
Applied Engineering Problem Solving  (CHEN.3170) 

Part I:  Matlab Overview 

Lesson 2:  Introduction to Linear Algebra  &  Array and Matrix Operations in Matlab 

Lesson Introduction/Overview 

The previous lesson introduced Matlab by focusing on evaluating and plotting functions of a 

single variable.  In this unit we introduce arrays and matrix operations in Matlab in much more 

detail, and illustrate their use in a variety of applications  --  where one special emphasis will be 

on evaluating and plotting functions of two variables.   

Although Matlab can treat multidimensional arrays, we will focus our attention at this point on  

1-D and 2-D arrays  --  which are commonly referred to as vectors and matrices, respectively.  

As part of the current development, we will introduce some common notation and analytical 

manipulations from the field of Linear Algebra, and discuss some concepts related to the 

analytical solutions of systems of equations.  The discussion of computer techniques for the 

solution of linear and nonlinear equations will come later in the semester (Lesson #6).  Our 

interest, at present, is primarily associated with the basic notation of linear algebra, on the 

fundamentals of matrix addition, subtraction, and multiplication, and on some fundamental 

concepts concerning the solution of linear systems of equations.  And, from a Matlab 

perspective, we are also interested in how matrix operations are related to the element-by-

element arithmetic introduced earlier in Lesson #1. 

------------------------- 

Note:  Notice that the above list of linear algebra operations does not include matrix division.  

This is because there is no such thing as formal matrix division!  Instead, one defines an inverse 

matrix and does matrix multiplication with the inverse matrix.  For example, for an equation 

containing scalar variables, say ax = b, we can write x as  

 1b 1
x b a b

a a

 
   

 
 

where each of these forms are equivalent.  However, for a matrix equation, Ax = b, the only 

valid way to write the solution vector x is given by 

 
1x A b  

where the bold face text implies that the variable is a matrix (upper case) or vector (lower case).  

Thus, we see that there is no division involved here.  This is a confusing point because Matlab, 

and many of the texts that describe various Matlab matrix operations, routinely refer to matrix 

division.  This is a point that we will discuss later in this lesson and touch on again in Lesson #6.  

For now, whenever you see the matrix division operator discussed, just think of it as an inverse 

operation  --  and we will add more substance to this statement a little later on… 

------------------------- 

The subjects associated with this lesson are contained primarily in Chapters 2, 3 and 10 of the 

Matlab text by Gilat and in Chapters 2 and 8 in your Numerical Methods text by Chapra.  In 

addition, Section 11.1 in Chapra discusses the matrix inverse and Section 13.1 also briefly 
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introduces the subject of matrix eigenvalues, both of which will be discussed here in Lesson #2.  

You should read these chapters and individual sections, paying special note to the following: 

 Creating and working with arrays in Matlab and obtaining a good understanding of array 

indexing. 

 Element-by-element operations (addition, subtraction, multiplication, division, and 

exponentiation). 

 Various matrix operations (addition, subtraction, multiplication, and the matrix 

transpose). 

 Several concepts from Linear Algebra including the inverse matrix and matrix 

eigenvalues and eigenvectors. 

 Some special matrices and their generation in Matlab. 

Note that the whole field of linear algebra was developed to work with, and to find solutions to, 

systems of algebraic equations.  This is an extremely important area  --  we plan to study the 

basic concepts, terminology, and analytical manipulations here in this lesson, and then the 

practical application of these concepts will be treated in more detail in Lesson #6 after we 

discuss some computational solution techniques for linear and nonlinear equations.  Thus, you 

will have to wait a little to see the real application of many of the concepts discussed here.  

However, since we want to stay application-focused throughout this course, it should be noted 

that another particularly important general application of a matrix or array is simply for storage 

of information  --  and this is the primary application area we will explore further in this lesson. 

Array Indexing in Matlab 

In general, you should think of a matrix as a two-dimensional array of cells that holds 

information.  Each cell can contain a number, a character, or a sequence of numbers and/or 

characters.  Thus, in general, a matrix element can itself be a matrix, which can contain matrices, 

and so on.  For usage in this lesson, however, we will stick to the normal case where the matrix 

simply holds a rectangular array of numbers, such as 

 
0 1 2 4

5 1 3 1

 
  

 
A  

In this case, A is said to be a 24 matrix, with 2 rows and 4 columns.  An arbitrary element of 

the matrix is denoted as aij, where the i subscript refers to row i and the j subscript denotes 

column j.  Thus, the a22 element is –1 and the value of a14 is 4, etc.. 

Now, in Matlab, we could generate this matrix explicitly with 

>> A = [0 1 2 4; 5 -1 3 1] 

A = 

     0     1     2     4 

     5    -1     3     1 

 

where we see that the various rows are separated by a semi-colon within the square brackets.  

Note that, to form a regular 2-D array, every row must have the same number of entries (i.e. 

same number of columns). 
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To address a single element of A, we simply specify the appropriate row and column indices 

within parentheses.  For example, the a22 element is printed to the screen with the following 

command: 

>> A(2,2) 

ans = 

    -1 

 

I can also assign all the elements of the first row of A to vector b as follows: 

>> b = A(1,:) 

b = 

     0     1     2     4 

 

where, as we saw in the last lesson, the : is the usual repeat operator.  The RHS of this Matlab 

expression says “assign row 1, all columns of A to row vector b.” 

Similarly, I can assign the third column of A to column vector c by  

>> c = A(:,3) 

c = 

     2 

     3 

 

In general, when referring to specific elements of a 2-D array, we simply need to specify the 

appropriate row and column indices of the original matrix.  For example, what would be the 

outcome of typing d = A(:,[1 4]) or e = A(1,1:3:4), etc.?  Try it and see… 

This array indexing capability is important in many applications in Matlab.  For example, I could 

store the homework grades for this class in a matrix.  Let’s say there will be 12 homework sets 

and that there are 25 students in the class.  Then an array, G, with 25 rows and 12 columns could 

store all the desired grade information.  Now, assuming that matrix G was available, I could 

access all 12 grades for Student #5 by typing G(5,:), and compute his or her average homework 

grade with sum(G(5,:))/length(G(5,:)).  Similarly, I could easily calculate the class average on 

HW #12 with sum(G(:,12))/length(G(:,12)). 

It is important to note that G is a matrix, that G(5,:) and G(:,12) are vectors (row and column 

vectors, respectively), and that G(5,12) is a scalar (i.e. the grade on HW #12 for Student #5).  So 

when referring to variable G, it makes a difference whether or not you specify the whole array or 

only selected portions of the array. 

As seen above, Matlab has many built-in commands for working with arrays.  The sum and 

length commands that were used above, as well as the max, min, size, find, etc. commands, are 

used quite frequently  --  and I suggest that you use the Matlab help facility to learn about some 

of these very useful functions. 

------------------------- 

Note:  If you would like to experiment with the above commands, you can easily generate a 

2512 matrix of random entries with values between 60 and 100 as follows (here I assume no 

one would get less than a 60 on their HW assignments): 

>> G = (100 - 60)*rand(25,12) + 60; 

 

Now executing the above commands in sequence gives 

>> G(5,:) 
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ans = 

95.6520  67.9526  66.0349  84.8524  77.3163  79.9325  60.5145  82.1937  75.7296  67.6447   

91.7549  82.6295 

 

>> sum(G(5,:))/length(G(5,:)) 

ans = 

   77.6840 

 

>> sum(G(:,12))/length(G(:,12)) 

ans = 

   83.2343 

 

Thus, it looks like Student #5 did okay on his or her HW with about a 78 average.  In addition, 

the whole class seemed to do pretty well on HW #12, with a class average of about 83.  

Hopefully you will even have better grades than these randomly selected values… 

------------------------- 

Now, when working with arrays, there are two types of arithmetic operations that can be 

performed; element-by-element arithmetic and matrix arithmetic.  Getting comfortable with 

these operations is essential for the efficient use of Matlab in real problems, so we will take a 

little time to be very explicit with the rules of both these types of operations. 

Element-By-Element Operations 

This type of arithmetic is conceptually simple  --  one simply performs the desired operation 

element-by-element for every term of the array.  To do element-by-element operations with two 

or more arrays, the array sizes must be identical.  Using discrete notation, we can explicitly 

define the various array operations and then show a specific example using the following two 

arrays: 

>> A = [0 1 2; 3 4 5],   B = [3 4 5; 0 1 2] 

A = 

     0     1     2 

     3     4     5 

B = 

     3     4     5 

     0     1     2 

 

Addition:  C = A + B  cij = aij + bij     (1) 

>> C = A + B 

C = 

     3     5     7 

     3     5     7 

 

Subtraction:  C = A - B  cij = aij - bij     (2) 

>> C = A - B 

C = 

    -3    -3    -3 

     3     3     3 

 

Multiplication: C = A.*B  cij = aij * bij     (3) 

>> C = A.*B 

C = 

     0     4    10 

     0     4    10 

 

Division:  C = A./B  cij = aij / bij     (4) 

>> C = A./B 

Warning: Divide by zero. 

(Type "warning off MATLAB:divideByZero" to suppress this warning.) 
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C = 

         0    0.2500    0.4000 

       Inf    4.0000    2.5000 

 

Exponentiation: C = A.^n  cij = aij
n     (5) 

>> C = A.^2      % n = 2, for this example 

C = 

     0     1     4 

     9    16    25 

 

where all the results are as expected (notice how gracefully Matlab handles a division by zero  --  

most other languages simply crash the program).  Note here that element-by-element 

multiplication, division, and exponentiation require the use of “dot arithmetic” as was used 

extensively in Lesson #1. 

Matrix Operations 

Matrix addition and subtraction are identical to the element-by-element operations noted above.  

Thus, the Matlab syntax and the result of these operations are also the same.  Because, by 

definition, matrix addition and subtraction are done element-by-element, 

Addition:  C = A + B  cij = aij + bij     (6) 

Subtraction:  C = A - B  cij = aij - bij     (7) 

the Matlab syntax does not include a dot in front of the + or – symbol.  Recall that Matlab 

performs matrix operations by default, so matrix A added to matrix B is simply C = A + B and, 

since this also happens to be identical to the above element-by-element operation, no dot is 

required (or allowed) for either. 

Now, matrix multiplication is a completely different story!!!  One way to introduce the rules 

for matrix multiplication is by comparison to the notation associated with a system of algebraic 

equations.  To start, let’s write a specific system of three equations and three unknowns, 

 

1 2 3

1 2 3

1 2 3

3x 2x 2x 1

x 2x 3x 0

4x x 2x 0

  

  

  

         (8) 

where the unknowns are x1, x2, and x3.  Now, we can think of each equation as a row, with the 

coefficients of the three unknowns properly ordered into the corresponding columns or terms of 

each equation.  For example, we can say that the coefficient of the third unknown in the second 

equation is –3.  If we group all the coefficient information into a matrix (since a matrix is just a 

rectangular array for storage of information), then a23 = -3, where the row index corresponds to 

the equation number and the column index denotes the unknown of interest (third unknown or x3 

in the above example).  With this simple one-to-one correspondence, we can write a general 33 

system of equations as 

 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

        (9) 

where aij is the coefficient of xj in the ith equation, and bi is the value on the RHS of equation i. 



Applied Eng. Problem Solving  --  Linear Algebra & Array and Matrix Operations in Matlab 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving  

by Dr. John R. White, UMass-Lowell  (September 2017) 

6 

Recognizing that quantities with a single index are stored in vectors and that information 

cataloged with two subscripts to identify the storage location refer to 2-D arrays (matrices), we 

can write the above equations, using matrix-vector notation, as 

 Ax b           (10) 

where 

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b

a a a x and b

a a a x b

     
     

  
     
          

A x b  

In eqn. (10), the notation, Ax, implies that vector x is pre-multiplied by matrix A.  Since we want 

eqn. (10) to be a shorthand equivalent to eqn. (9), then the rules of matrix-vector multiplication 

must give the result in eqn. (9), or 

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b

a a a x b

a a a x b

     
     

 
     
          

 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

  (11) 

Basically, the correspondence in eqn. (11) says it all!  Focusing, for example, on the first 

equation in the set, we see that 

 11 1 12 2 13 3 1a x a x a x b    

can be written as 

 
3

1 1j j

j 1

b a x


           (12) 

In fact, for any element of b, say for example, bi, which corresponds to row i of the system of 

equations, we have 

 
3

i ij j

j 1

b a x


           (13) 

and this is precisely what we mean by matrix-vector multiplication, that is 

  Ax b i ij j

j

b a x       (14) 

This is often referred to as the row view of matrix-vector multiplication.  The inner product of 

row i of matrix A with vector x gives the scalar bi.  Recall that the inner product of two vectors, x 

and y, gives a scalar, , or 

 i i

i

x y            (15) 

Thus, matrix-vector multiplication is simply a sequence of inner product operations  --  one for 

each row of the system of equations. 



Applied Eng. Problem Solving  --  Linear Algebra & Array and Matrix Operations in Matlab 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving  

by Dr. John R. White, UMass-Lowell  (September 2017) 

7 

Now, extending this view to matrix-matrix multiplication is quite straightforward.  To do this, 

let’s take eqn. (10) and write it for two different RHS vectors, or 

 1 1 2 2and Ax b Ax b  

where x1 is the solution to the first set of equations and x2 is the vector satisfying the second 

system  --  where the coefficient matrix is the same in both cases but the RHS vectors are 

different.  Now, with our view that a matrix is simply a convenient form for storage of 

information, let’s store the two solution vectors x1 and x2 in a matrix, or 

  
11 12

1 2 21 22

31 32

x x

x x

x x

 
 

 
 
  

X x x  

where the precise notation is important:  X  matrix , xj  jth solution vector, and xkj  kth 

component of xj. 

Writing the two RHS vectors in a similar way, we can form a matrix equation, as follows 

 AX B           (16) 

or, 

 

11 12 3 11 12 11 12

21 22 23 21 22 21 22

31 32 33 31 32 31 32

a a a x x b b

a a a x x b b

a a a x x b b

     
     


     
          

      (17) 

In general, if the size of A is n  p and X is of order p  m, then the resultant matrix, B, is of 

order n  m  --  where we note that, for valid matrix multiplication, the inner matrix dimensions 

must agree.  This says that the number of columns of A must be equal to the number of rows of 

X for the operation, AX, to be valid.  This also implies that, in general, AX XA   --  that is, the 

order of operation is absolutely essential!!!  In fact, in our above example, AX = B, we have 

(33)(32) = (32), so the result will be a 32 matrix, as expected.  However, note that the 

operation XA is not even defined since (32)(33) has inner matrix dimensions that do not 

match… 

Following the row view of matrix multiplication, we can write the discrete form of eqns. (16) 

and (17) as 

 ij ik kj

k

b a x           (18) 

where the individual element, bij, of the resultant matrix, B, is given as the inner product of row i 

of matrix A and column j of matrix X  --  where clearly the number of elements (columns) in 

each row of A must be equal to the number of values (rows) in each column of X (i.e. the inner 

matrix dimensions must agree).  In summary, I like to view the value of bij simply as “row i of A 

into column j of X”.  With this view, the precise definition of matrix-matrix multiplication is 

given by 

 ij ik kj

k

b a x  AX B       (19) 
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Well, you are now an expert with matrix multiplication!  As a test of your understanding, you 

should verify, by hand calculation, that the following example cases are indeed correct.  My 

suggestion is to always check the size of the result first [(n  p)(p  m) = n  m] and then do the 

required inner products to form all the elements of the resultant matrix (and be careful with the 

arithmetic).  Here are some examples: 

 

1 2 3 3 10

0 1 1 2 1

1 1 1 1 0

     
     

 
     
          

 

 

1 1 0 1
2 1 0 2 3 1 4

0 1 1 2
2 2 1 3 2 2 6

1 2 0 0

 
    

           

 

 

1 0 0 1 0 1 0

0 1 0 2 2 2 2

0 0 1 3 1 3 1

     
     


     
          

 

    

1 2

1 2 1 0 1 0 6

1 2

 
 

 
 
  

 

 

3 3 6 3

1 1 2 1 1 2 1

2 2 4 2

   
   

  
   
      

 

  

1

3 1 2 2 3

1

 
 


 
  

 

So, were you able to generate all these by hand? 

The purpose for addressing some linear algebra early in the semester is because this is Matlab’s 

strong point  --  after all, Matlab stands for Matrix Laboratory  --  and simple matrix 

manipulation is very useful in many application areas.  Thus, as you might expect, Matlab can do 

the above matrix multiplication examples rather easily, as we can verify with the following 

Matlab code: 

>>   format compact 

>> A = [1 2 3; 0 1 -1; -1 1 1];  x = [3; 2; 1];  A*x 

ans = 

    10 

     1 

     0 

 

>> A = [2 1 0; 2 2 1];  B = [1 1 0 1; 0 1 -1 2; 1 -2 0 0];  A*B 

ans = 

     2     3    -1     4 

     3     2    -2     6 
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>> A = [1 0 0; 0 1 0; 0 0 1];  B = [1 0; 2 2; 3 1];  A*B 

ans = 

     1     0 

     2     2 

     3     1 

 

>> c = [1 2 -1];  C = [1 2; 0 1; 1 -2];  c*C 

ans = 

     0     6 

 

>> d = [3 1 2];   

>> d'*c 

ans = 

     3     6    -3 

     1     2    -1 

     2     4    -2 

 

>> d*c' 

ans = 

     3 

 

Note, in the last two examples, how the transpose operator (a single quote) was used to convert a 

row vector (which is easier to enter since it does not require any semi-colons) into a column 

vector for the operations desired in the examples.  In general, the matrix transpose simply 

interchanges the rows and columns of a matrix and it is formally defined by 

 T
ij jib a  B A        (20) 

Some Special Matrices 

Before leaving this brief demonstration of matrix operations in Matlab, it is important to note 

that there are many special matrices that are of interest in a variety of applications  --  and Matlab 

makes it very easy to develop and work with these special arrays.  For example, a 33 identity 

matrix, a 23 matrix full of zeros, a 52 matrix with all ones, and a diagonal matrix with 1, 2, -1, 

and 0 along the diagonal are easily generated via the following Matlab code: 

>> eye(3) 

ans = 

     1     0     0 

     0     1     0 

     0     0     1 

 

>> zeros(2,3) 

ans = 

     0     0     0 

     0     0     0 

 

>> ones(5,2) 

ans = 

     1     1 

     1     1 

     1     1 

     1     1 

     1     1 

 

>> diag([1 2 -1 0]) 

ans = 

     1     0     0     0 

     0     2     0     0 

     0     0    -1     0 

     0     0     0     0 
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In addition, we can also generate sequences of random numbers, such as a 10001 column vector 

with uniformly distributed random numbers between 0 and 1, and a 12000 row vector with 

normally distributed random values having a mean value of  = 10 and a standard deviation of   

 = 2, or 

>> x = rand(1000,1);          % uniformly distributed random numbers 

>> y = 2*randn(1,2000)+10;    % normally distributed values with mean = 10, std = 2 

 

To see these last two quantities, we can plot the uniformly and normally distributed vectors as 

follows: 

>> subplot(2,1,1),hist(x) 

>> title('1000 Uniformly Distributed Numbers Between 0 and 1') 

>> xlabel('Numerical Values'), ylabel('Frequency') 

 

>> subplot(2,1,2),hist(y) 

>> title('2000 Normally Distributed Numbers with \mu = 10 and \sigma = 2') 

>> xlabel('Numerical Values'), ylabel('Frequency') 

 

with the resultant plot given in Fig. 1.  Note here, as expected, the rand command gives a nearly 

uniform distribution of random numbers, and the randn function gives an approximate Gaussian 

distribution  --  these are clearly shown in the upper and lower subplots, respectively, in Fig. 1. 

Note:  In general, if there are any Matlab commands used in the examples in these notes that you 

are not familiar with, you can always type help command_name to get the full scoop… 

 

 

Fig. 1  Visualization of uniformly and normally distributed sequences in Matlab. 
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Well, this completes our brief introduction to array and matrix operations in Matlab.  You should 

now be comfortable with creating and working with arrays in Matlab and with using array 

indexing to extract and/or modify information from existing arrays.  The differences between dot 

arithmetic and matrix arithmetic should now be clear, and you should have a good foundation for 

some additional concepts from the subject of Linear Algebra. 

Linear Algebra Concepts and Analytical Manipulations 

Some of the notation needed for an introductory treatment of linear algebra has already been 

used in our discussions from above.  This subsection formalizes some of this notation and it also 

introduces a number of new concepts and analytical manipulations that will assist us in our study 

of solution methods for linear and nonlinear equations.  Here we will only introduce analytical 

techniques   --  we delay the discussion of numerical/computer methods until Lesson #6.   

Let’s start our introductory treatment of Linear Algebra by defining some formal notation 

associated with vectors and matrices. 

A vector is simply an ordered set of numbers or quantities.  A column vector is usually written as 

 

1

2

3

x

x

x

 
 


 
  

x  

and a row vector is given by 

  T
1 2 3x x xx  

where the length of the vector is equal to the number of elements.  The usual notation, without 

the superscript T to denote the transpose operation, refers to the multiple row, single column 

format  --  thus, the vector quantity is referred to as a column vector.  Similarly, the row vector 

has only one row but multiple columns. 

Given two column vectors,    
T

1 2 3 1 2 3x x x and y y y 
T

x   y , the most common 

arithmetic operations are defined as follows: 

Addition 

 

1 1

2 2 i i i

3 3

x y

x y or z x y

x y

 
 

     
 
  

z x y                (21) 

Multiplication by a Scalar 

 

1

2 i i

3

x

x or z x

x

 
 

     
 
  

z x                  (22) 
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Dot Product (inner product) 

  
1

T
1 2 3 2 1 1 2 2 3 3 i i

i

3

y

x x x y x y x y x y or x y

y

 
 

         
 
  

x y x y  (23) 

Outer Product 

  
1 1 1 1 2 1 3

T
2 1 2 3 2 1 2 2 2 3

3 3 1 3 2 3 3

x x y x y x y

x y y y x y x y x y

x x y x y x y

   
   

  
   
      

A xy  

or ij ij i ja where a x y   A                  (24) 

A matrix is a regular 2-D array of numbers or quantities and is usually denoted with a bold 

capital letter, 

 ij ija , b , etc.       A    B     

where i is the row index and j is the column index.  For example, a 33 matrix can be written as 

 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 


 
  

A  

Again, many of the common arithmetic operations with matrices are as follows: 

Addition 

 ij ij ijor c a b   C A B                 (25) 

Scalar Multiplication 

 ij ijor c a   C A                  (26) 

Matrix Multiplication 

 ij ik kj

k

or c a b C AB                 (27) 

where the number of columns of the first matrix must be equal to the number of rows of the 

second matrix, or 

 
    m n n p m p

 

   

     A    B       C
 

where the notation m n , for example, implies that the matrix has m rows and n columns. 

Matrix-Vector Multiplication 

 i ij j

j

or y a x y Ax                 (28) 
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Matrix Transpose 

 T
ij jior c a C A                   (29) 

Also there are a number of special matrices of interest.  For example, some of these matrices 

include diagonal, triangular, square, and identity matrices, as well as symmetric and skew 

symmetric matrices, etc..  Most of the names for these matrices are self-explanatory.  A square 

matrix is one with an equal number of rows and columns.  A lower triangular matrix is a square 

matrix with all zero elements above the diagonal elements.  An identity matrix, as illustrated 

above using Matlab’s eye command, is a diagonal square matrix with ones along the main 

diagonal and zeros in all the off-diagonal locations (typically denoted as I).  Also, a real 

symmetric matrix is one that satisfies 

 T
ji ijor a a A A                  (30) 

and a real skew-symmetric matrix satisfies the relationship 

 T
ji ijor a a   A A                 (31) 

Other relationships will be defined as needed in subsequent subsections. 

Now, as already emphasized, the major motivation for the matrix/vector notation outlined above 

is as a shorthand representation for linear systems of algebraic equations.  In particular, the 

system of linear equations 

11 1 12 2 1n n 1

21 1 22 2 2n n 2

n1 1 n2 2 nn n n

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

       (32) 

can be written in matrix notation as 

 Ax = b           (33) 

where explicit definitions of the A and b coefficient matrices and solution vector x are given by 

 

11 12 1n 1 1

21 22 2n 2 2

n1 n2 nn n n

a a a b x

a a a b x
and

a a a b x

     
     
       
     
     
     

A b x   (34) 

Although we will discuss several computational solution techniques in Lesson #6, the most direct 

method for solving systems of equations involves a sequence of elementary row operations.  

These operations represent legal algebraic manipulations that do not alter the basic equality 

associated with the original equations.  The purpose of the row operations is to take the original 

equations and put them into a form that is easier to solve than the original equations.  There 

are three row operations that are used to systematically simplify the original system of equations: 

1. Interchange two rows 

2. Multiply a row by a constant 
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3. Add a constant times one row to another row 

The most well-known method that implements these row operations, called the Gauss 

Elimination Method, takes the original system and converts the matrix into upper triangular 

form (often called row echelon form).  In this form, back substitution is used to evaluate the 

unknown solution vector x, since there is only one unknown per equation if evaluated 

sequentially starting with equation n and working backwards to the first equation.  The required 

transformation (i.e. the elimination step as it is often called) can be represented symbolically 

using an augmented matrix notation, where  A A b  is the augmented matrix.  For example, 

a 33 system would be transformed as follows: 

 0

0 0

          
   
       
   
           

 

where the * notation implies a general nonzero entry and the last column in the original matrix 

contains the right hand side b vector.  Of course, after transformation, the entries in the resultant 

matrix are different from the original case.  However, this new system, with the nn part of the 

augmented matrix in upper triangular form, is an equivalent representation of the original 

equation.  Once in this form, one can easily use back substitution to solve for the unknown x 

vector. 

As a simple example of this method, consider the following 3x3 system: 

 
1

2

3

3 2 0 x 7

1 3 2 x 9

0 1 3 x 5



     
    

  
    
         

        A       x    b

        (35) 

Written in augmented matrix form, this becomes 

 

3 2 0 7

1 3 2 9

0 1 3 5

  
 
 
 
   

 

Now, as our first row operation, take 1/3 times row 1 added to row 2 to give 

 

3 2 0 7

0 7 / 3 2 20 / 3

0 1 3 5

  
 


 
   

 

Note that only row 2 is modified in this step and that the first element of the row is now zero.  In 

fact, the whole 1st column below the 1,1 element (the pivot element) is zero, and we are well on 

our way to achieving an upper triangular matrix (all zeros below the main diagonal).   

Now we choose the 2,2 element as the pivot element.  In particular, we multiply row 2 by 3/7 

and add the result to row 3 to give 
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3 2 0 7

0 7 / 3 2 20 / 3

0 0 15 / 7 15 / 7

  
 


 
  

 

This system is now in row echelon form and can be written as a standard matrix equation, 

 

1

2

3

3 2 0 x 7

0 7 / 3 2 x 20 / 3

0 0 15 / 7 x 15 / 7

     
    

 
    
        

       (36) 

where it is important to emphasize that, since only legal row operations were performed, the 

system in eqn. (36) is equivalent to the original 3x3 system given by eqn. (35). 

Now, since eqn. (36) is written in row echelon form, using back substitution (i.e. evaluating the 

equations in reverse order) gives 

 3

15 / 7
x 1

15 / 7


    

 
 3

2

3 20 / 3 2x 20 6
x 2

7 7

 
    

 
 2

1

7 2x 7 4
x 1

3 3

   
     

A quick check shows that x = [-1  2  -1]T is indeed the correct solution to the original system of 

equations  --  that is, substitution into eqn. (35) gives 

 3(-1) – 2(2) + 0(-1) = -7     (checks ok) 

 -1(-1) + 3(2) – 2(-1) = 9     (checks ok) 

 0(-1) – 1(2) + 3(-1) = -5     (checks ok) 

Thus, the use of the row operations noted above to transform the original system into a simpler 

form turns out to be a nice way to solve linear systems.  However, the hand manipulations 

performed in the above example become very tedious when there are more than 4 or 5 equations 

to solve, so we clearly need to formalize this procedure for computer implementation for solution 

of larger systems.  In fact, the so-called Gauss Elimination Method is just a formal implement-

tation of the procedure used above and we will discuss this computational approach in further 

detail in Lesson #6  --  here we show the basic concepts via hand calculations for small systems 

and in Lesson #6 we will develop a formal algorithm for actual computer implementation. 

Another hand manipulation technique for solving small systems of equations involves the formal 

definition of the so-called matrix inverse.  The matrix inverse, denoted as A-1, is a quantity used 

in the formal manipulation and solution of systems of equations.  A-1 is defined such that  

A-1A = AA-1 = I         (37) 

This says that a square matrix multiplied by its inverse gives the identity matrix.  Also, one 

should note that the identity matrix operating on a matrix or vector of appropriate size does not 



Applied Eng. Problem Solving  --  Linear Algebra & Array and Matrix Operations in Matlab 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving  

by Dr. John R. White, UMass-Lowell  (September 2017) 

16 

alter the original quantity.  These facts can be used to write the formal solution to a system of 

equations.  In particular, given Ax = b, a formal solution for x can be developed as follows: 

Starting with Ax = b, pre-multiply both sides by A-1 to give  

A-1Ax = A-1b  

but A-1A = I, and Ix = x, therefore we have 

x = A-1b          (38) 

Note:  Recall that the order of matrix operations is important  --  that is why we emphasize the 

word “pre-multiply” in the above development! 

This formal solution is very important, since it provides a basis for discussing the uniqueness and 

existence of solutions and it also allows for various manipulations of matrix equations.  

However, the reader should be cautioned that this formulation is not the most efficient procedure 

for actually computing the solution vector x.  For computer solution of Ax = b, especially for 

large systems, other techniques are far more efficient (since the computation of A-1 is more 

computationally intensive that solving Ax = b by other means  --  such as by Gauss Elimination). 

There are many cases, however, when it is useful to actually evaluate the inverse matrix.  There 

are a variety of ways to do this.  In particular, for low-order systems, the following formula is 

often applied, 

 
T

1 adj

det det

  
A C

A
A A

         (39) 

where adj A is the adjoint of A, C is the matrix whose elements are the cofactors of A, and det A 

is the determinant of A (note that adj A = CT).   

The determinant of a matrix, denoted as det A or |A|, appears frequently in applications of matrix 

equations.  It is sometimes thought of as a measure of the size or magnitude of a matrix.  

Independent of its formal interpretation, it does appear in many formal definitions of other 

quantities and we must be able to compute det A in lots of situations.  For hand manipulation of 

low order systems, Laplace’s expansion for det A is probably the best way to evaluate this 

quantity (computer computation is done more efficiently using row operations). 

Laplace’s expansion can be written in terms of an expansion along any row i as 

 ij ij

j

det a c for any iA               (40) 

or down any column j as 

 ij ij

i

det a c for any jA                (41) 

where cij is the cofactor of element aij.  The elements of the cofactor matrix are defined as 

 
i j

ij ijc 1 M


           (42) 

where Mij is referred to as the minor of the aij element.  Mij is defined as the determinant of the 

matrix formed by deleting the ith row and the jth column from the original matrix.   



Applied Eng. Problem Solving  --  Linear Algebra & Array and Matrix Operations in Matlab 

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving  

by Dr. John R. White, UMass-Lowell  (September 2017) 

17 

Well, since I expect that all this is quite confusing (because of all the new terminology), let’s try 

to clarify things somewhat with an example.  In particular, given a general 33 matrix 

 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 


 
  

A  

we can evaluate Laplace’s expansion by expanding down column 1 [use eqn. (41) with j = 1, for 

example], giving 

 11 11 21 21 31 31det a c a c a c  A  

where 

   22 23

11 11 22 33 23 32

32 33

a a
c 1 M a a a a

a a
      

   12 13

21 21 12 33 13 32

32 33

a a
c 1 M a a a a

a a
        

   12 13

31 31 12 23 13 22

22 23

a a
c 1 M a a a a

a a
      

Note that this is exactly the same result as if one expands along row 1 (or any other row or 

column).   

------------------- 

A Note about Determinants:  The determinant of a matrix may or may not be altered under 

certain variations to the original matrix.  Since determinants are often computed using row 

operations, several important relations are noted as follows: 

1. The det A is not altered if the rows are written as columns in the same order.  Therefore, 

det A = det AT          (43) 

2. If any two rows or columns are interchanged, the value of det A is multiplied by -1. 

3. The value of det A is not altered if the elements of one row are altered by adding any 

constant multiple of another row to them. 

4. The determinant is multiplied by a constant  if any row is multiplied by . 

5. The determinant of a diagonal matrix is simply the product of the diagonal elements.  This is 

also true for triangular matrices.  This observation, along with the above statements, 

establishes a method for computer calculation of the det A using row operations by 

transforming the original matrix into upper triangular form and then taking the product of the 

diagonal elements  --  being careful to account for row interchanges and normalization steps  

6. For square matrices, 

det (AB) = det (BA)  = det A det B       (44) 

------------------- 
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Although eqn. (39) is usually used for finding A-1 for small systems, for larger systems and for 

automated implementation on the computer, we can also apply elementary row operations to 

transform the original augmented matrix as follows: 

 

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

        
   
      
   
           

     (45) 

With this symbolic notation, we see that the original matrix is augmented with the identity 

matrix.  Extending the notation from before, this says we are trying to evaluate a matrix equation 

of the form, AX = I, for the unknown matrix X.  Therefore, we know, from the definition of the 

inverse matrix, that X = A-1.  We can solve for X by performing row operations on the 

augmented matrix [A  I], finally putting it into the form [I  X].  This basic technique is often 

referred to as the Gauss-Jordan Method. 

Let’s illustrate these two methods for finding the inverse matrix [i.e. via eqn. (39) and by the use 

of row operations] using the following 3x3 matrix: 

 

3 2 0

A 1 3 2

0 1 3

 
 

  
 
  

 

Method I [using eqn. (39)]: 

Using eqn. (40) let’s first find det A by expanding along row 1 (i.e. i = 1), or 

      
3 2 1 2 1 3

det 3 ( 2) 0 3 7 2 3 0 1 15
1 3 0 3 0 1

   
        

 
A  

Also, using eqn. (42), the elements of the cofactor matrix are  

 

7 ( 3) 1

( 6) 9 ( 3)

4 ( 6) 7

    
 

     
 
     

C  

Therefore, 

 
T

1

7 6 4
1

3 9 6
det 15

1 3 7



 
 

 
 
  

C
A

A
        (46) 

and a quick check on 
?

1 A A I  gives 

 

7 6 4 3 2 0 15 0 0
1 1

3 9 6 1 3 2 0 15 0 I (checksok)
15 15

1 3 7 0 1 3 0 0 15

     
     

   
     
          

 

which shows that all the manipulations have been done correctly! 
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Method II (using row operations): 

For the Gauss-Jordan method, we start with the original matrix augmented with the 33 identity 

matrix, or 

 

3 2 0 1 0 0

1 3 2 0 1 0

0 1 3 0 0 1

 
 
 
 
  

 

Now let’s systematically perform a set of row operations to transform this matrix into the desired 

form.  To start, let’s normalize row 1 so that the lead coefficient is unity, giving 

 

1 2 / 3 0 1/ 3 0 0

1 3 2 0 1 0

0 1 3 0 0 1

 
 
 
 
  

 

Now add row 1 to row 2 to give 

 

1 2 / 3 0 1/ 3 0 0

0 7 / 3 2 1/ 3 1 0

0 1 3 0 0 1

 
 


 
  

 

Normalizing row 2 so that the pivot element (2,2 element) is unity gives 

 

1 2 / 3 0 1/ 3 0 0

0 1 6 / 7 1/ 7 3 / 7 0

0 1 3 0 0 1

 
 


 
  

 

Now add row 2 to row 3 to give 

 

1 2 / 3 0 1/ 3 0 0

0 1 6 / 7 1/ 7 3 / 7 0

0 0 15 / 7 1/ 7 3 / 7 1

 
 


 
  

 

Normalizing row 3, we have 

 

1 2 / 3 0 1/ 3 0 0

0 1 6 / 7 1/ 7 3 / 7 0

0 0 1 1/15 3 /15 7 /15

 
 


 
  

 

Continuing to perform row operations to eliminate the upper triangular terms, we add 2/3 times 

row 2 to row 1 to give 

 

1 0 4 / 7 3 / 7 2 / 7 0

0 1 6 / 7 1/ 7 3 / 7 0

0 0 1 1/15 3 /15 7 /15

 
 


 
  
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Now add 4/7 times row 3 to row 1 to give 

 

1 0 0 7 /15 6 /15 4 /15

0 1 6 / 7 1/ 7 3 / 7 0

0 0 1 1/15 3 /15 7 /15

 
 


 
  

 

Finally, 6/7 times row 3 added to row 2 gives 

 

1 0 0 7 /15 6 /15 4 /15

0 1 0 3 /15 9 /15 6 /15

0 0 1 1/15 3 /15 7 /15

 
 
 
  

 

Therefore, 

 
1

7 6 4
1

3 9 6
15

1 3 7



 
 


 
  

A  

which is the same result obtained from Method I as given in eqn. (46)  --  this, of course, is as 

expected! 

Note that the A matrix used in this example is the same matrix from our previous example for 

solving Ax = b [see eqn. (35)].  Thus, now that we have A-1, we should be able to compute the 

solution vector x via x = A-1b.  Doing this as a check gives 

1

7 6 4 7 15 1
1 1

3 9 6 9 30 2
15 15

1 3 7 5 15 1



         
       

   
       
                

x A b      (47) 

which agrees perfectly with our previous result (as expected)! 

A couple of convenient relationships involving the inverse matrix should also be noted, as 

follows: 

1. If A is a diagonal matrix (a square matrix with all zeros in the off-diagonal locations), then 

1 1
iia    A           (48) 

2. The inverse of a product of square matrices is simply the product of the individual inverses in 

the opposite order, or  

  
1 1 1  AB B A          (49) 

To show this last relationship (as an example of manipulating matrix equations), we have 

  
1
AB C  

   
1
 AB AB ABC I  

Thus 
1BC A , or 

1 1 C B A , which proves the above statement. 
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Now, with a better understanding of the matrix inverse, determinants, cofactors, etc., we can talk 

about the existence and uniqueness of the solutions of equations of the form Ax = b.  Within this 

context, a new term called the rank of a matrix is often used.  Formally, the rank of a matrix is 

defined as the maximum number of linearly independent rows or columns in the matrix.  It is 

important to note that elementary row operations do not alter the rank of a matrix.  Also it should 

be noted that A and AT have the same rank. 

Now, for the usual case of n simultaneous equations with n unknowns, we have 

 
T

1 1and where
det

   
C

Ax b          x A b A
A

 

When discussing the existence and uniqueness of solutions, two situations can occur: 

I.  Non-Homogeneous Problems (b  0): 

In this case, b  0, and this system is said to be a non-homogeneous system.  For this situation, a 

single non-trivial solution exists if we have n linearly independent rows, which implies that rank 

A = n, that the det A is nonzero, and that A-1 exists.  When A-1 exists, A is said to be non-

singular, and the product of A-1 and b gives the unique solution vector x. 

II.  Homogeneous Problems (b = 0): 

If b = 0 , then x = A-1b implies, at first glance, that x must be the null vector since we are 

multiplying the inverse matrix and the b = 0 vector.  However, if det A = 0, then A-1 does not 

exist, and the solution form x = A-1b leads to an indeterminate form, which could lead to a 

nontrivial solution.  In fact, this is indeed the situation, and we can argue that there are nontrivial 

solutions only if A-1 does not exist.  In this case we say that A is a singular matrix.  This happens 

only if det A = 0 which implies that at least two of the rows of A are linearly dependent and that 

rank A < n. 

The ramifications of the above statements are extremely important when solving linear systems.  

They say that if det A  0, then we should be able to find a unique solution to the non-

homogeneous problem.  However, if det A = 0, no unique solution exists for the case where       

b  0 (i.e. the non-homogeneous problem)  --  there are either no solutions or an infinite number 

of solutions.  On the other hand, for the homogeneous case (i.e. the b = 0 case), the matrix must 

be singular for a nontrivial solution and, of course, since the problem has a zero right hand side 

there will be an infinite number of solutions only differing by an arbitrary normalization (if x is a 

solution to a homogeneous equation, than x is also a solution, where  is an arbitrary nonzero 

constant). 

To help your visualization of these comments, let’s look at a series of four simple examples: 

Ex. #1  --  Non-Homogeneous Case with rank A = n  

Given the two equations, 

1 2 1 23x 2x 1 and x x 1      

the matrix representation is given by 

1

2

x3 2 1

x1 1 1

    
        
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For this non-homogeneous case, det A = 3-2 = 1; thus, we expect that a single solution exists.  

Solution of this system via algebraic manipulation gives: 

From the 2nd equation:  1 2x 1 x    

Putting this into the 1st equation:  2 2 2 13 1 x 2x 1 or x 4 & x 3        

Thus, we indeed get a unique solution, x = [3  -4]T. 

Ex. #2  --  Non-Homogeneous Case with rank A < n  

Given the two equations, 

1 2 1 2

2
3x 2x 1 and x x 1

3
      

the matrix representation is given by 

1

2

x3 2 1

x1 2 / 3 1

    
        

 

For this non-homogeneous case, det A = 2-2 = 0; thus, the matrix is singular and, from the above 

discussion, we do not expect that a unique solution exists for this problem.   

To see this, notice what happens if the 2nd equation is multiplied by 3.  Doing this gives 

1

2

x3 2 1

x3 2 3

    
        

 

and, clearly, the two equations are inconsistent and no solution can be found.   

Notice, however, that if the RHS of the 2nd equation is changed to 1/3 (instead of -1), then the 

resultant equations are 

1 2 1 2

2 1
3x 2x 1 and x x

3 3
     

and the matrix representation is given by 

1 1

2 2

x x3 2 1 3 2 1
or

x x1 2 / 3 1/ 3 3 2 1

          
                     

 

Clearly, in this case, the equations are redundant and there are an infinite number of solutions.  

Thus, we see that for the non-homogeneous case with rank A < n, we either get no solution or an 

infinite number of solutions.  The bottom line here is that there are no unique solutions for this 

class of problems. 

Ex. #3  --  Homogeneous Case with rank A < n  

Given the two equations, 

1 2 1 2

2
3x 2x 0 and x x 0

3
     

the matrix representation is given by 
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1

2

x3 2 0

x1 2 / 3 0

    
        

 

This is the same matrix as for Ex. #2, so det A = 0.  From the above discussion, a homogeneous 

system with a singular matrix should lead to an infinite number of non-trivial solutions (notice 

that x = 0 always satisfies a homogeneous equation, but this is what we refer to as the trivial 

solution).  To find the non-trivial solutions, note that both equations lead to  

1 2

2
x x

3
   

and, from here, we see that we can write an infinite number of solutions as long as x1 and x2 have 

this required relationship: 

2 / 3 4 / 3 5 / 3
or or etc.

1 2 2.5

       
            

x x x  

Ex. #4  --  Homogeneous Case with rank A = n  

Given the two equations, 

1 2 1 23x 2x 0 and x x 0     

the matrix representation is given by 

1

2

x3 2 0

x1 1 0

    
        

 

This is the same matrix as for Ex. #1, so det A = 1.  From the above discussion, a homogeneous 

system with a non-singular matrix should only have a trivial solution (i.e. x = 0).   Clearly this is 

the case here, since the two equations are inconsistent  --  for 1 2 1 23x 2x x x 0     to be valid, 

both x1 and x2 must be zero!!! 

Really understanding these simple examples and all the linear algebra terminology that goes 

along with them (rank of a matrix, linear independence of equations, singular and non-singular 

matrices, homogenous and non-homogeneous systems, etc.) will be useful in our continuing 

discussions of solution techniques and in many other areas of mathematics.  Thus, make sure you 

have a good handle on the material in this subsection before continuing… 

------------------- 

A Brief Introduction to Eigenvalues and Eigenvectors:  Although we will not do much in this 

course with the so-called Classical Eigenvalue Problem (there is simply not enough time), it is 

important for you to at least be familiar with the concepts and terminology involved here, since 

this is such an important subject in many areas of practical application.  In addition, the 

introduction of this subject at this point is perfect, since it builds directly upon the uniqueness 

and existence concepts that were just discussed.  Thus, I could not resist at least giving a brief 

glimpse into this subject. 

From the above discussion on systems of linear algebraic equations, we saw that homogeneous 

equations with n equations and n unknowns require that the system matrix be singular for the 

existence of nontrivial solutions. The classical eigenvalue problem is a special case that falls 
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into this class of problems and it arises from the general problem given by Ax = b when b = x  

(that is, the right hand side vector is some constant times the solution vector x).  With this 

substitution, we have 

 Ax = x          (50) 

These systems occur frequently in applications and are usually written as 

   A I x 0           (51) 

which is a homogeneous system of equations (note that the identity matrix is needed here so that 

both terms inside the parentheses are matrices of the same size).  Therefore, for non-trivial 

solutions, we require that 

  det 0 A I          (52) 

which is referred to as the characteristic equation.  This gives rise to an nth order polynomial in 

  which has n roots  --  the n eigenvalues of a square matrix of order n. 

Note that the eigenvalues may be real and distinct, complex conjugates, repeated, or some 

combination of these forms.  Note also that the sequence 1 2 n, ,    is called the eigenvalue 

spectrum, with the magnitude of the largest eigenvalue denoted as the spectral radius, or 

 max spectral radius   

The eigenvector xi associated with the ith eigenvalue, i , is found by evaluating the 

homogeneous equation 

  i iA I x 0          (53) 

where the notation, xi, refers to the ith eigenvector, not the ith element of a given vector. 

As a specific example, let’s find the eigenvalues and eigenvectors of the same matrix that we 

have used in previous examples: 

 

3 2 0

A 1 3 2

0 1 3

 
 

  
 
  

 

The characteristic equation is given by 

 

3 2 0

1 3 2 0

0 1 3

 

     

 

A I  

Expanding the determinant along row 1 using Laplace’s expansion gives 
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 

 

 

2

2

2

3 2 1 2
(3 ) ( 2)

1 3 0 3

(3 ) (3 ) 2 2(3 )

(3 ) (3 ) 4

(3 ) 6 5

(3 )( 5)( 1)

   
    

  

     

   

     

     

A I

 

Thus, we can satisfy the requirement that |AI| must vanish with 

1 = 1,        2 = 3,        and        3 = 5 

These are the eigenvalues of the given matrix [i.e. the roots of the characteristic equation 

 det  A I 0 ]. 

Now, the eigenvector associated with the ith eigenvalue can be determined by solving the matrix 

equations with the specific eigenvalue inserted into the equation.  For example, for 1 = 1, we 

have  1 1A I x 0 , or 

 

1

2

3 1

2 2 0 x 0

1 2 2 x 0

0 1 2 x 0

     
    

  
    
        

 

which gives three equations 

 

1 2 1 2

1 2 3 2 3

2 3 2 3

2x 2x 0 x x

x 2x 2x 0 x 2x

x 2x 0 x 2x

   

     

    

 

where we note that the 2nd and 3rd equations are redundant.  This, of course, was expected since 

we forced the matrix AI to be singular (has linearly dependent rows).   

Now, from these expressions, we see that, with x3 = 1, we have x1 = [2  2  1]T as a valid 

eigenvector associated with  1 = 1 (normalization is arbitrary here). 

Performing the same type of operations with 2 = 3 gives 

 

1

2

3 2

0 2 0 x 0

1 0 2 x 0

0 1 0 x 0

     
    

  
    
        

 

and these equations clearly say that 

2 1 3x 0 and x 2x    

Thus, a proper eigenvector for this case, with x3 = 1, is x2 = [-2  0  1]T. 
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Finally, for 3 = 5, doing the same type of manipulations gives x3 = [2  -2  1]T.  You should 

derive this result yourself as a test of your understanding of these calculations… 

------------------- 

In concluding this subsection, you should be aware that the capability to do computations of the 

type done by hand within the last several pages of these notes (solve Ax = b, find det A, compute 

A-1, determine the eigenvalues and eigenvectors of a matrix, etc.) is built directly into Matlab and 

other similar programs and, in practice, automated routines like those in Matlab are used in day-

to-day engineering applications as needed (for example, see Table 1 for a listing of the 

linademo_lesson2.m file for the Matlab commands needed to do some of these calculations).  

However, the student should definitely know the fundamentals behind these numerical 

algorithms (although the details are not always necessary).  By assuring that you can do the 

above manipulations by hand for low-order systems, you will gain the confidence and experience 

necessary to intelligently and efficiently use the automated software.  Thus, you should make 

sure you understand the above examples, and be able to perform similar manipulations on small 

systems as verification of the computer tools that simply automate the procedures. 

However, the Matlab commands shown in Table 1 (det, inv, eig, and the backslash operator, \) 

certainly make doing the required calculations much easier  --  and I think you will come to 

really appreciate the powerful capability that is built into these simple commands.  It only took a 

few minutes to generate the results within Matlab, whereas the hand computations, although 

straightforward, were much more time consuming  --  yet we get the same results as shown in 

Table 2 (note that Matlab normalizes the eigenvectors so that they have a magnitude of unity, but 

Matlab’s eigenvectors have the same relative internal distribution as our hand calculations that 

normalized the vectors such that x3 = 1).  For larger systems, the hand calculations become 

impractical and the computer becomes indispensable for working with matrix systems in real 

applications. 

Table 1  Listing of the linademo_lesson2.m file. 

% 

%   LINADEMO_LESSON2.M  MATLAB matrix tasks as part a demo in Lesson 2 Lecture Notes 

% 

%   This file just does some simple linear algebra manipulations within Matlab. 

%   The goal here is to compare with some hand calculations that were done in the  

%   Lecture Notes to confirm our general understanding. 

% 

%   File prepared by J. R. White, UMass-Lowell (last update:  September 2017) 

% 

  

      clear all,   close all 

      format compact 

 

% 

%   define matrices for demo 

      disp('Matrices for the demo'),   A = [3 -2 0;-1 3 -2;0 -1 3],   b = [-7 9 -5]'    

% 

%   reproduce some of the hand calculations from the notes using Matlab 

      disp('Find det A');         det(A) 

      disp('Find inverse of A');  AI = inv(A) 

      disp('Solve A*x = b using the backslash operator');  x = A\b 

      disp('Solve A*x = b using the inverse operator');  x = AI*b 

      disp('Find eigenvalues & eigenvector of A');  [evec,eval] = eig(A) 

% 

%   end of program 
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Table 2  Results from the linademo_lesson2 program. 

 

>> linademo_lesson2 

Matrices for the demo 

A = 

     3    -2     0 

    -1     3    -2 

     0    -1     3 

b = 

    -7 

     9 

    -5 

Find det A 

ans = 

    15 

Find inverse of A 

AI = 

    0.4667    0.4000    0.2667 

    0.2000    0.6000    0.4000 

    0.0667    0.2000    0.4667 

Solve A*x = b using the backslash operator 

x = 

    -1 

     2 

    -1 

Solve A*x = b using the inverse operator 

x = 

   -1.0000 

    2.0000 

   -1.0000 

Find eigenvalues & eigenvector of A 

evec = 

   -0.6667   -0.8944    0.6667 

    0.6667    0.0000    0.6667 

   -0.3333    0.4472    0.3333 

eval = 

    5.0000         0         0 

         0    3.0000         0 

         0         0    1.0000 

 

We will comment further on the inner workings of the backslash operator that was used to solve 

the Ax = b equation later in the semester (see Lesson #6 Notes).  However, at this point, the 

simple demo given in Tables 1 and 2 are all you need to start being productive with Matlab for a 

variety of linear algebra applications.  Matlab has many more functions for working with 

systems of equations, and you are certainly encouraged to explore further.  However, for now, 

you already have enough background to solve a variety of real-world applications.  Having this 

knowledge is sufficient to meet our current goals for Lesson #2 but, later in Lesson #6, we will 

provide more insight into how the computer is used to solve a large system of equations  --  and 

eventually we will get to a point where we can describe some further details of the operations 

actually performed by the \ operator. 

Some Additional Illustrative Applications and Individual Practice 

Now, with all this background, it is time to see some illustrative examples where Matlab’s 

capabilities are put to good use to help us visualize and understand some systems and processes 

of interest.  These examples, which are available in separate pdf files, further illustrate the use of 

2-D arrays within Matlab (see Lesson #6 for applications involving systems of equations): 

sand_pits.pdf  --  Sand Pit Utilization 

maxwell_2.pdf  --  Maxwellian Distribution Revisited 
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projectile2d_1.pdf  -- 2_D Projectile Motion:  A Bottle Cap Tossing Simulation 

Upon completion of your reading assignment for this lesson and after studying the above 

examples, you should now be ready to do HW #2 (see hw2xxx.pdf).  The homework typically 

involves 3 or 4 problems (sometimes separated into two homeworks, HW2a and HW2b).  The 

first part of the HW deals with matrix manipulation (matrix multiplication, matrix transpose, 

array indexing, the matrix inverse, row operations, eigenvalues and eigenvectors, etc.), including 

some hand calculations to make sure you know exactly what Matlab is doing when you ask it to 

do various matrix operations.  The last few problems then usually involve 2-D function 

evaluation and visualization using various 2-D and/or 3-D plotting techniques in Matlab.  The 

above three illustrative examples and the discussions in this set of Lecture Notes should be 

useful in helping you accomplish these tasks  --  so be sure to spend some quality time with the 

notes and examples before you attempt the HW assignment...  

As before, I would prefer that you collect the Matlab m-files, the resultant plots, any hand 

calculations, and a brief description of the results of each problem in a separate solution package 

for each problem.  Thus, for HW #2, you should prepare several separate solution packs, as 

needed, and put these together in a professional manner for submittal to me by the HW deadline.   

Well, this completes Lesson #2.  Working with arrays and matrices for data manipulation and for 

simple information storage is an essential part of almost every Matlab program.  In addition, 

understanding the basic notation and some analytical manipulations from introductory Linear 

Algebra will assist you in many different application areas.   I hope that you are now more 

comfortable with these concepts, and that your overall skills and confidence in using Matlab as a 

problem-solving tool has been significantly enhanced by your reading assignment, the examples 

from these notes and, of course, your time and effort on HW #2.  We still have lots more to do  --  

but you already have acquired sufficient skills to start using Matlab as an efficient problem-

solving tool in a variety of situations.  I suggest that you use these new skills, as appropriate, to 

assist you in many of your HW assignments and projects for your other classes.  I think you will 

find them to be quite useful in many situations!!!  Good luck and happy Matlabing… 

 

 


