0.83333     

   -2.37925     -2.36111     

  it =   3      max error = 2.912e-02  

      xnew         xold      

   -1.80229     -1.83033     

    0.87979      0.90541     

   -2.36441     -2.37925     

 

     Deleted some output for brevity 

 

  it =  10      max error = 3.507e-05  

      xnew         xold      

   -1.80844     -1.80841     

    0.88734      0.88731     

   -2.36668     -2.36666     

  it =  11      max error = 1.335e-05  

      xnew         xold      

   -1.80843     -1.80844     

    0.88732      0.88734     

   -2.36667     -2.36668     

  it =  12      max error = 5.102e-06  

      xnew         xold      

   -1.80843     -1.80843     

    0.88733      0.88732     

   -2.36667     -2.36667     

 

 Number of iterations to convergence =  12 

 Max relative error at convergence =  5.102e-06 

 

 

and similar output for 
o
2x 1.0  with Form #2 [eqn. (54b)] is: 

>> nldemo1_lesson6 

 input a guess for x2: 1.0 

 

 Intermediate edit for NLDemo1 (Form #2)  

  it =   1      max error = 1.667e-01  
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      xnew         xold      

   -1.76190     -1.66667     

    0.85714      1.00000     

   -2.50000     -2.50000     

  it =   2      max error = 7.143e-02  

      xnew         xold      

   -1.81333     -1.76190     

    0.91000      0.85714     

   -2.33333     -2.50000     

  it =   3      max error = 3.910e-02  

      xnew         xold      

   -1.80204     -1.81333     

    0.87576      0.91000     

   -2.39234     -2.33333     

 

     Deleted some output for brevity 

 

  it =  15      max error = 3.106e-05  

      xnew         xold      

   -1.80843     -1.80844     

    0.88732      0.88735     

   -2.36669     -2.36664     

  it =  16      max error = 1.720e-05  

      xnew         xold      

   -1.80844     -1.80843     

    0.88733      0.88732     

   -2.36666     -2.36669     

  it =  17      max error = 9.527e-06  

      xnew         xold      

   -1.80843     -1.80844     

    0.88733      0.88733     

   -2.36668     -2.36666     

 

 Number of iterations to convergence =  17 

 Max relative error at convergence =  9.527e-06 

 

 

Here we see that both formulations converge to the correct solution, x1, but that the 2nd form 

takes a few more iterations to converge (17 vs. 12 iterations). 

In an attempt to converge to the second solution, x2, a sequence of new initial guesses was made 

with 
o
2x  becoming closer and closer to the analytical result of x2 = -3.36346.  In all cases, 

however, the code converged to x1 instead of x2.  Only when 
o
2x  was set to the actual analytical 

result to within the specified convergence criterion did the second solution x2 emerge. 

The behavior observed here is typical of arbitrary one-point or fixed-point iteration schemes as 

implemented in this example.  The setup and solution strategy are relatively straightforward, but 

the iterative scheme is not guaranteed to converge and, when it does, there is no way to predict 

what solution will be found (if multiple solutions exist).  Usually, if the initial guess is close to 

the actual solution, the iterative strategy will converge to that solution vector  --  however, as we 

have seen here, this is not always the case.  Also, because the selection of A(x) is not unique in a 

given problem (here we had two obvious choices and others are available), different formulations 

can result  --  and these can often have significantly different convergence properties (even to the 

point where one formulation may converge and another diverge).  Thus, the variability and 

unpredictability of the linearized iteration strategy make this technique difficult to use within a 

general-purpose nonlinear equation solver.  However, when applied on a case-specific basis for a 
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given problem, it can often be tailored to be an effective, easy-to-use solution methodology.  

This solution method is certainly not applicable for every case but, in my experience over the 

years, I have found the linearized iteration approach to be quite effective for many practical 

engineering problems that involve a system of mildly nonlinear equations (see the solution to 

Motivation Problem #3 and the parallel_flow_1 Case Study, for example).  Thus, the linearized 

iteration method is one technique that you should put in your toolbox for use as one possible 

option for solving nonlinear problems… 

Newton’s Method 

Probably the most common one-point approach for solving nonlinear equations is Newton’s 

Method.  We are already familiar with this technique for a single equation from our discussions 

in Lesson #5.  By way of review for a single nonlinear equation, we start with a Taylor series 

expansion for the function at the point xi+1 written in terms of the function and its derivatives 

evaluated at point xi, or 

  2
i 1 i i i 1 if (x ) f (x ) f '(x ) x x O(h )           (55) 

where O(h2) says that the truncation error will be “on the order of h2,” with h = xi+1 – xi.  Now, 

we drop the error term and solve eqn. (55) for xi+1 and set f(xi+1) = 0, since the goal here is to 

estimate the value of x such that f(x) = 0.  Doing this gives 

1
i 1 i i ix x f '(x ) f (x )
           (56) 

which is the iteration equation for Newton’s method for the case of a single nonlinear equation. 

Now, of interest here, is finding the solution vector x to a system of coupled nonlinear equations 

written in the form f(x) = 0  --  that is, what is x such that f(x) = 0?  This is essentially the same 

problem as described above except we now have n nonlinear equations and n unknowns.  Thus, 

we can perform the same type of manipulations as above, as long as we are careful with the 

notation and treatment of the Taylor series for the case of n independent variables.  In particular, 

we can write the Taylor series expansion for each function, as 

   

 

i i

i

1 1
1 i 1 1 i 1,i 1 1,i 2,i 1 2,i

1 2
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   

 

i i

i

2 2
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etc.  for n equations… 

Using summation notation to treat the n first-derivative terms for the kth function, fk(x), we can 

generalize the above expressions, as follows: 
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 
i

n
k

k i 1 k i ,i 1 ,i

1

f ( )
f ( ) f ( ) x x

x
 




  




x

x
x x       (57) 

where we have truncated the 2nd and higher order terms (for convenience and since, in practice, 

we only keep up through the 1st order terms). 

Now, the second term on the right hand side of eqn. (57) looks like a matrix times a vector  --  

recall that w = Az is written in discrete form as  

k kw a z           (58) 

Therefore, defining the Jacobian matrix, J(x), as 

kf ( )
( )

x

 
  

 

x
J x          (59) 

and the increment vector on the ith step, hi, as 

i i 1 i ,i 1 ,ix x      h x x         (60) 

eqn. (57) becomes 

i
i 1 i i( ) ( ) ( )  

x
f x f x J x h         (61) 

where we note that the Jacobian matrix is evaluated at state i (i.e. with vector xi). 

This matrix equation is of the same form as eqn. (55) for a single nonlinear function f(x).  As 

before, we solve eqn. (61) for xi+1 and set f(xi+1) = 0, since this represents the next estimate of the 

vector x such that f(x) = 0.  Doing this gives 

i
i i( ) ( ) 

x
J x h f x          (62) 

or 

i i
i 1 i i i i iwhere ( ) ( ) ( ) \ ( )      

-1

x x
x x h h J x f x J x f x    (63) 

where the last equality uses Matlab’s backslash operator to actually solve for the increment in the 

x vector on step i (instead of using the matrix inverse operator  --  since we know that the LU 

decomposition procedure embedded within the backslash operation is much more efficient than 

taking the formal matrix inverse). 

Well, eqn. (63) represents the iteration equation for Newton’s method for a system of nonlinear 

equations.  One starts with an initial guess x1 for the full vector of unknowns, computes the 

function f(x) and Jacobian J(x) evaluated at the current guess, and then calculates h1 and x2 via 

eqn. (63).  The solution vector x2 is then used to compute x3, x3 is used to compute x4, etc. until 

the maximum relative change in successive iterates is less than some specified convergence 

criterion. 

To demonstrate Newton’s method, the above solution algorithm was implemented within Matlab 

script file nldemo2_lesson6.m (see Table 6) for the same problem solved previously with the 

linearized iteration method.  The basic code setup is similar to the nldemo1_lesson6.m code 



Applied Engineering Problem Solving  --  Solution of Linear and Nonlinear Equations 

Lecture Notes for Applied Engineering Problem Solving  

by Dr. John R. White, UMass-Lowell  (November 2017) 

32 

discussed previously (see Table 5 in previous subsection); however, within the iteration loop, we 

must compute f(xi) and J(xi) at each step before actually solving eqn. (63).  These expression are 

given explicitly as 

2
1 1 2f ( ) 3x 2x 7  x          (64a) 

2 1 2 2 3f ( ) x x 3x 2x 9    x         (64b) 

3 2 3 3f ( ) x x 3x 5   x         (64c) 

and 

1 1 1

1 2 3
2

2 2 2
2 1

1 2 3
3 2

3 3 3

1 2 3

f f f

x x x
3 4x 0

f f f
( ) x x 3 2

x x x
0 x x 3

f f f

x x x

   
 
     
               

     
   
    

J x     (65) 

where the components of the x vector represent the current values at stage i. 

 

Table 6  Listing of the nldemo2_lesson6.m script file (uses Newton’s Method). 

% 

%   NLDEMO2_LESSON6.M     Solve nonlinear demo using Newton's method 

% 

%   This file computes the solution for a 3rd order nonlinear system via 

%   Newton's method.  This method requires explicit evaluation of the nonlinear 

%   function and the matrix of first partial derivatives (Jacobian matrix).  With  

%   a given guess for x, f(x) and J(x) can be determined, and the solution of a   

%   linear system, J(x) * h = f(x), can be obtained to find the next estimate,  

%   x_i+1 = x_i - h .  This process is continued until convergence (or we hit the  

%   max number of iterations). 

% 

%   Note that NLDEMO1 and NLDEMO3... solve this same problem using other methods... 

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

       

      clear all;   close all;   nfig = 0; 

% 

%   set a reasonable initial guess  

      x2 = input(' input a guess for x2: ');   

      if x2 == 3, x2 = 3.001; end   % don't allow x2 = 3 as guess 

      x1 = (-7+2*x2*x2)/3;          % satisfies eqn. 1 

      x3 = -5/(3-x2)  ;             % satisfies eqn. 3 

      xold = [x1 x2 x3]';      

% 

%   start iteration loop 

      itmax = 30;   it = 0;   tol = 1e-5;   emax = 1;   n = length(xold); 

      fprintf(1,'\n Intermediate edit for NLDemo2  \n'); 

      while emax > tol && it <= itmax 

        it = it+1;    

        x = xold; 

%  

%   compute function vector using xold 

        f = [3*x(1)-2*x(2)*x(2)+7; 

              -x(1)*x(2)+3*x(2)-2*x(3)-9; 

              -x(2)*x(3)+3*x(3)+5]; 

% 
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%   compute Jacobian matrix evaluated at xold 

        J = [  3    -4*x(2)     0; 

             -x(2)  -x(1)+3    -2; 

               0     -x(3)   -x(2)+3]; 

% 

%   compute xnew 

        xnew = xold - J\f; 

% 

%   calc & edit error (intermediate results) 

        emax = max(abs((xnew-xold)./xnew)); 

        fprintf(1,'  it = %3d      max error = %8.3e \n',it,emax); 

        fprintf(1,'      xnew         xold     \n'); 

        for j = 1:n 

          fprintf(1,' %10.5f   %10.5f    \n',xnew(j),xold(j)); 

        end 

% 

        xold = xnew;  % use current estimate as guess for next iteration 

      end 

% 

%   print final max relative error and iteration count 

      fprintf(1,'\n Number of iterations to convergence = %3d\n',it); 

      fprintf(1,' Max relative error at convergence =  %8.3e\n',emax); 

      if it >= itmax  

        fprintf(1,' ***** WARNING  --  Hit max number of iterations!!!  *****\n'); 

      end 

% 

%   end of file 

 

The code outputs from nldemo2_lesson6 with o
2x 1.0  and o

2x 2.0   are shown below: 

>> nldemo2_lesson6 

 input a guess for x2: 1.0 

 

 Intermediate edit for NLDemo2   

  it =   1      max error = 1.290e-01  

      xnew         xold      

   -1.81905     -1.66667     

    0.88571      1.00000     

   -2.35714     -2.50000     

  it =   2      max error = 5.868e-03  

      xnew         xold      

   -1.80844     -1.81905     

    0.88733      0.88571     

   -2.36666     -2.35714     

  it =   3      max error = 3.397e-06  

      xnew         xold      

   -1.80843     -1.80844     

    0.88733      0.88733     

   -2.36667     -2.36666     

 

 Number of iterations to convergence =   3 

 Max relative error at convergence =  3.397e-06 

 

 

 

>> nldemo2_lesson6 

 input a guess for x2: -2.0 

 

 Intermediate edit for NLDemo2   

  it =   1      max error = 1.233e+01  

      xnew         xold      

   14.84314      0.33333     

   -7.44118     -2.00000     

    0.08824     -1.00000     

  it =   2      max error = 1.193e+00  
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      xnew         xold      

    8.30225     14.84314     

   -4.79255     -7.44118     

   -0.45649      0.08824     

  it =   3      max error = 4.260e-01  

      xnew         xold      

    5.82192      8.30225     

   -3.67252     -4.79255     

   -0.70725     -0.45649     

  it =   4      max error = 1.095e-01  

      xnew         xold      

    5.24733      5.82192     

   -3.38438     -3.67252     

   -0.77988     -0.70725     

  it =   5      max error = 7.407e-03  

      xnew         xold      

    5.20878      5.24733     

   -3.36357     -3.38438     

   -0.78570     -0.77988     

  it =   6      max error = 4.091e-05  

      xnew         xold      

    5.20859      5.20878     

   -3.36346     -3.36357     

   -0.78574     -0.78570     

  it =   7      max error = 1.110e-09  

      xnew         xold      

    5.20859      5.20859     

   -3.36346     -3.36346     

   -0.78574     -0.78574     

 

 Number of iterations to convergence =   7 

 Max relative error at convergence =  1.110e-09 

 

 

Clearly the 1st case converged to the x1 result and the 2nd case converged on the x2 solution 

vector from the analytical work discussed previously (see page 26).  Notice also that both 

solutions converged quite quickly, with only 3 and 7 iterations, respectively (much faster, in 

general, than the linearized iteration method).  Thus, for this case, Newton’s method was 

relatively simple to implement and it works quite nicely!!! 

One of the disadvantages of Newton’s method is the need for explicit evaluation of the Jacobian 

matrix  --  since, in many situations, this is not easy to compute.  In these cases, we simply 

estimate the matrix of partial derivatives using a finite difference method (recall the discussion of 

the Secant Method in Lesson #5…).  A good example of doing this is given in the Case Study in 

Section 12.3 in your numerical methods text by Chapra  --  you should definitely check it out if 

you have not already done so… 

Matlab’s fsolve Function 

Before leaving this section on nonlinear equations, we should note that Matlab has several built-

in functions for the solution of constrained and unconstrained nonlinear equations (many of these 

are associated with the Optimization Toolbox).  One of the most often used functions for the 

solution of a set of unconstrained nonlinear equation is the fsolve function.  Although the details 

of the methods implemented within fsolve are beyond the scope of this introductory course, the 

function is actually relatively easy to use  --  based only on the knowledge and insight gained 

from our discussions in the previous subsections.  The user must supply a function file to 

evaluate f(x) for any given solution guess x and, on option, one can either provide explicit code 
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to compute the Jacobian or let the code generate it internally using a finite difference 

approximation [via multiple calls to the user file that evaluates f(x) for any x]  --  the reader is 

encouraged to type help fsolve in Matlab’s command window to obtain further information… 

The best way to illustrate the use of fsolve is to use it within the context of a familiar example  --  

the same 33 nonlinear sample problem as solved previously.  In particular, Table 7 gives a 

listing of the program nldemo3_lesson6.m.  In this case, fsolve does all the iterative calculations 

(which are hidden from the user) using the user-defined anonymous function that simply 

evaluates the nonlinear equations of interest [eqn. (64) for this example].  The default option is to 

compute the Jacobian internally, and this selection was retained here  --  thus, keeping things 

very simple for the user.   

As before we show the Matlab abbreviated output obtained with two different initial guesses: 

>> nldemo3_lesson6 

input a guess for x2: 1.0 

 

 Solution edit for NLDemo3   

    x(1) =   -1.80843     

    x(2) =    0.88733     

    x(3) =   -2.36667     

 

 

 

>> nldemo3_lesson6 

input a guess for x2: -2.0 

 

 Solution edit for NLDemo3   

    x(1) =    5.20859     

    x(2) =   -3.36346     

    x(3) =   -0.78574     

 

 

Thus, with relatively little effort, we have solved the given nonlinear problem with the same 

results as computed previously.  Personally, when I have a need to solve unconstrained 

nonlinear problems, Matlab’s fsolve function is the method of choice for me… 

 

Table 7  Solution of sample nonlinear problem using Matlab’s fsolve command. 

% 

%   NLDEMO3_LESSON6.M  Solve nonlinear demo using Matlab's fsolve function 

% 

%   This file computes the solution for a 3rd order nonlinear system using  

%   Matlab's built-in fsolve function.   

%    

%   Note that NLDEMO1 and NLDEMO2... solve this same problem using other methods... 

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

 

      clear all;   close all;   nfig = 0; 

% 

%   set reasonable initial guess  

      x2 = input('input a guess for x2: ');   

      if x2 == 3, x2 = 3.001; end   % don't allow x2 = 3 as guess 

      x1 = (-7+2*x2*x2)/3;          % satisfies eqn. 1 

      x3 = -5/(3-x2)  ;             % satisfies eqn. 3 

      xo = [x1 x2 x3]';    

      n = length(xo); 

% 
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%   call fsolve and edit solution 

      fx = @(x) [3*x(1)-2*x(2)*x(2)+7; 

                 -x(1)*x(2)+3*x(2)-2*x(3)-9; 

                 -x(2)*x(3)+3*x(3)+5]; 

      x = fsolve(fx,xo); 

      fprintf(1,'\n Solution edit for NLDemo3  \n'); 

      for j = 1:n 

        fprintf(1,'    x(%1i) = %10.5f    \n',j,x(j)); 

      end 

% 

%   end of file 

 

Solution of the Motivation Problems 

Now that we have reviewed several basic methods for solving linear and nonlinear equations, we 

should be able to solve the problems presented earlier to motivate the need for such techniques.  

In particular, several Matlab script and function files were written to solve the three problems 

posed earlier.  Each problem is briefly discussed in the following subsections (please refer back, 

as needed, to the problem descriptions given at the beginning of this lesson): 

Problem 1 Solution 

This problem deals with a 4-loop resistive circuit where we want to compute the current in each 

of the four loops.  Kirchoff’s voltage law leads to a series of four linear equations that we wrote 

in standard matrix form in eqns. (7) and (8) on page 3 of this lesson.  To solve a problem of this 

type, we simply specify the particular resistor and voltage values, set up the A and b coefficient 

matrices, solve the linear system using Matlab’s backslash operator (i.e. x = A\b), and then edit 

the results of the problem.  This sequence of steps was coded into the resistive_networks0.m 

file as given in Table 8.   

The screen output from running resistive_networks0 is given below: 

>> resistive_networks0 

 

  Results for Resistive Networks #0  

   --> Current  I1 =  -1.35465 ma   

   --> Current  I2 =  -1.02740 ma   

   --> Current  I3 =  -1.26321 ma   

   --> Current  I4 =  -0.78963 ma   

 

Thus, all the currents are negative (meaning that they really move opposite to the assumed 

direction as shown in the sketch on page 3). 

 

Table 8  Listing of the program to solve Problem 1. 

% 

%   RESISTIVE_NETWORKS0.M    Find the current in a particular resistive network 

% 

%   A particular resistive network is given along with the applied voltages.  The   

%   goal here is simply to determine the currents in each path within the circuit. 

% 

%   File prepared by J. R. White, UMass-Lowell  (last update:  Nov. 2017) 

% 

  

      clear all,   close all 

% 

%   define model parameters (note that resistance is given in kohms and voltage 

%   in volts, so the current will be in milliamps -- I = V/R) 

      R1 = 1;  R2 = 3.5;  R3 = 4;  R4 = 1.75;  R5 = 1 ;   
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      R6 = 1;  R7 = 2;  R8 = 1.5;  R9 = 5; 

      V1 = 5;  V2 = 5;  V3 = 2.5;  V4 = 2;  V5 = 5; 

% 

%   set up coefficient matrices (see development in Notes) 

      A = [ (R1+R2)    -R2    0    0 

             -R2   (R2+R3+R4+R5)   0   -R5; 

              0          0      (R6+R7+R8)   -R8; 

              0         -R5        -R8     (R5+R8+R9)]; 

      b = [V3-V1; -V2; -V3-V4; V4-V5]; 

% 

      I = A\b;   %   solve linear system 

% 

%   edit results 

      fprintf('\n  Results for Resistive Networks #0 \n '); 

      for i = 1:length(I) 

        fprintf('  --> Current  I%1i =  %8.5f ma  \n ',i,I(i)); 

      end 

% 

%  end of problem 

 

Problem 2 Solution 

Problem 2 deals with the geometry of a parabolic fin.  The goal here is to compute the surface 

area of the fin as a function of the fin’s length (since the amount of heat transfer is related to the 

heat transfer surface area).  The expression for y(r), which defines the coordinates of the outer 

surface of the fin, along with three geometry constraints, lead to a system of three linear 

equations for the equation constants in the y(r) expression  --  and these are a function of the fin 

length, L.  Once the coefficients that define y(r) are known, an integral expression can be 

evaluated to determine the fin surface area for each length.  A sketch of the fin geometry and all 

the pertinent equations for this problem were developed on pages 4 and 5 of these notes (please 

review these as needed).  Our job now is to actually solve the problem and to present the results. 

In particular, the following algorithm was implemented into the parabolic_fin1.m code (see 

Table 9 for the code listing): 

1. Set up basic problem parameters (Ro, H, h, and range of L values) 

2. Loop over number of L values 

a. Setup coefficient matrices as defined in eqn. (12) on page 5 

b. Solve system of equations to find the a1, a2, and a3 coefficients for the y(r) expression 

c. Use integral to evaluate the fin’s surface area via eqn. (15) on page 5 

3. Plot and tabulate the key results [i.e. y(r) and A for several L values]  

The parabolic_fin1 code follows the above algorithm quite closely and it has lots of comments 

for good internal documentation  --  thus, it is relatively easy to follow the code logic that was 

needed to solve this problem.  Concerning the subject of this Lesson  --  the solution of linear 

equations  --  we simply used the x = A\b command to accomplish this step of the algorithm, and 

you should be quite comfortable by now with using Matlab’s backslash operator for this purpose.  

Although the use of the integral routine to perform the numerical integration is new, a quick 

help integral in the Matlab command window will explain how this function is used  --  it is 

really pretty simple to use and we will elaborate on the actual methods used within numerical 

integration routines like integral in Lesson #8 (if time permits).  Note that, since the expression 

for the integrand was quite simple, we used an anonymous Matlab function to define this 

quantity (instead of writing a separate function file).   
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For the code output, the fprintf command was used to get a short table of results that summarize 

the equation constants and the fin surface area versus fin length.  Finally, in making the plot of 

the fin geometry, we took a few extra steps to plot both positive and negative y(r) values, as well 

as the vertical lines at the end of the fins (Matlab’s hold on and hold off commands were used 

here).  This was done so that the fin geometries are easier to visualize.   

 

Table 9  Listing of the program to solve Problem 2. 

% 

%   PARABOLIC_FIN1.M    Find the surface area of a parabolic fin 

% 

%   Assume that a parabolic fin has a shape described by 

%       y = a1 + a2*r + a3*r^2 

%   and it must satisfy three constraints 

%      y(Ro) = H/2,   y(Ro+L) = h/2,   and   dy/dr at Ro+L = 0 

%   These three constraints can be used to find the equation coefficients 

%   for each value of L. 

% 

%   Once these are known, one can evaluate the following expression for the  

%   surface area of the fin for each L: 

%      A = 2*top surface area + tip area 

%      A = 4*pi* int (r*sqrt(1+(a2+2*a3*r)^2) dr  +  2*pi*(Ro+L)*h 

%   The integral goes from Ro to Ro+L.  We will use the built-in integral routine  

%   to do these integrals.  An anonymous function, f(r), is used to define the 

%   integrand for the integration. 

% 

%   Finally, a plot and summary table of results are generated to describe 

%   the fin's geometry versus length. 

% 

%   File prepared by J. R. White, UMass-Lowell  (last update:  Nov. 2017) 

% 

  

      clear all,   close all 

% 

%   model constants 

      Ro = 5;      % cylindrical tube's outside radius (cm) 

      H = 6;       % height of fin at base of cylindrical tube (cm) 

      h = 1;       % height of fin at the tip (cm) 

% 

%   loop over different values of fin length, L 

      L = 2:2:10;   NL = length(L);   % set vector of fin lengths (cm) 

      Sarea = zeros(1,NL);            % initialize storage for surface area 

      Coeff = zeros(3,NL);            % initialize storage for coeff vector 

      for i = 1:NL 

%   

%   set up coeff matrices and solve resultant linear system 

        RoL = Ro + L(i); 

        A = [1   Ro   Ro^2; 1   RoL   RoL^2; 0   1  2*RoL];    b = [H/2  h/2  0]'; 

        x = A\b;    Coeff(:,i) = x;  % store solution vector for ith length 

% 

%   find surface area for given L 

        a2 = x(2);   a3 = x(3); 

        f = @(r) r.*sqrt(1 + (a2 + 2*a3*r).^2); % anonymous function for use in integral 

        Sarea(i) = 4*pi*integral(f,Ro,RoL) + 2*pi*RoL*h; % compute integral to find area 

      end 

% 

%   plot and tabulate results 

      fprintf('\n  Parabolic_Fin1:  Summary Data for Geometry of Parabolic Fin \n\n'); 

      fprintf('   Length (cm)     a1            a2            a3     Surface Area (cm^2) \n'); 

      for i = 1:NL 

        fprintf('  %6.2f    %12.3e  %12.3e  %12.3e    %13.4e  \n ',L(i),Coeff(:,i),Sarea(i)); 

      end 

% 

      style  = ['r- ';'b--';'g-.';'c: ';'m- '];  % 5 different plot styles 

      for  i = 1:NL 

        r = linspace(Ro,Ro+L(i),20);  % need a new r vector for each length, L 
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        y = Coeff(1,i) + Coeff(2,i)*r + Coeff(3,i)*r.^2; 

        plot(r-Ro,y,style(i,:),'LineWidth',2),hold on          % plots +y(r) 

        plot(r-Ro,-y,style(i,:),'LineWidth',2)                 % plots -y(r) 

        plot([L(i) L(i)],[-h/2 h/2],style(i,:),'LineWidth',2)  % plots vertical end 

      end 

      axis equal; grid % use axis equal to display proper aspect ratio for real geometry 

      title('Shape of Parabolic Fin for Several Fin Lengths') 

      xlabel('position along fin (cm)'),ylabel('axial position (cm)') 

      for i=1:NL,  text(L(i)-1.35,0.25,['L = ',num2str(L(i)),' cm']);   end 

% 

%  end of problem 

 

 

The graphical output from parabolic_fin1 is shown in Fig. 2 and the tabular output is given 

below: 

  Parabolic_Fin1:  Summary Data for Geometry of Parabolic Fin  

 

   Length (cm)     a1            a2            a3     Surface Area (cm^2)  

     2.00       3.113e+01    -8.750e+00     6.250e-01       2.8914e+02   

     4.00       1.316e+01    -2.813e+00     1.563e-01       4.7515e+02   

     6.00       8.903e+00    -1.528e+00     6.944e-02       7.2456e+02   

     8.00       7.102e+00    -1.016e+00     3.906e-02       1.0301e+03   

    10.00       6.125e+00    -7.500e-01     2.500e-02       1.3889e+03   

 

 

 

Fig. 2  Fin geometry versus fin length. 
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Note that, although there are no real surprises here (i.e. everything behaves as expected), this was 

not a particularly easy problem to solve.  I have given this problem several times as a homework 

assignment in previous years and many students had lots of difficulty  --  some with the 

integration routine, some with the plots, some with the use of the fprintf function, and some with 

the looping structure needed to parameterize the fin length.  Thus, since previous students had so 

much difficulty, I decided to convert this problem into a demonstration problem instead of a HW 

assignment.  Thus, you should take advantage to this change and make sure you have a good 

understanding of both the solution algorithm and the actual Matlab code needed to solve this 

problem  --  since you may see something similar in your HW assignment for this lesson!!! 

Problem 3 Solution 

In contrast to the first two motivation problems that involved linear equations, Problem 3 

requires the solution of a system of nonlinear equations.  This example models the steady state 

behavior of a simple rectangular fin with a temperature dependent heat transfer coefficient.  The 

problem is summarized (including the equations to be implemented) on pages 6 – 8 of this set of 

notes, and the base linear version of the problem (with constant h) is described in detail in the 

fd_intro.pdf file from the Lesson #4 Notes. 

The Linearized Iteration Method is the procedure employed to solve this particular nonlinear 

problem.  The case-specific iterative algorithm follows: 

1. Guess the discrete temperature profile (here we use a constant profile that represents a simple 

average between the base temperature, Tb, and the ambient temperature, T) 

2. Compute h(T)  h(xi)  hi based on the current estimate of Ti (here we used the linear 

relationship that h(T) = c1 + c2T, with c1 = 200 W/m2-C and c2 = 2 W/m2-C2)  --  these are 

called a1 and a2 in the code. 

3. Calculate m2
i and the A and b coefficient matrices via eqns. (22) and (23) on page 7. 

4. Solve the “linearized” system for a new estimate of the discrete temperature profile using 

Matlab’s backslash operator, T = A\b 

5. Compute the maximum relative change in the new and old temperature profiles  --  and go 

back to Step #2 if the error is too large with the new guess as the current best estimate of T 

6. Edit/plot desired results 

The above algorithm was implemented into the rect1d_fin_3.m and rect1d_fin_3a.m files, as 

given in Table 10.  The rect1d_fin_3 script file is the main program that sets up the overall 

solution scheme, including specifying the base problem parameters, initiation of the iteration 

loop, solving of the linearized system, checking on convergence, and plotting of the converged 

temperature and heat transfer coefficient profiles along the length of the fin.  Inside the iteration 

loop, the main program calls the rect1d_fin_3a function file to set up the A and b coefficient 

matrices given the current estimate of the discrete h vector.  Note that, although the basic code 

within the rect1d_fin_3a function could have been included directly within the main program, 

the current two-subprogram format makes the overall logic and program flow more explicit and 

easier to follow.  Note also that some intermediate edit is available for small problems, so that 

one can easily check the details of the iterative process to assure that things are working as 

designed (this is always a good idea to help in debugging your programs).  For larger problems, 

when the number of equations exceeds some reasonable value, the additional edit is skipped.  
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Table 10  Listing of the programs to solve Problem 3. 

% 

%   RECT1D_FIN_3.M   Introduction to FD Methods for Solving Nonlinear BVPs 

%                Heat Transfer Analysis of a Rectangular Fin Arrangement with 

%              a Temperature-Dependent Heat Transfer Coefficient (Nonlinear Eqns.) 

% 

%   This file illustrates the finite difference (FD) method for solving nonlinear    

%   BVPs.  We solve the same rectangular fin heat transfer problem that was treated  

%   previously in program RECT1D_FIN_2.M, except now we allow the heat transfer  

%   coefficient to vary with temperature.  This makes the BVP nonlinear and, upon 

%   discretization, the system of coupled algebraic equations that results also  

%   becomes nonlinear.  We will use the Linearized Iteration method (as discussed 

%   in the Lecture Notes) to solve this nonlinear problem. 

% 

%   The basic iterative procedure is as follows: 

%      1. guess the temperature profile (here let T(x) = constant for simplicity) 

%      2. compute h(x) with the correlation given using the current estimate of T(x) 

%      3. set up the matrix balance equations and solve for new T(x) 

%      4. check convergence (go back to Step 2 if not converged) 

%   Hopefully this scheme will converge rather quickly (remember that this one-point 

%   iteration scheme is not guaranteed to converge).  Let's see... 

% 

%   The development of the FD equations are done in the Lecture Notes and the  

%   coefficient matrices for each new T(x) guess are constructed in RECT1D_FIN_3A.M. 

% 

%   File prepared by J. R. White, UMass-Lowell  (last update:  Nov. 2017) 

% 

  

      clear all,  close all,  nfig = 0; 

% 

%   identify basic problem data 

      w = 1;                       % unit width of fin (m) 

      thk = 0.01;                  % fin thickness (m) 

      L = 0.05;                    % fin length  (m) 

      Tb = 200;                    % fin base temperature (C) 

      Tinf = 30;                   % environment temperature (C) 

      k = 200;                     % fin thermal conductivity (W/m-C) 

      a1 = 200; a2 = 2;            % constants in heat transfer coeff correlation 

% 

%   define # of points and set x-vector  

      N = input(' Input number of unknowns in problem (N): ');  

      dx = L/N;   x = dx:dx:L;   x = x'; 

% 

%   set initial guess and start iterative loop 

      Told = 0.5*(Tb+Tinf)*ones(size(x));       

      itmax = 20;  it = 0;  tol = 1e-5;  merr = 1; 

      while merr > tol && it <= itmax 

        h = a1 + a2*Told;                               % determine h(T) -> h(x) 

% 

%   compute temperature profile for given h(x) 

        [A,b] = rect1d_fin_3a(h,Tb,Tinf,k,L,w,thk,N);   % determine coeff matrices 

        Tnew = A\b;                                     % find solution vector 

        it = it+1;                                      % increment iteration counter 

        merr = max(abs(Tnew-Told)./Tnew);               % compute max relative change 

% 

%   print intermediate edit if the number of eqns is relatively small 

        if N < 15 

          fprintf('\n Intermediate edit for RECT1D_FIN_3.M \n'); 

          fprintf('  it = %3d      max error = %8.2e \n',it,merr); 

          fprintf('     Tnew         Told        h used   \n'); 

          fprintf('      (C)          (C)       (W/m^2-C) \n'); 

          for j = 1:N 

            fprintf('  %8.2f     %8.2f     %8.2f \n',Tnew(j),Told(j),h(j)); 

          end 

        end 

% 

        Told = Tnew;  %    set Told (i.e. the guesss) for the next pass 

% 

      end   % end of iteration loop 

% 



Applied Engineering Problem Solving  --  Solution of Linear and Nonlinear Equations 

Lecture Notes for Applied Engineering Problem Solving  

by Dr. John R. White, UMass-Lowell  (November 2017) 

42 

%   print max relative error and iteration count 

      fprintf(1,'\n\n Number of iterations to convergence = %3d\n',it); 

      fprintf(1,' Max relative error at convergence =  %8.2e\n',merr); 

% 

%   add on the known base temperature to the solution vector [do same for h(x)] 

      xp = [0; x];   Tp = [Tb; Tnew];   hb = a1 + a2*Tb;  hp = [hb; h]; 

% 

%  plot temperature profile   

      nfig = nfig+1;   figure(nfig) 

      plot(xp*100,Tp,'r--','LineWidth',2),grid 

      title('T(x) Profile in Rectangular Fin (Nonlinear Case)') 

      xlabel('Spatial Position (cm)'), ylabel('Temperature (^oC)') 

% 

%  plot heat transfer coeff profile   

      nfig = nfig+1;   figure(nfig) 

      plot(xp*100,hp,'r--',xp*100,500*ones(size(hp)),'b-','LineWidth',2),grid 

      title('h(x) Profile in Rectangular Fin (Nonlinear Case)') 

      xlabel('Spatial Position (cm)'), ylabel('Heat Transfer Coeff (W/m^2-^oC)') 

      legend('variable h', 'constant h') 

% 

%  end of problem 

 

 

 

 

 

% 

%   RECT1D_FIN_3A.M   Function file to compute the coefficient matrices (A & b)  

%                    for the nonlinear rectangular fin heat transfer problem.   

% 

%   This routine is called from RECT1D_FIN_3.M.  Several variables are passed  

%   into this routine via input arguments, but only the convective heat transfer  

%   coeff is position dependent --  this is the only term that varies with each call  

%   to this function.  The desired A and b coefficient matrices are returned.   

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

 

% 

  

      function [A,b] = rect1d_fin_3a(h,Tb,Tinf,k,L,w,thk,N) 

% 

%   initialize variables 

      dx = L/N;   dx2 = dx*dx;    

      A = zeros(N,N);   b = zeros(N,1); 

% 

%   compute m2 variable (this is space dependent because h is a function of space) 

      P = 2*w + 2*thk;                  % perimeter 

      Ac = w*thk;                       % cross section area (conduction area) 

      m2 = h*P/(k*Ac);                  % parameter in derived equations (see notes) 

% 

%   compute coeff matrices 

%   node 1 

      A(1,1) = -(2 + m2(1)*dx2);  A(1,2) = 1;  b(1) = -m2(1)*dx2*Tinf - Tb; 

%   interior nodes 

      for i = 2:N-1 

        A(i,i-1) = 1;  A(i,i) = -(2 + m2(i)*dx2);  A(i,i+1) = 1;   

        b(i) = -m2(i)*dx2*Tinf; 

      end 

%   node N 

      A(N,N-2) = 1;  A(N,N) = -(2*m2(N)*dx2 + 1 + 2*h(N)*dx/k); 

      b(N) = -(2*h(N)*dx/k + 2*m2(N)*dx2)*Tinf; 

% 

%   end of routine 

 

 

The results from the rect1d_fin_3 program are discussed in the next few pages. 
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First we show a portion of the intermediate results for the case of N = 10.  As seen below, the 

initial constant guess for the temperature profile leads to a constant h on the first iteration.  

However, with h = 430 W/m2-C everywhere, the resultant temperature profile, Tnew, varied 

from 200 C at the base of the fin to about 129 C at the fin’s tip.  With this profile as Told on the 

2nd iteration, a better estimate of the real space-dependent heat transfer coefficient was 

computed, and this was then used to get a new estimate of the actual temperature profile.  This 

process was continued for 7 iterations, until the maximum relative change between two 

successive iterations was less that the specified tolerance of 110-5.  Careful inspection of the 

code output reveals that the Linearized Iteration Method worked exactly as expected, and that, 

for this case, it converged rather quickly to a consistent solution. 

 

>> rect1d_fin_3 

 Input number of unknowns in problem (N): 10 

 

 Intermediate edit for RECT1D_FIN_3.M  

  it =   1      max error = 3.83e-01  

     Tnew         Told        h used    

      (C)          (C)       (W/m^2-C)  

    186.45       115.00       430.00  

    174.60       115.00       430.00  

    164.33       115.00       430.00  

    155.51       115.00       430.00  

    148.05       115.00       430.00  

    141.87       115.00       430.00  

    136.91       115.00       430.00  

    133.11       115.00       430.00  

    130.43       115.00       430.00  

    128.84       115.00       430.00  

 

 Intermediate edit for RECT1D_FIN_3.M  

  it =   2      max error = 4.17e-02  

     Tnew         Told        h used    

      (C)          (C)       (W/m^2-C)  

    184.69       186.45       572.91  

    171.61       174.60       549.21  

    160.50       164.33       528.65  

    151.13       155.51       511.01  

    143.32       148.05       496.10  

    136.94       141.87       483.74  

    131.85       136.91       473.82  

    127.99       133.11       466.22  

    125.28       130.43       460.86  

    123.68       128.84       457.68  

 

 

   Some edit deleted for brevity 

 

 

 Intermediate edit for RECT1D_FIN_3.M  

  it =   6      max error = 3.30e-05  

     Tnew         Told        h used    

      (C)          (C)       (W/m^2-C)  

    184.83       184.83       569.67  

    171.89       171.90       543.79  

    160.90       160.91       521.81  

    151.64       151.64       503.28  

    143.92       143.92       487.84  

    137.60       137.60       475.21  
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    132.57       132.58       465.16  

    128.75       128.76       457.52  

    126.07       126.08       452.16  

    124.49       124.49       448.99  

 

 Intermediate edit for RECT1D_FIN_3.M  

  it =   7      max error = 5.34e-06  

     Tnew         Told        h used    

      (C)          (C)       (W/m^2-C)  

    184.83       184.83       569.67  

    171.89       171.89       543.79  

    160.90       160.90       521.81  

    151.64       151.64       503.28  

    143.92       143.92       487.84  

    137.60       137.60       475.20  

    132.58       132.57       465.15  

    128.75       128.75       457.51  

    126.07       126.07       452.15  

    124.49       124.49       448.98  

 

 

 Number of iterations to convergence =   7 

 Max relative error at convergence =  5.34e-06 

 

 

Once the basic iterative procedure had been validated, the code was rerun with N = 20 and the 

graphical results for T(x) are given below in Fig. 3.  Here we see the expected temperature 

profile, with T(x) monotonically decreasing from Tb at the base of the fin to the fin’s tip 

temperature (which will be some value above T).  For comparison purposes, we have also 

included, in Fig. 4, the results from the linear version of this same problem (with h = constant) as 

discussed previously in Lesson #4 (see the fd_intro.pdf documentation file and the 

rect1d_fin_2.m code).  Clearly, the two profiles are quite similar and, to facilitate a more 

quantitative comparison, several discrete temperature values are annotated directly on the plots 

in both Figs. 3 and 4 (the annotation was made using the Data Cursor tool that is available 

within any standard Matlab figure window).  Using the data given, we see that the two profiles 

differ in the worst case by under 3 % (less than 2-3 oC). 

To investigate why the profiles are so similar  --  when one case uses h = f(T) and the other has   

h = constant  --  a plot of the spatial dependence of the heat transfer coefficient for both cases 

was also generated as shown in Fig. 5.  Clearly there is a rather strong spatial dependence for the 

nonlinear case.  However, the key here is that the linear approximation actually used a suitable 

average value of h (h = 500 W/m2-C) and, with a reasonable average h, we would expect to get a 

reasonable estimate of the real T(x) profile using a simple linear model. 

Note:  Since the general mathematics and numerical solutions associated with a linear 

approximation to an engineering problem is so much easier to work with, we will often first 

generate a linear solution to a problem in the early design phase.  This allows us to get a good 

understanding of the basic physics and the interrelationships among several key design variables  

--  allowing us to make some preliminary design decisions.  Then, once the focus of the design 

problem has been narrowed, a more complete nonlinear model is used to do the final design and 

performance analyses.  Thus, both linear and nonlinear models of the same system are often 

simulated to help us fully understand the system under study.  This was the approach taken here  

--  with the goal of gaining a lot of insight about the solution techniques for linear vs. nonlinear 
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Fig. 3  T(x) profile for the nonlinear version of the rectangular fin problem. 

 

 

Fig. 4  T(x) profile for the linear version of the rectangular fin problem. 
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Fig. 5  h(x) profiles for the nonlinear and linear versions of the rectangular fin problem. 

 

systems and, hopefully, in the process of studying this simple fin heat transfer problem, you have 

also gained some further knowledge and understanding of this area of study (this should 

definitely help you out when you take your Heat Transfer course…). 

Summary and Additional Applications 

Well, this completes our brief overview of several solution techniques for both hand and 

computer solution of linear and nonlinear systems.  You should have a good understanding of the 

“language” associated with linear systems and some insight into several methods for solving 

both linear and nonlinear systems.  Within Matlab, we have found that the backslash operator 

will handle most linear problems and that the fsolve command is one possible tool for working 

with unconstrained nonlinear systems  --  and you should have a good understanding of the basic 

algorithms used within these powerful tools.  In addition, from an applications perspective, the 

setup and solution of the motivation problems should be quite illustrative of the types of 

problems that can be addressed and the actual procedures needed to solve a given problem. 

To give some further experience with these techniques, I have also included two additional 

worked-out examples that show how to solve some interesting engineering problems involving 

both linear and nonlinear systems within the areas of chemical reaction stoichiometry and fluid 

mechanics, and a third example that discusses, in more detail, the relationship between diagonal 

dominance and the iterative solution of linear systems.  These examples are available as separate 

pdf files, as follows: 
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 reaction_eqns.pdf  --  Reaction Stoichiometry 

 parallel_flows1.pdf  --  A Two-Pipe Parallel Flow System 

 conv_demo1.pdf  --  On the Convergence of Iterative Methods 

After you have finished your reading assignment for this lesson (Chapters 8 – 12 in Chapra and 

these Lecture Notes) and after reviewing the above additional examples, you should be ready to 

do HW #6 (see hw6xxx.pdf).  This homework involves several questions that require you to set 

up and solve a series of problems involving both linear and/or nonlinear systems.  As before, I 

prefer that you collect any hand calculations/manipulations for developing the pertinent models, 

the Matlab m-files, the resultant plots and/or tabular results, and a brief description of the results 

of each problem in a separate solution packet for each HW problem  --  keeping things well 

organized will make life easier for you and for me...   

Well, good luck with HW #6  --  I think you will find the problems to be both interesting and 

informative!!! 

 

 


