
Applied Engineering Problem Solving  (CHEN.3170) 

Part I:  Matlab Overview 

Lesson 1:  Getting Started With Matlab 

The first part of this course focuses on Matlab fundamentals and on using Matlab to evaluate and 

plot 1-D and 2-D functions  --  that is, f(x) versus x and f(x,y) versus x and y.  In addition, many 

of the elements of a standard programming language (function files, program flow control, input 

and output processing, etc.) will be highlighted so that you will become comfortable with using 

Matlab for all your programming needs for addressing real engineering design and analysis 

problems. 

There are a number of good books available for learning the fundamentals of Matlab as well as a 

host of websites devoted to this goal.  The MathWorks home page at www.mathworks.com is a 

good starting point if you are looking for more information here.  In addition, the help facility in 

Matlab is a great tool for detailed instructions on using specific functions and commands, and we 

will refer to the built-in Matlab help quite often throughout this course. 

The two texts chosen for this course, 

Amos Gilat, Matlab  --  An Introduction with Applications, John Wiley & Sons  

Steven C. Chapra, Applied Numerical Methods with Matlab for Engineers and Scientists, 

McGraw Hill  

will be the primary sources for the technical content for this course.  The reason for two texts is 

that they complement one another quite nicely, with each filling in the gaps of the other.  Gilat’s 

text is primarily about Matlab with a rather introductory treatment of the numerical methods 

needed for solving many engineering analysis problems.  On the other hand, the book by Chapra 

gives a good overview of the numerical tools needed by design engineers, but only gives a brief 

introduction to many of Matlab’s programming features.  Together, however, they should 

provide a good foundation for enhancing your engineering problem-solving capabilities. 

Note:  The book by Gilat is an introductory text on how to use Matlab within a variety of 

engineering applications.  It assumes no prior knowledge with Matlab or any other programming 

language.  In fact, this text is often used within freshmen Introduction to Engineering courses.  

As such, it is easy to read and understand and it illustrates many of the key features within the 

Matlab programming environment quite nicely via a series of interesting and practical 

applications.  I chose this introductory text for this junior-level course because I feel it is one of 

the best “getting started” Matlab texts and, once you are comfortable with the fundamentals, the 

extensive internal documentation that is available within Matlab negates any real need for a more 

advanced or comprehensive text on this subject.  Indeed, you will be expected to go through 

Gilat’s introductory text fairly rapidly, but there should be enough time for you to develop 

sufficient skills and confidence with Matlab to proceed to the numerical methods portion of this 

course.  Overall, this is a great text that, if studied cover-to-cover, will give you all the 

foundation you need to become a competent and confident Matlab user  --  and all this can be 

done in about five 2-hour sessions (or less). 

It is expected that you will carefully read and study both texts.  This is absolutely essential, since 

much of the course content is presented in the course textbooks rather than during a traditional 

lecture class.  My role will be to highlight key aspects of the assigned reading and to clarify  --  

http://www.mathworks.com/
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primarily via example  --  how to use Matlab and the numerical methods discussed here to solve 

a variety of typical engineering problems.  Thus, the brief lecture notes and the worked examples 

given here will assume that you have already completed the assigned readings.  Since I am 

assuming a mature, intelligent audience for this course, there is no need to repeat everything 

from the assigned reading.  Instead, my role will be to help you understand and apply this 

material in a variety of practical situations. 

The goal of this first unit, “Getting Started with Matlab” is to introduce you to some of the subtle 

aspects of the Matlab language and to highlight some of its key features.  At this point, you 

should read Chapters 1 and 2 in Chapra and Chapters 1-2 and 4-5 in Gilat, paying particular 

attention to the following: 

 Interactive processing within the Matlab command window 

 Defining arrays via direct assignment, by using the colon operator, and with the linspace 

command 

 Scalar versus vector arithmetic in Matlab (this is a biggie!!!) 

 Creating simple 2-D plots 

 Writing and running simple Matlab programs (script files) 

 Use of the help command 

 Etc., etc., etc. 

One of the most important applications of a computational tool like Matlab is for function 

evaluation and plotting.  The ability to easily evaluate complicated expressions and to visualize 

their functional dependence is an essential component of most engineering analyses.  We will 

focus much of our early study of Matlab towards this goal.  In fact, with your first reading 

assignment now complete, you should now have the capability to do some simple function 

evaluation and plotting in Matlab. 

To illustrate this, we will give a series of examples of increasing complexity to highlight and 

expand upon many of the skills you have attained from your first reading assignment.  We will 

start by doing some simple interactive analyses within the command window and then quickly 

move to writing simple Matlab programs  --  since this is clearly the only way to go for any 

analysis requiring more than a few lines of code. 

As our first example, consider the simple pendulum model described in the available pdf file 

pendulum_dynamics.pdf.  As developed in detail, the linearized model for the specific case 

described here gives the pendulum angular position versus time as 

 t 1
(t) e cos3t sin3t

6 3
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and the angular velocity as 
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Through the following interactive sessions, we can identify several things about this physical 

system (the Matlab commands and associated responses are given here using an 8-pt Courier 

font): 

1.  Evaluate the initial position and initial angular velocity of the pendulum. 

>> format compact 

>> to = 0 

to = 

     0 

>> poso = (pi/6)*exp(-to)*(cos(3*to)+(1/3)*sin(3*to)) 

poso = 

    0.5236 

>> poso*180/pi 

ans = 

   30.0000 

>> velo = (-5/9)*pi*exp(-to)*sin(3*to) 

velo = 

     0 

 

Notice that these values are consistent with the initial conditions given in the problem statement 

in pendulum_dynamics.pdf.  The first line using the format command simply eliminates an 

extra blank line that occurs after each command that is executed within the command window (to 

save space in this listing). 

2.  Evaluate the total energy in the system at t = 0, where 

    
22

tot

1
E mgL 1 cos mL '

2
      

>> m = 1;   g = 10;   L = 1; 

>> Etoto = m*g*L*(1-cos(poso)) + 0.5*m*L^2*velo^2 

Etoto = 

    1.3397 

 

Notice the semicolon that is used to eliminate echoing the result to the screen, the use of multiple 

Matlab commands on a single line, and the use of the previously defined initial position and 

velocity variables, poso and velo.  Also note that every variable on the right hand side (RHS) of 

the assignment operator (the = sign) must be already defined.  We can always see what variables 

are currently defined, along with their size and class, with the whos command.  This is a very 

useful command that is used a lot, especially when debugging programs.  For example, at this 

stage in our interactive session, we have the following variables in memory: 

>> whos 

  Name        Size                   Bytes  Class 

  Etoto       1x1                        8  double array 

  L           1x1                        8  double array 

  ans         1x1                        8  double array 

  g           1x1                        8  double array 

  m           1x1                        8  double array 

  poso        1x1                        8  double array 

  to          1x1                        8  double array 

  velo        1x1                        8  double array 

 

Grand total is 50 elements using 148 bytes 

 

 

These are all scalar variables (1x1 arrays) and we can print any variable to the screen by simply 

typing its name.  For example, 

>> g 

g = 

    10 
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3.  We have now evaluated (t), (t), and Etot(t) at the specific time t = 0.  However, what I 

really want to do is to evaluate these at a whole sequence of different times, ti, and then plot (ti) 

versus ti.  For example, let t take on values of 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 seconds.  

We can store these values of time in a vector variable t.  In Matlab, we can generate this vector in 

a number of ways, as follows: 

>> t = [0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5] 

t = 

   0   0.5000   1.0000   1.5000   2.0000   2.5000   3.0000   3.5000   4.0000   4.5000   5.0000 

>> t = 0:0.5:5 

t = 

   0   0.5000   1.0000   1.5000   2.0000   2.5000   3.0000   3.5000   4.0000   4.5000   5.0000 

>> t = linspace(0,5,11) 

t = 

   0   0.5000   1.0000   1.5000   2.0000   2.5000   3.0000   3.5000   4.0000   4.5000   5.0000 

 

Note that all these vectors are identical.  Explicit entry within brackets is appropriate for a small 

number of values or when the increment is not uniform.  The colon operator (which I refer to as 

the repeat operator) is useful when you want to specify the desired increment between entries in 

the vector.  Finally, the linspace command is best when you want to explicitly specify the start 

and end values and the number of values in the vector, but don’t really care to set the increment.  

Often, this is the best choice  --  for example, what happens in the second case with t = 0.4 

seconds? 

Note that if you want to find out how to use a specific Matlab command, you simply type help 

command_name.  For example, we can find more information about linspace, as follows:  

>> help linspace 

 

 LINSPACE Linearly spaced vector. 

    LINSPACE(X1, X2) generates a row vector of 100 linearly 

    equally spaced points between X1 and X2. 

  

    LINSPACE(X1, X2, N) generates N points between X1 and X2. 

    For N < 2, LINSPACE returns X2. 

  

    See also LOGSPACE, :. 

 

Now, getting back to the task at hand, we have a vector of 11 different times, ti for i = 1, 2, … 

11, stored in vector variable t.  We can access any discrete time of interest by specifying the 

index i.  For example, t5 = 2 seconds or, in Matlab, we have 

>> t(5) 

ans = 

     2 

 

Thus, to access the information stored in the ith element of the vector, we simply specify the 

index or element number of interest.  This suggests that if we want to evaluate (t) for several 

different values of t, then the position versus time also becomes a discrete vector quantity, or 

 i i(t) (t )    

Thus, the discrete subscript notation, i, represents the ith value of the vector that stores the 

position information.  To evaluate (t) for several discrete values of t in Matlab, we can use 

either scalar arithmetic or vector arithmetic, as follows: 

Scalar Form (requires a loop over the number of time points) 

>> pos1 = zeros(size(t)); 
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>> for i = 1:length(t) 

     pos1(i) = (pi/6)*exp(-t(i))*(cos(3*t(i)) + (1/3)*sin(3*t(i))); 

   end 

>> pos1 

pos1 = 

  0.5236  0.1281  -0.1816  -0.0627  0.0614  0.0283  -0.0202  -0.0122  0.0064  0.0050  -0.0019 

 

Vector Form (evaluates the position for all time points in a single step) 

>> pos2 = (pi/6)*exp(-t).*(cos(3*t) + (1/3)*sin(3*t)); 

>> pos2 

pos2 = 

  0.5236  0.1281  -0.1816  -0.0627  0.0614  0.0283  -0.0202  -0.0122  0.0064  0.0050  -0.0019 

 

It is important as a new user of Matlab to fully understand exactly what is happening in these two 

examples.  In the first case, we compute one position at a time, (i) = f{t(i)}, and in the vector 

form, we can think of the arithmetic as  = f{t}, where the bold emphasis represents a vector 

quantity.  Clearly the scalar form, with one computation per step, requires that we repeat the 

computation for each value of i = 1, 2, … length(t)  --  thus, the need for the standard for … end 

structure in Matlab.  The first time through the loop i = 1, the second time i = 2, and so on up to   

i = length(t), where the default increment for the looping variable i is unity, since it represents an 

integer index that goes from 1, 2, … 11 (for the present case).  Note that the initial zeros 

command for the scalar form simply initializes the vector of interest (allocates memory space 

and sets all the entries to zero). 

Now, for the vector case, because t is a vector variable, then exp(t), cos(3*t), and sin(3*t) are all 

vectors.  When evaluating functions containing these quantities, we need to be careful to do 

element-by-element operations (as needed).  Since, by definition, matrix addition and subtraction 

are done element-by-element (more on this later), the only explicit dot arithmetic or element-by-

element operation needed here is for the multiplication of exp(t) with (cos(3*t) + (1/3)*sin(3*t)).  

Thus, the .* operation between these two terms is absolutely essential.  Note that, in this case, 

without the dot you would get a Matlab error, “inner matrix dimensions must agree”.  However, 

don’t always count on Matlab to tell you when you have done something wrong  --  because 

sometimes it will do valid calculations that are not at all what you wanted.  So it is up to you to 

specify the correct form of arithmetic in Matlab!!! 

Note:  We will spend lots of time talking about matrix arithmetic (Matlab’s default form) a little 

later in the course.  For now, for most function evaluation and plotting exercises (which is our 

current focus), you will want to perform element-by-element vector operations wherever possible  

--  they are much more efficient and easier to code than the corresponding scalar code, as shown 

above in the comparison of the scalar and vector forms (see further discussion of this point in 

your texts). 

Before getting too far off the track, let’s complete the goal of Task #3  --  that is the plotting of 

(t) versus t.  We can do this with a series of Matlab plotting commands, as follows (see help 

plot): 

>> plot(t,pos2*180/pi),grid 

>> title('Pendulum Dynamics') 

>> xlabel('Time (sec)'),ylabel('Angular Position (degrees)') 

 

with the results as shown in Fig. 1 (note the units conversion directly within the plot command). 
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Fig. 1  First try at plotting (t) for a simple linear pendulum model. 

 

Well, this plot is sort of what was expected.  Since the linearized pendulum model has some 

friction, we expect the pendulum to eventually return to  = 0 degrees after oscillating about this 

equilibrium point, with continually decreasing amplitude.  This, of course, can also be seen 

directly from the equations being plotted  --  the e-t term gives the decay and the cos(3t) and 

sin(3t) terms give the oscillatory behavior.  This is basically what is observed, but clearly the plot 

is too coarse to see any fine resolution (note that Matlab draws straight lines between individual 

data points).  This is an example of a curve that has a bad case of what I call the “jaggies”.  One 

solution to this problem is to simply use a finer time discretization  --  maybe 101 points instead 

of 11 points, for example.  To do this in Matlab’s interactive mode is somewhat tedious, since we 

would have to redefine the t vector and then re-execute several commands (the Command 

History Window helps here).  However, since we also want to do some other analyses with this 

model anyway, it is now time to write our first Matlab program. 

4.  I recommend strongly that any time you have a problem that requires more than a few lines of 

code, you should put that code, along with appropriate internal documentation, into a Matlab 

script file.  Thus, the goal of Task #4 is to take the above interactive session and put the desired 

commands into an m-file using the Matlab built-in editor. 

This was done by opening a new m-file from the Matlab command window, typing the desired 

commands within the editor, and then saving the file with the name pendulum_1.m in the 

desired directory.  Once the file is available, we can run it by simply typing the name of the 

script file at the Matlab prompt, or 

>> pendulum_1   

>> 
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No output is echoed to the screen because all the assignment commands in pendulum_1.m have 

semicolons at the end of the line (this is the usual case).  However, a number of plots are 

produced, and these will be described shortly. 

Note:  Matlab has a preset default directory that you should change at the beginning of each 

Matlab session to have the “current directory” point to the location of your m-files (e.g. 

D:\user_directory for a flash drive, etc.).  If Matlab returns with an “undefined function or 

variable” error when you enter your m-file name (without the .m extension), be sure to check that 

the spelling and the current directory are correct.  The dir and pwd commands are useful for 

fixing these types of problems.  See further discussions of these types of commands in your texts 

or within the Matlab help facility. 

Our pendulum_1.m file is listed in Table 1.  Note that it does essentially the same tasks as 

above, with a number of embellishments, as follows: 

a.  Several lines of comments are added to the top of the file to identify the purpose of this m-

file.  The comments in Matlab follow the % sign, and they can be on separate lines or they can 

be on the same line following a Matlab command.  In general, all the code you write should be 

well documented with internal comments!!! 

b.  There are at least three primary sections to each code  --  an input section, a computational 

section, and an output section.  The input section identifies the key parameter values to be used 

in the calculations.  These variables and their associated units should be appropriately defined 

via comments directly after their assignment.  The computational section, which immediately 

follows the input section, does the real numerical work.  Note that here we only included the 

vector form since it is more efficient and easier to code  --  as long as we are careful to use the 

appropriate dot or element-by-element arithmetic.  In this section, we evaluate the position and 

velocity of the pendulum point mass as well as the kinetic, potential, and total energy in the 

system versus time.  Note that the equations implemented here are more general in that they are 

direct functions of the mass, m, length, L, friction coefficient, c, gravitational constant, g, and the 

initial angular position and velocity, o and o.  In general, when performing engineering 

analysis, you should maintain as much generality in your computations as appropriate for the 

system under study.  With the current equations, we could easily study the effects of varying any 

one of these design and operational variables. 

 

 

 

 

Table 1  Listing of the pendulum_1.m program. 

% 

%   PENDULUM_1.M  Evaluate and plot the dynamics of a simple linear pendulum 

% 

%   This example evaluates and plots the angular position and velocity of a pendulum  

%   with a point mass at the end.  The mathematical model was linearized about the 

%   equilibrium position (pendulum at rest).  The model was developed by performing 

%   an appropriate force balance and the resulting linear constant coefficient 2nd 

%   order IVP was solved analytically.  The exact expressions for the angular position 

%   and velocity versus time are evaluated and plotted in this file (see the lecture  

%   notes for the formal development and analytical expressions). 

% 

%   The primary purpose of this file is to serve as a typical example for function  
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%   evaluation and plotting in Matlab.  This is a common need for many engineering  

%   design and analysis problems.  Thus, the student should master this capability  

%   ASAP to become an effective "problem-solver" in school and on the job.  In this  

%   particular example, as a bonus, you may also gain a little insight into the  

%   actual dynamics of pendulum motion.  This is my intention anyway... 

% 

%   File prepared by J. R. White, UMass-Lowell (last update: August 2017) 

% 

       

      clear all;   close all;   nfig = 0; 

%% 

%   define problem parameters 

      m = 1;                    % pendulum mass (kg) 

      c = 2;                    % friction coeff (kg/s) 

      L = 1;                    % length of pendulum arm (m) 

      g = 10;                   % gravitational acceleration (m/s^2) 

      poso = 30*pi/180;         % initial position (degrees converted to radians) 

      velo = 0;                 % initial velocity (radians/s) 

%% 

%   evaluate roots of characteristic equation 

      a = -c/(2*m);   b = sqrt(g/L - a^2); 

% 

%   compute equation coefficients 

      c1 = poso;          c2 = (velo - a*c1)/b; 

      d1 = b*c2 + a*c1;   d2 = a*c2 - b*c1; 

  

%   define discrete time domain variable (with time in seconds) 

      Nt = 101;   to = 0;   tf = 5;   t = linspace(to,tf,Nt); 

% 

%   evaluate analytical expressions for angular postion and velocity 

%   (be careful with the "dot" operations -- only need one dot in each equation) 

      pos = exp(a*t).*(c1*cos(b*t) + c2*sin(b*t)); 

      vel = exp(a*t).*(d1*cos(b*t) + d2*sin(b*t)); 

% 

%   let's also compute the energy components versus time 

      Ep = m*g*L*(1 - cos(pos));    % potential energy 

      Ek = 0.5*m*L^2*vel.^2;        % kinetic energy 

      Etot = Ep + Ek;               % total energy 

%% 

%   now let's plot the results in a variety of ways 

%   position (in degrees) vs time 

      nfig = nfig+1;   figure(nfig) 

      plot(t,pos*180/pi,'r-','LineWidth',2),grid     

      title('PENDULUM\_1: Pendulum Dynamics  --  \theta(t) vs t') 

      xlabel('Time (sec)'),ylabel('Angular Position (degrees)') 

%   position and velocity vs time  (use subplot command) 

      nfig = nfig+1;   figure(nfig) 

      subplot(2,1,1),plot(t,pos*180/pi,'r-','LineWidth',2),grid     

      title('PENDULUM\_1: Pendulum Dynamics  --  \theta(t) and \omega(t) vs t') 

      ylabel('Angular Position (degrees)') 

      subplot(2,1,2),plot(t,vel*180/pi,'g--','LineWidth',2),grid  

      xlabel('Time (sec)'),ylabel('Angular Velocity (deg/sec)') 

%   just for fun, let's look at the phase plane diagram (velocity vs position) 

      nfig = nfig+1;   figure(nfig) 

      plot(pos*180/pi,vel*180/pi,'r-','LineWidth',2),grid     

      title('PENDULUM\_1: Phase Plane Plot  --  \omega(t) vs \theta(t)') 

      xlabel('Angular Position (degrees)'),ylabel('Angular Velocity (deg/sec)') 

%   finally, let's plot the energy components (units -> J = N-m) 

      nfig = nfig+1;   figure(nfig) 

      plot(t,Ep,'r-',t,Ek,'g--',t,Etot,'b-.','LineWidth',2),grid  

      rr = axis;  rr(2) = 3;  axis(rr);    

      title('PENDULUM\_1: Energy Components  --  E_{tot} = E_p + E_k') 

      xlabel('Time (sec)'),ylabel('Energy (J)') 

      legend('Potential Energy -> E_p','Kinetic Energy -> E_k','Total Energy -> E_{tot}') 

% 

%   end of problem 
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The third part of almost every program is the output section.  Here we create a variety of plots to 

help us visualize the full dynamics of the linearized pendulum model.  The first plot of position 

versus time, as shown in Fig. 2, should be compared directly to the one generated during our 

interactive session (see Fig. 1).  They are, of course, quite similar, except the one generated from 

the script file has a much finer time resolution (101 points), which leads to a much better 

representation of (t) versus t. 

 

Fig. 2  Angular position versus time for a simple linear pendulum model. 

 

Continuing the discussion of the figures generated in pendulum_1.m, we see that Fig. 3 shows 

both the position and velocity versus time on the same page.  This was accomplished using 

Matlab’s subplot command.  Note here, that (t) and (t) on the same axis is probably not 

appropriate since they have different units.  However, we often like to see these on the same plot 

for comparison purposes  --  and the subplot command allowed us to do this in a straightforward 

way.  Both (t) and (t) behave as expected, and careful consideration of Fig. 3 shows that the 

maxima and minima in the position plot occur at the points where the angular velocity is zero (as 

expected). 

Figure 4 presents a slightly different view of the same information as contained in Fig. 3.  Here 

we plot (t) versus (t).  This type of plot is often referred to as a phase plane plot, where two 

dependent variables are plotted in the x-y plane.  This eliminates the independent variable from 

the visualization and shows how, in this case, the pendulum angular velocity and position are 

related, independent of time.  The spiraling in motion towards the final equilibrium point (eq = 0 

and eq = 0, for this case) is a common pattern that is observed for many stable unforced linear 

systems. 
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Fig. 3  Pendulum angular position and velocity versus time. 

 

 

Fig. 4  Phase plane plot of pendulum dynamics. 
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The last plot, Fig. 5, shows the three time-dependent energy terms computed in pendulum_1.m.  

As expected, the total energy at each point is the sum of the kinetic and potential energies and, 

because of friction in the system, the total energy eventually decays to zero.  As apparent, part of 

the initial potential energy in the system gets converted into kinetic energy, with the remainder 

being lost to friction.  After the first minimum in Kp(t), some of the available kinetic energy gets 

transformed back into potential energy as the pendulum swings towards is maximum negative 

position (about –10 degrees).  These two energy components continue to oscillate with an ever-

decreasing magnitude due to the friction loss in the system.  Note also that, since friction is 

proportional to the velocity, there is less friction loss when the kinetic energy term is small, and 

this explains why the total energy curve has some relatively flat plateau regions.  Of course, the 

overall behavior is exactly what we expected for this simple under-damped system. 

c.  Several common plotting examples are given in pendulum_1.m, including the use of the 

figure command to open multiple figure windows, the subplot command to place multiple axes 

on the same figure, the legend command to help label plots with multiple curves, the axis 

command to set user-defined axis limits, and the setting of various line styles and other plot 

properties and enhancements  --  such as the use of Greek letters in the titles and plot labels and 

the use of the underscore character to produce subscripts.  You will want to become familiar with 

a variety of ways to enhance the information content of your plots.  Remember that a “picture is 

worth a thousand words”  --  but only if the picture or plot is properly labeled!!! 

 

 

Fig. 5  Energy components for pendulum dynamics problem. 
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Note:  I commonly set the LineWidth property to 2 within my Matlab plots.  This is done 

primarily for presentation purposes, so the audience can see the curves better when viewing in a 

classroom environment at some distance.  However, this attribute is also a pretty good choice for 

normal written documentation as well.  This, of course, is a personal preference, and you can 

adjust this property, as desired, for your particular needs. 

Note:  Another aspect of writing Matlab programs that you should consider is to develop the 

codes gradually.  For example, I did not write all of pendulum_1.m and then try to run it.  

Instead, I usually write the beginning comments first to present an overview of what is to follow.  

Then I compose the section that defines all the problem parameters and corresponding units.  

Once I have a good handle of how to proceed and the base data for the calculations, I then start 

the computational section.  Once the base code for evaluation of the equations are typed, I run 

the code, look at the intermediate results (from the command prompt), do any necessary hand 

calculations, etc., etc.  --  all to validate the actual computations that are performed.  When this 

seems okay, I then make the first few plots that use the key parameters in the problem  --  (t) 

versus t and (t) versus t, in this case.  Upon careful study and rationalization that these are 

okay, I then proceed to complete any other desired analyses (the phase plane plot and the energy 

components versus time plot, for example).  Finally, when everything is basically working, I go 

back and make the code easier to read with proper alignment of the commands and comments, 

and easier to understand with the addition of more explanations, as needed. 

Breaking each program into a number of small explicit tasks makes the overall challenge more 

manageable, and it also leads to better code, fewer mistakes, and less overall time and frustration 

in your programming assignments.  Eventually, you will develop your own programming style  -

-  one that works well for you  --  but just remember that the phrase “divide and conquer” is a 

nice philosophy to follow for many design and analysis problems, including those that involve 

programming in Matlab!!! 

Well, this completes our first illustrative example that uses Matlab as a visualization tool to assist 

in understanding the behavior of physical systems.  I hope that your understanding of simple 

pendulum dynamics is improved somewhat after studying the figures generated here.  In this 

case, the system is simple enough that we had a pretty good idea of what to expect  --  so no real 

surprises were observed.  However, for many systems, our prior understanding may be somewhat 

limited, and the evaluation and plotting of the functional relationships within the system will 

then contribute significantly to our overall knowledge and understanding of the physical 

behavior of the system.  With Matlab, doing this is rather straightforward, and the payback in 

terms of the new insight gained is usually well worth the small effort needed to produce the 

actual visualizations… 

To complete this “Getting Started…” lesson, we provide three more examples of function 

evaluation and plotting in Matlab.  These additional illustrative applications are available in 

separate pdf files, as follows: 

maxwell_1.pdf  --  Maxwell Boltzmann Distribution 

pipe_flow_1.pdf  --  Laminar vs. Turbulent Flow in a Pipe 

pipe_insulation_1.pdf  --  Pipe Insulation Considerations 
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After you have completed your reading assignment from the course texts and after reviewing the 

above examples, you should now be ready to attempt HW #1 on your own (see hw1xxx.pdf, 

where the xxx refers to the current semester and year).  This homework asks you to solve a few 

problems with Matlab that are roughly similar to the applications given above and to the 

examples from your textbooks.  You should solve each problem as requested in the assignment 

sheet in a separate Matlab script file.  You should include the m-file, the resultant plots, any hand 

calculations and manipulations, and a brief description of the results as components of the 

complete solution for each problem  --   and these should be all organized into a professional HW 

package to be turned in by the announced HW deadline.   

Well, GOOD LUCK with HW #1!!!  When complete, you should have a much better under-

standing of some of Matlab’s syntax and fundamental capabilities.  The intent is for you to get 

fairly well acquainted with simple 1-D function evaluation and plotting in Matlab.  Hopefully we 

have been successful in accomplishing this goal!!! 

 

 

 


