
Introduction to Finite Difference Methods 

 

Since most physical systems are described by one or more differential equations, the solution of 

differential equations is an integral part of many engineering design studies.  Your introductory 

course in Differential Equations has shown you how to solve many simple ODEs, and we have 

already reviewed some of the analytical methods studied in Differential Equations as part of this 

course  --  and we will do several more examples before the end of the semester.  In addition, if 

time permits, we will also use Lesson 8 to illustrate two specific numerical techniques for 

solving ODEs within Matlab.  In particular, we will use Matlab’s ode23 or ode45 routine to 

directly solve initial value problems (IVPs), and we will use this same ODE solver within an 

iterative method, called the Shooting Method, to solve a wide range of boundary value problems 

(BVPs).  However, these methods are only useful for differential equations with a single 

independent variable  --  that is, they can only solve ordinary differential equations (ODEs).   

For problems involving more than one independent variable  --  that is, governed by partial 

differential equations (PDEs)  --  the most common solution method involves discretizing the 

original differential equation (DE) and converting it into a series of recursive and/or algebraic 

equations.  Basically, this requires that one discretize each of the independent variables, 

essentially breaking the problem into a number of finite volumes or elements.  Then, the 

continuous DE is evaluated at each discrete point or node in the system.  Finally, upon 

approximating the discrete derivatives in the latter equations with finite difference 

approximations (as developed in the Lesson 4 Lecture Notes), one can completely convert the 

original continuous differential equations into a series of difference equations  --  and it is the 

discrete difference equations that are evaluated on the computer.  This so-called Finite 

Difference (FD) method can be applied to both ODEs and PDEs; thus, it is a popular method that 

is used in a wide range of practical applications. 

There are several variations of this basic theme that gives rise to a number of specific methods 

that are used in different engineering applications.  Unfortunately, we do not have time to 

elaborate on any of these methods, since doing so could easily take the rest of the semester.  

However, with the introduction of the Taylor Series approximations for the discrete 1st and 2nd 

order derivatives in Lesson 4, we can, at least, take a short time to introduce the basic concepts 

and to illustrate the key differences that occur in solving IVPs versus BVPs via the FD method.  

And, if time permits, we will show in Lesson 8 how the FD methods compare to the other 

numerical techniques mentioned above (i.e. the adaptive Runge-Kutta methods implemented 

within ode23 and ode45 for IVPs and the Shooting Method technique for BVPs with a single 

independent variable). 

To illustrate some of the ideas mentioned above, we will apply the basic Finite Difference 

method to two problems, an IVP and a BVP, as follows: 

   Case 1:  Pendulum Dynamics via the FD Method (see the Lesson 1 Lecture Notes and the 

pendulum_dynamics.pdf file for background). 

   Case 2:  Heat Transfer in a Rectangular Fin via the FD Method (see the rect1d_fin_1.pdf file 

that was studied after Lesson 3 for the development of the pertinent equations). 

 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

2 

We have already solved both these problems via analytical techniques, so we are already familiar 

with both these systems.  The pendulum dynamics problem is an IVP and it gives rise to a single 

recursive equation upon discretization.  The rectangular fin heat transfer problem, on the other 

hand, is a BVP, and this type of problem leads to a system of simultaneous equations.  One of the 

main goals of this set of examples is to illustrate the difference between the computer solution of 

IVPs and BVPs.  Thus, let’s set up each problem separately to illustrate the above comments in 

more concrete terms: 

Case 1:  Pendulum Dynamics via the FD Method 

The continuous form of the equation of motion for the linearized pendulum model (assumes 

small angular displacements) is given by 

 
2

o o2
t 0

d c d g d
0 with (0) and (0)

m dt L dtdt 

                (1) 

This 2nd order linear ODE can be solved analytically to give the angular position vs. time, (t), as 

  t
1 2(t) e c cos t c sin t            (2) 

with  
c

2m
           and        

2
g c

L 2m

 
    

 
      (3) 

where we have assumed that the pendulum does indeed have damped oscillatory behavior.  The 

c1 and c2 coefficients in the general solution can be evaluated by applying the specific initial 

conditions given above to give  

1 oc           and        o 1
2

c
c

 



       (4) 

Equations (2) – (4) represent an analytical solution to the IVP given in eqn. (1). 

Now, instead of solving the problem analytically, let’s solve the pendulum dynamics problem 

using a simple Finite Difference scheme  --  as an illustration of how to use the FD method for 

IVPs.  For this method, we start by discretizing the time variable by defining a small time 

interval, t, which we will keep fixed for simplicity.  Then, t  ti, t+t  ti+1, etc., where 

i 1 it t t             (5) 

with i being a discrete time index (with t1 = to = 0 for this problem). 

Now, to discretize the continuous ODE, we simply evaluate every time dependent term in eqn. 

(1) at discrete time point ti, or 

i

ii

2

2 t
tt

d c d g
0

m dt Ldt
              (6) 

Now, using central FD approximations for both derivatives evaluated at ti, we have (see eqns. 

(12) and (13) in the Lesson 4 Lecture Notes), 

 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

3 

i 1 i i 1 i 1 i 1
i2

2 c g
0

m 2 t Lt

         
   


      (7) 

Multiplying this recursive equation by t2 gives 

  2
i 1 i i 1 i 1 i 1 i

c t g
2 t 0

m 2 L
   


             

and collecting terms gives 

2

i 1 i i 1

c t g t c t
1 2 1

2m L 2m
 

      
           

    
 

To simplify this a little, we can define some constants 

2c t g t c t
a 1 b 2 d 1

2m L 2m

      
         
    

    (8) 

and write the final recurrence relationship as 

i 1 i i 1

b d

a a
               (9) 

Now, if we know 1 and 2, then eqn. (9) can be used to estimate 3.  Knowing 2 and 3 then 

leads to 4, and so on  --  this is why eqn. (9) is said to be a recursive equation.  Thus, to simulate 

the dynamics of the linear pendulum for any desired time interval, all we need is two starting 

positions, 1 and 2. 

The first point, 1, is given directly as part of the initial conditions in eqn. (1).  For the second 

point, 2, we need to use the initial condition on d/dt and a forward FD approximation (see eqn. 

(10) in the Lesson 4 Lecture Notes), as follows: 

1

2 1
o

t 0

d

dt t

 
   


        (10) 

and, solving this for 2 gives 

2 1 o t              (11) 

Thus, eqns. (1) and (11) give us the desired starting points, so repeatedly evaluating eqn. (9) for   

i = 2, 3, … , N-1 (where N is the number of small time intervals) gives the desired simulation. 

This FD method for the pendulum dynamics was implemented in Matlab program 

pendulum_2.m.  In addition, for ease of comparison and for validation of the FD method, we 

also evaluated the analytical solution given in eqns. (2) – (4).  These two solution schemes can 

be seen in the listing of pendulum_2.m provided in Table 1.  After setting the variable 

parameters (m, c, L, and g) and the ICs for the problem, we first evaluate the analytical solution 

(note that this is the identical problem that was solved in pendulum_1.m from Lesson 1).  Then, 

the equation constants and the starting points for the numerical solution are set and eqn. (9) is 

evaluated in a simple for … end loop.  The result of this operation for all time points is an 

estimate of the pendulum’s angular position at each discrete time point.  Finally, both the 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

4 

analytical and FD solutions are plotted, with the results shown in Fig. 1.  As apparent, the 

analytical solution is exactly as developed previously in Lesson 1 and, the FD method, with the 

t chosen (t = 0.05 seconds), gives pretty good agreement to the analytical result.  We know, of 

course, that the error associated with the FD method used here is roughly O(t2), since we used 

central approximations for the discrete derivative approximations (except for the calculation of 

2).  However, here we just wanted to show the basic scheme for the solution of IVPs via the FD 

method  --  additional analysis and accuracy comparisons can wait for some other day!!! 

 

Table 1  Listing of the pendulum_2.m program. 

 

% 

%   PENDULUM_2.M  Evaluate and plot the dynamics of a simple linear pendulum 

%                  via the FD method (compared to the analytical solution) 

% 

%   This example evaluates and plots the angular position of a pendulum with a point  

%   mass at the end.  The focus is on the solution of IVPs using the finite difference 

%   (FD) method.  For comparison, we also plot the analytical solution.  The equations 

%   for the FD method are developed in the Lecture Notes following Lesson 4 (see  

%   fd_intro.pdf), with the basic mathematical model and analytical solution given in 

%   the Lesson 1 Lecture Notes (also see pendulum_dynamics.pdf).   

% 

%   A similar program, pendulum_1.m, focuses only on evaluating and plotting the  

%   analytical solution. 

% 

%   File prepared by J. R. White, UMass-Lowell (last update: Oct. 2017) 

% 

       

      clear all;   close all;   nfig = 0; 

% 

%   define problem parameters 

      m = 1;                    % pendulum mass (kg) 

      c = 2;                    % friction coeff (kg/s) 

      L = 1;                    % length of pendulum arm (m) 

      g = 10;                   % gravitational acceleration (m/s^2) 

      poso = 30*pi/180;         % initial position (degrees converted to radians) 

      velo = 0;                 % initial velocity (radians/s) 

% 

%       ************************* 

%       *  ANALYTICAL SOLUTION  * 

%       ************************* 

% 

%   evaluate roots of characteristic equation and compute equation coefficients 

      a = -c/(2*m);   b = sqrt(g/L - a^2); 

      c1 = poso;          c2 = (velo - a*c1)/b; 

      d1 = b*c2 + a*c1;   d2 = a*c2 - b*c1; 

% 

%   define discrete time domain variable (with time in seconds) 

      Nt = 101;   to = 0;   tf = 5;   t = linspace(to,tf,Nt); 

% 

%   evaluate analytical expressions for angular position  

      posa = exp(a*t).*(c1*cos(b*t) + c2*sin(b*t)); 

% 

%       ***************** 

%       *  FD SOLUTION  * 

%       ***************** 

% 

%   evaluate equation coefficients and starting points 

%   (can vary Nt to see the sensitivity of the numerical soln to value of dt) 

      N = Nt-1;  dt = (tf-to)/N;  % dt is consistent with the time vector from above 

      a = 1 + c*dt/(2*m);   b = 2 - g*dt*dt/L;   d = c*dt/(2*m) - 1; 

      posn = zeros(1,Nt);   posn(1) = poso;    posn(2) = posn(1) + velo*dt; 

% 

%   now loop over all remaining discrete time points 

      for i = 2:N  



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

5 

        posn(i+1) = b*posn(i)/a + d*posn(i-1)/a; 

      end 

% 

%       ************************* 

%       *  PLOT BOTH SOLUTIONS  * 

%       ************************* 

% 

      nfig = nfig+1;   figure(nfig) 

      plot(t,posa*180/pi,'r-',t,posn*180/pi,'b:','LineWidth',2),grid     

      title('PENDULUM\_2: Pendulum Dynamics  --  \theta(t) vs t') 

      xlabel('Time (sec)'),ylabel('Angular Position (degrees)') 

      legend('Analytical Solution','FD Solution') 

% 

%   end of problem 

 

 

Fig. 1  Pendulum dynamics  --  comparison of the analytical and FD methods. 

 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

6 

 

Case 2:  Fin Heat Transfer via the FD Method 

Solving BVPs via finite difference methods is somewhat 

more difficult than solving IVPs.  We follow the same 

basic steps, but each step needs to be done carefully and, 

in the end, we have a system of simultaneous equations 

(one for each unknown in the problem) rather than a 

single recurrence relation.  To see how all this comes 

about, let’s reconsider the rectangular fin problem that 

was solved at the end of Lesson 3.  The basic problem 

geometry of interest is shown in the sketch to the right. 

The governing ODE for this problem is given by (see 

rect1d_fin_1.pdf for details) 

2
2

2

d T
m (T T ) 0

dx
     with 2

c

hP
m

kA
      (12) 

where the specific BCs for this problem include a fixed temperature on the left (at x = 0) and 

convection to the environment on the right (at x = L), or 

bT(0) T         and        
x L

x L

dT
k h (T T )

dx
 



        (13) 

The analytical solution to eqn. (12) with the BCs given in eqn. (13) was developed in detail in 

rect1d_fin_1.pdf and it can be written as 

 b

h
cosh m(L x) sinh m(L x)

mkT(x) T T T
h

cosh mL sinh mL
mk

 

  

  



    (14) 

Now, to develop a numerical solution to this 

problem using the FD method, we again start 

by discretizing the independent variable, x.  

Here, we need to be careful to number only 

the nodal points where the temperature is to 

be determined  --  for example, here T(0) = 

Tb is known, but T(L) = TL is an unknown 

temperature that will have to be determined 

as part of the problem.  As an example, let’s 

say N = number of unknowns = 5.  In this 

case, a side view of the fin geometry would 

give the sketch shown to the right, and we 

can compute the discrete spatial increment, 

x, as 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

7 

L 0 L
x

N N


            (15) 

In this case, the vector of discrete spatial points that specify the location of the unknown 

temperatures to be computed can be written as x = [x1 x2 x3 x4 x5] which, in Matlab, can be easily 

generated with the use of the colon operator, x = dx:dx:L, where dx = x.  Note that the first 

value of x is not zero, but instead, x1 = x! 

Now, with the nodal arrangement defined, we discretize the continuous ODE, or 

i

i

2
2

2 x

x

d T
m (T T ) 0

dx
           (16) 

Again, using a second order central approximation for the 2nd derivative, we have 

2i 1 i i 1
i2

T 2T T
m (T T ) 0

x

 


 
  


 

or 

 2 2 2 2
i 1 i i 1T 2 m x T T m x T               (17) 

Now, it is important to note that this expression is only valid for interior nodes (i = 2:N-1)  --  

since we used a central approximation for d2T/dx2 (recall that a central difference approximation 

cannot be applied at the end points).  Thus, we always need to treat the end nodes as special 

cases!!! 

For i = 1, eqn. (17) can be used directly if we note that Ti-1 = T0 = Tb, the fin’s base temperature.  

Thus, for i = 1, we have 

 2 2 2 2
1 2 b2 m x T T m x T T              (18) 

For i = N, things are not so easy, since nothing is known to the right of node N  --  that is, TN+1 is 

not defined.  There are several ways to handle this situation, however.  Probably the easiest 

method is to simply generate a backward approximation to the desired derivative at x = L.  To do 

this, let’s write TN as follows, 

 
N

N

N N 1
Nx

x

T ' T 'd
T '' T '' T '

dx x


  


      (19) 

Now, we can write a central approximation for the 1st derivative at point N-1, or 

 N N 2
N 1

T T
T '

2 x








         (20) 

and, for TN, we can directly use the given BC at x = L, 

N NkT ' h(T T )            (21) 

that represents convection to the environment on the right face of the fin. 

Substitution of eqns. (20) and (21) into eqn. (19) gives 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

8 

  N N 2
N

N N N 22 2

T Th
T T

h 1 h 1k 2 xT '' T T T
x k x k x2 x 2 x




 


  

       
    

 (22) 

Finally, putting this expression into eqn. (16) for i = N gives a proper discrete balance equation 

for the last node in the fin’s discrete geometry representation, 

 2
N N 2 N2 2

h 1 h 1
T T T m T T 0

k x k x2 x 2 x
  

 
       

   
 

or 

2 2 2 2
N 2 N

2h x 2h x
T 2m x 1 T 2m x T

k k
 

    
          
   

    (23) 

Together, eqns. (17), (18), and (23) give a system of N equations with N unknowns  --  the 

unknown temperature at each discrete xi location.  These equations can be written in matrix 

form, 

 AT = b          (24) 

and easily solved in Matlab for the desired temperature vector, T.  Note that this is done in 

Matlab with the backslash operator, or 

 T = A\b 

We will discuss this approach to solving a matrix equation in detail in Lesson 6.  For now, it 

simply allows us to solve the system of linear equations given by eqn. (24), with the resultant 

discrete temperatures stored in vector T. 

The rectangular fin heat transfer problem is solved in Matlab file rect1d_fin_2.m, whose listing 

is given in Table 2.  The program is broken into five key steps, as follows: 

1. set problem parameters 

2. compute analytical solution as given by eqn. (14) 

3. set up the coefficient matrices, A and b, in eqn. (24) for the FD solution [obtained from 

eqns. (15), (17), (18), and (23)] 

4. solve the resultant system of equations using Matlab’s backslash operator, T = A\b 

5. plot both the analytical and FD solutions to verify the FD methodology 

Note that Step #3 represents the only new aspect of this program.  We first compute the desired 

x based on a user-specified value for N and set the proper discrete x vector.  Then, the 

coefficient equations for the ith node are evaluated, with the non-zero values stored in the proper 

locations of the A and b matrices.  Note that, when working with the balance equation for node i 

(which is equation i in the system of N equations), the subscripts i-1, i, and i+1 represent nearest 

neighbor coupling in the system and, from a mathematical view, these coefficients are placed in 

columns i-1, i, and i+1 of row i in the A matrix.  Thus, it is easy to set up the appropriate matrix 

equations for an arbitrary number of unknowns, N, in the problem by simply defining to the non-

zero coupling coefficients in the ith balance equation.  Since, for a 1-D BVP problem, node 1 and 

node N are always special cases (i.e. the boundary nodes), these are treated separately, with the 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

9 

remaining interior nodes all treated within the single for … end loop.  In this way, it is pretty 

easy to define the full A and b coefficient matrices, and then simply let Matlab solve the system 

of equations for the desired temperature vector, T.   

 

Table 2  Listing of the rect1d_fin_2.m program. 

 

% 

%   RECT1D_FIN_2.M   Introduction to FD Methods for Solving BVPs 

%                Heat Transfer Analysis of a Rectangular Fin Arrangement 

% 

%   This file illustrate the finite difference (FD) method for solving BVPs.   

%   We solve the same rectangular fin heat transfer problem that was treated in  

%   program rect1d_fin_1.m.  Here, the focus is on comparing the FD solution 

%   to the analytical solution for the temperature profile, T(x), along the 

%   length of the fin.  The development of the FD equations programmed here is 

%   contained within the Lecture Notes (see fd_intro.pdf). 

% 

%   File prepared by J. R. White, UMass-Lowell  (last update: Oct. 2017) 

% 

  

      clear all,  close all,  nfig = 0; 

% 

%   identify basic problem data 

      w = 1;                            % unit width of fin (m) 

      thk = 0.01;                       % fin thickness (m) 

      L = 0.05;                         % fin length  (m) 

      Tb = 200;                         % fin base temperature (C) 

      Tinf = 30;                        % environment temperature (C) 

      h = 500;                          % heat transfer coeff  (W/m^2-C) 

      k = 200;                          % fin thermal conductivity (W/m-C) 

% 

%   compute some derived parameters  

      P = 2*w + 2*thk;                  % perimeter 

      Ac = w*thk;                       % cross section area (conduction area) 

      m = sqrt(h*P/(k*Ac));             % constant in derived equations (see notes) 

      m2 = m*m;                         % constant in derived equations (see notes) 

      hmk = h/(m*k);                    % constant in derived equations (see notes) 

      bot = cosh(m*L) + hmk*sinh(m*L);  % constant in derived equations (see notes) 

% 

%       ************************* 

%       *  Analytical Solution  * 

%       ************************* 

% 

      Nx = 51;  xa = linspace(0,L,Nx)';  % independent spatial variable 

      Ta = Tinf + (Tb - Tinf)*(cosh(m*(L-xa)) + hmk*sinh(m*(L-xa)))/bot; 

% 

%       ***************** 

%       *  FD Solution  * 

%       ***************** 

% 

%   Setup and solve matrix eqn for discrete temperatures 

      N = input('Enter number of unknowns (N) for problem: '); 

      dx = L/N;    dx2 = dx*dx;   xn = dx:dx:L;   xn = xn'; 

      A = zeros(N,N);     b = zeros(N,1); 

%   node 1 

      A(1,1) = -(2 + m2*dx2);  A(1,2) = 1;  b(1) = -m2*dx2*Tinf - Tb; 

%   interior nodes 

      for i = 2:N-1 

        A(i,i-1) = 1;  A(i,i) = -(2 + m2*dx2);  A(i,i+1) = 1;  b(i) = -m2*dx2*Tinf; 

      end 

%   last node 

      A(N,N-2) = 1;  A(N,N) = -(2*m2*dx2 + 1 + 2*h*dx/k); 

      b(N) = -(2*h*dx/k + 2*m2*dx2)*Tinf; 

%   solve 

      Tn = A\b;    

%   add on the known base temperature to the solution vector 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

10 

      xn = [0; xn];   Tn = [Tb; Tn]; 

% 

%       ************************* 

%       *  Plot both solutions  * 

%       ************************* 

% 

      nfig = nfig+1;   figure(nfig) 

      plot(xa*100,Ta,'r-',xn*100,Tn,'bo','LineWidth',2),grid 

      title('RECT1D\_FIN\_2: T(x) Profile in Rectangular Fin') 

      xlabel('Spatial Position (cm)') 

      ylabel('Temperature (^oC)') 

      legend('Analytical Solution',['FD Solution (N = ',num2str(N),')']) 

% 

%  end of problem 

 

 

 

 

 

 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

11 

 

Fig. 2  Fin temperature profile  --  comparison of the analytical and FD methods. 

 

Note that, in the final step, just before plotting the FD solution, we include the known boundary 

temperature, Tb, at x = 0 (the fin’s base) into the solution vector.  Recall that this point was 

excluded in the FD solution, since it was known.  However, for visualization, it is important to 

include the full domain of interest, including any boundary temperatures that may be known a 

priori.  This simple procedure then allows us to plot the temperature throughout the fin 

(including the fixed base temperature). 

The results from the rect1d_fin_2.m program are summarized in Fig. 2, which compares the 

temperature profile obtained from the FD method with the analytical result.  This was done with 

two different step sizes (a different N leads to a different x) and, as apparent from the 

comparisons given here, this problem is not very sensitive to the choice of mesh spacing  --  

since even a relatively coarse mesh (N = 5) gives a good FD approximation for the temperature 

distribution in the fin.   

Well, it is time to bring this brief introduction to Finite Difference (FD) methods for solving 

differential equations to closure.  The two examples given illustrate the overall basic FD 

approach, and they also highlight the difference between initial value problems (IVPs) and 

boundary value problems (BVPs).  The IVP leads to a simple recurrence relation because enough 

initial condition information is available to compute the dependent variable at node i+1, yi+1, in 

terms of known values at two previous nodes, yi and yi-1.  This can be represented 

mathematically as 

i 1 i i 1y f (y , y )           (25) 



Applied Engineering Problem Solving  --  Introduction to Finite Difference Methods 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving 

by Dr. John R. White, UMass-Lowell  (Oct. 2017) 

12 

for a 2nd order difference equation.  Since two initial conditions are needed for a 2nd order IVP, 

we have enough information to compute y1 and y2 to start the recursive expression given above. 

Now, for a 1-D 2nd order BVP, there is only one condition given at each end point  --  which 

means that we do not have sufficient information to get the recursive algorithm given by         

eqn. (25) started.  Thus, for BVPs, the 2nd order difference equation is usually written in the 

following form, 

i 1 i i 1f (y , y , y ) 0            (26) 

and, since there are N equations of this type (one for each node in the system), the result is a 

system of N equations with N unknowns  --  which must be solved simultaneously.   

Thus, the BVP is a much more challenging problem computationally, since it is not uncommon 

to have a very large value for N in practical engineering applications (N > 10 million is fairly 

routine in multidimensional problems).  Thus, there is a real need to have the capability to solve 

very large systems of coupled algebraic equations (this will motivate our studies in Lesson 6).  

And, since we are always interested in solving more and more complex models, we are always 

pushing the computer’s ability to the limit.  As the computational power of the available 

computer hardware and software continues to grow, so will our ability to solve larger, and more 

complex problems.  Today, we routinely solve problems on the PC that were not even possible 

on large mainframe computers 20 years ago  --  and the available power just continues to 

increase!  Who knows what will be possible in another 20 years… 

 


