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FD Methods for Solution of ODEs

In Lesson #4, the Taylor series was used to derive a set of FD 

approximations for the discrete derivative of a function at point xi.

These FD approximations are quite useful, and here we illustrate 

their use for the numerical solution of ODEs (IVPs and BVPs).

There are many variations of this basic theme that gives rise to a 

number of specific methods  -- we only focus on one option. 

Here we will apply the basic FD method to two relatively simple 

problems, an IVP and a BVP, as follows:

Case 1:  Pendulum Dynamics via the FD Method (see the Lesson 1 

Lecture Notes and the pendulum_dynamics.pdf file for background).

Case 2:  Heat Transfer in a Rectangular Fin via the FD Method (see the 

rect1d_fin_1.pdf file that was studied after Lesson 3 for the 

development of the pertinent equations).
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Pendulum Dynamics – Analytical

The continuous linearized pendulum model is given by

The analytical solution to this 2nd order linear IVP is

with   

and
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see the Lesson 1 Lecture Notes and the 

pendulum_dynamics.pdf file for more details
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Pendulum Dynamics – FD Solution

Now let’s solve the pendulum dynamics problem using a simple 

Finite Difference scheme -- as an illustration of how to use the 

FD method for IVPs.  

For this method, we start by discretizing the time variable, or         

t  ti, t+t  ti+1, etc., with i being a discrete time index (with        

t1 = to = 0 for this problem).

Now, to discretize the continuous ODE, we simply evaluate every 

time dependent term in the given ODE at discrete time point ti, or

Using central FD approximations for both derivatives evaluated 

at ti, we have
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Pendulum Dynamics – FD Solution

Multiplying this recursive equation by t2 gives 

and collecting terms gives 

To simplify this a little, we can define some constants 

and write the final recurrence relationship as

  2
i 1 i i 1 i 1 i 1 i

c t g
2 t 0

m 2 L
   


            

2

i 1 i i 1

c t g t c t
1 2 1

2m L 2m
 

      
           

    

2
c t g t c t

a 1 b 2 d 1
2m L 2m

      
         
    

i 1 i i 1

b d

a a
     

(Oct. 2017)
CHEN.3170  Applied Engineering Problem Solving                         

Lesson 4:  Illustrative Example  -- Intro to FD Methods

Pendulum Dynamics – FD Solution

If we know 1 and 2, then the discrete equation can be used to 

estimate 3.  

Knowing 2 and 3 then leads to 4, and so on  -- this is why the 

discrete equation is said to be a recursive equation.  

To simulate the dynamics of the linear pendulum, all we need is 

two starting positions, 1 and 2.

The first point, 1, is given directly as part of the initial conditions.  

For the second point, 2, we can use the initial condition on d/dt

and a forward FD approximation, as follows:

or 
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Let’ s implement this in Matlab  (see pendulum_2.m)
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Pendulum Dynamics – FD Solution
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Fin Heat Transfer – Analytical

The governing continuous ODE for this 

problem is given by

where the specific BCs for this problem are

The analytical solution to this BVP is

see the rect1d_fin_1.pdf file for more details

2
2 2

2
c

d T hP
m (T T ) 0 with m

kAdx
   

b x L
x L

dT
T(0) T and k h(T T )

dx
 



   

(Oct. 2017)
CHEN.3170  Applied Engineering Problem Solving                         

Lesson 4:  Illustrative Example  -- Intro to FD Methods



5

For example, let’s say N = number of 

unknowns = 5.  

In this case, a side view of the fin 

geometry would give the sketch shown, 

and we can compute the discrete spatial 

increment, x, as

Fin Heat Transfer – FD Solution

To develop a numerical solution using the FD method, we again 

start by discretizing the independent variable, x.  

Here, we need to be careful to number only the nodal points 

where the temperature is to be determined.

L 0 L
x

N N


  

The vector that gives the location of the unknown temperatures 

to be computed can be written as x = [x1 x2 x3 x4 x5] which, in 

Matlab, can be easily generated with the use of the colon 

operator, x = dx:dx:L, where dx = x.  
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Fin Heat Transfer – FD Solution  (cont.)

With the nodal arrangement defined, we discretize the continuous 

ODE, or

Using a 2nd order central approximation for the 2nd derivative, we 

have

or

Note that this expression is only valid for interior nodes (i = 2:N-1)  

-- since we used a central approximation for d2T/dx2.

We will always need to treat the end nodes as special cases!!!

i

i

2
2

2 x

x

d T
m (T T ) 0

dx
  

2i 1 i i 1
i2

T 2T T
m (T T ) 0

x

 


 
  



 2 2 2 2
i 1 i i 1T 2 m x T T m x T        

(Oct. 2017)
CHEN.3170  Applied Engineering Problem Solving                         

Lesson 4:  Illustrative Example  -- Intro to FD Methods



6

Fin Heat Transfer – FD Solution  (cont.)

For i = 1, the above equation can be used directly if we note that 

Ti-1 = T0 = Tb, the fin’s base temperature.  

Thus, for i = 1 (which is internal to the geometry), we have

For i = N, we can not use a central approximation, since nothing 

is known to the right of node N  -- that is, TN+1 is not defined.  

Instead, we need to develop a backward approximation to the 

desired derivative at x = L.

To do this, let’s write TN as follows

 2 2 2 2
1 2 b2 m x T T m x T T       

 
N

N

N N 1
Nx

x

T ' T 'd
T'' T '' T'

dx x


  



(Oct. 2017)
CHEN.3170  Applied Engineering Problem Solving                         

Lesson 4:  Illustrative Example  -- Intro to FD Methods

Fin Heat Transfer – FD Solution  (cont.)

Now, we can write a central approximation for the 1st derivative 

at point N-1, or

and, for TN, we can directly use the given BC at x = L,

Substitution of these expressions into the backward 

approximation for TN gives
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Fin Heat Transfer – FD Solution  (cont.)

Finally, putting this expression into the discrete balance equation 

for i = N gives a proper equation for the last node in the fin’s 

discrete geometry representation,

or

Together, the three highlighted equations give a system of N 

equations with N unknowns -- the unknown temperature at each 

discrete xi location.  

These coupled equations can be written in matrix form,  AT = b, 

and easily solved in Matlab for the desired temperature vector, T, 

using the backslash operator, or
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Fin Heat Transfer – FD Solution  (cont.)

Solution Algorithm

1.  set problem parameters

2.  compute analytical solution (for comparison purposes)

3.  set up the coefficient matrices, A and b, 

4.  solve the resultant system of equations

5.  plot both the analytical and FD solutions

6.  perform mesh sensitivity studies, as desired…

Let’ s implement this in Matlab  (see rect1d_fin_2.m)
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Fin Heat Transfer – FD Solution  (cont.)

Often want to do a mesh sensitivity study to make 

sure that the numerical solution is converged… 
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FD Solution -- IVPs vs. BVPs 

The two examples given here highlight the difference between 

initial value problems (IVPs) and boundary value problems (BVPs).  

The IVP leads to a simple recurrence relation because enough 

initial condition information is available to compute the dependent 

variable at node i+1, yi+1, in terms of known values at two previous 

nodes, yi and yi-1 (for a 2nd order system).  

This can be represented mathematically as

Since two initial conditions are needed for a 2nd order IVP, we have 

enough information to compute y1 and y2 to start the recursive 

expression given above.

i 1 i i 1y f (y ,y ) 

IVPs give simple recurrence relationships…
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FD Solution -- IVPs vs. BVPs  (cont.) 

However, for a 2nd order BVP, there is only one condition given 

at each end point -- which means that we do not have 

sufficient information to get the recursive algorithm started.  

Thus, for BVPs, the 2nd order difference equation is usually 

written in the following form, 

and, since there are N equations of this type (one for each node 

in the system), the result is a system of N equations with N 

unknowns -- which must be solved simultaneously.

BVPs give a system of coupled algebraic equations…

i 1 i i 1f (y ,y ,y ) 0  
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FD Solution -- IVPs vs. BVPs  (cont.) 

Summary:

BVPs give a system of coupled algebraic equations…

i 1 i i 1f (y ,y ,y ) 0 for i 1, 2, N   

IVPs give simple recurrence relationships…

i 1 i i 1y f (y ,y ) 
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