Applied Engineering Problem Solving

Lesson \#6: Solution of Linear \& Nonlinear Equations

Prof. John R. White
Chemical and Nuclear Engineering
UMass-Lowell, Lowell MA

Lesson \#6 Goals

What are the real values of \underline{x} such that $\underline{f}(\underline{x})=\underline{0}$?

General system of equations (linear or nonlinear):

$$
\mathbf{f}_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{\mathrm{n}}\right)=\mathbf{0}
$$

$\underline{\mathbf{f}}(\underline{\mathbf{x}})=\underline{\mathbf{0}} \quad \mathbf{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)=\mathbf{0}$
linear or nonlinear

$$
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0
$$

If the equations are linear, then we have

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=a_{11} x_{1}+a_{12} x_{2}+\cdots a_{11} x_{n}-b_{1}=\mathbf{0} \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=a_{21} x_{1}+a_{22} x_{2}+\cdots a_{2 n} x_{n}-b_{2}=\mathbf{0} \\
\vdots \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots a_{n n} x_{n}-b_{n}=\mathbf{0}
\end{gathered}
$$

Motivation Problems

Problem 1: Resistive Networks
Kirchhoff's voltage law states: the algebraic sum of the voltage drops around a closed loop must be zero

Loop 1: $\mathbf{R}_{1} \mathbf{i}_{1}+\mathbf{v}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\left(\mathbf{i}_{1}-\mathbf{i}_{2}\right)-\mathbf{v}_{\mathbf{3}}=\mathbf{0}$

Loop 2: $\mathbf{R}_{\mathbf{2}}\left(\mathbf{i}_{\mathbf{2}}-\mathbf{i}_{\mathbf{1}}\right)+\mathbf{R}_{\mathbf{3}} \mathbf{i}_{\mathbf{2}}+\mathbf{v}_{\mathbf{2}}+\mathbf{R}_{4} \mathbf{i}_{\mathbf{2}}+\mathbf{R}_{\mathbf{5}}\left(\mathbf{i}_{2}-\mathbf{i}_{4}\right)=\mathbf{0}$
Loop 3: $\mathbf{R}_{6} \mathbf{i}_{3}+\mathbf{v}_{\mathbf{3}}+\mathbf{R}_{8}\left(\mathbf{i}_{\mathbf{3}}-\mathbf{i}_{\mathbf{4}}\right)+\mathbf{v}_{\mathbf{4}}+\mathbf{R}_{7} \mathbf{i}_{\mathbf{3}}=\mathbf{0}$
Loop 4: $-v_{4}+\mathbf{R}_{8}\left(i_{4}-i_{3}\right)+R_{5}\left(i_{4}-i_{2}\right)+R_{9} i_{4}+v_{5}=0$
This can be written as $A x=b$, where

$$
\left[\begin{array}{cccc}
\mathbf{R}_{1}+\mathbf{R}_{2} & -\mathbf{R}_{2} & 0 & 0 \\
-\mathbf{R}_{2} & \left(\mathbf{R}_{2}+\mathbf{R}_{3}+\mathbf{R}_{4}+\mathbf{R}_{5}\right) & 0 & -\mathbf{R}_{5} \\
0 & 0 & \mathbf{R}_{6}+\mathbf{R}_{7}+\mathbf{R}_{8} & -\mathbf{R}_{8} \\
0 & -\mathbf{R}_{5} & -\mathbf{R}_{8} & \mathbf{R}_{5}+\mathbf{R}_{8}+\mathbf{R}_{9}
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}_{3}-v_{1} \\
-v_{2} \\
-v_{3}-v_{4} \\
v_{4}-v_{5}
\end{array}\right]
$$

CHEN. 3170 Applied Engineering Problem Solving Lesson 6: Solution of Linear \& Nonlinear Equations

Motivation Problems

Problem 2: Geometry of a Cylindrical Parabolic Fin (cont.)
In particular, for a given set of geometry parameters, $\mathbf{R}_{\mathrm{o}}, \mathrm{H}, \mathrm{h}$, and L, applying the above constraints gives

$$
\begin{gathered}
\frac{H}{2}=a_{1}+a_{2} R_{o}+a_{3} R_{o}^{2} \\
\frac{h}{2}=a_{1}+a_{2}\left(R_{o}+L\right)+a_{3}\left(R_{o}+L\right)^{2} \\
0=a_{2}+2 a_{3}\left(R_{o}+L\right)
\end{gathered}
$$

These three equations can be written in standard $\mathrm{Ax}=\mathrm{b}$ form:

Lesson 6: Solution of Linear \& Nonlinear Equations
(Nov. 2017)

Motivation Problems

Problem 2: Geometry of a Cylindrical Parabolic Fin (cont.)
For this problem, knowing $y(r)$ for each L is not the final result -we are interested in the fin's surface area vs. L (that is, heat loss from the fin is related to its heat transfer surface area, A).

From the sketch, we can compute A for each L from the following expression:
$A=2 *$ top surface area + tip area

> | $\begin{array}{c}\text { ds is the differential } \\ \text { length along the } \\ \text { surface at position } r\end{array}$ | $\mathbf{A}=2 \int 2 \pi r d s+2 \pi\left(R_{0}+L\right) h$ |
| :--- | :--- |

From basic calculus: $d s=\sqrt{1+\left(\frac{d y}{d r}\right)^{2}} d r$

Upon substitution we have: $A=4 \pi \int_{R_{0}}^{R_{0}+L} r \sqrt{1+\left(\frac{d y}{d r}\right)^{2}} \mathbf{d r}+2 \pi\left(R_{o}+L\right) h$

Motivation Problems

Problem 2: Geometry of a Cylindrical Parabolic Fin (cont.)

Solution Algorithm:

Set up basic problem parameters ($\mathrm{R}_{0}, \mathrm{H}, \mathrm{h}$, and range of L values)
Loop over number of L values

1. Set up coefficient matrices as defined above
2. Solve system of equations to find the a_{1}, a_{2}, and a_{3} coefficients for the $y(r)$ expression
3. Use quadl or integral to evaluate the fin's surface area as defined above

Plot and tabulate the key results [i.e. $y(r)$ and A for several L values]

Motivation Problems

Problem 3: Nonlinear Fin Heat Transfer via the FD Method
The goal here is to determine the temperature distribution, $\mathrm{T}(\mathrm{x})$

This problem is similar to the fin HT example in Lesson 4, but now there is a temperature dependent heat transfer coefficient, $\mathrm{h}(\mathrm{T})$,

$$
h=h(T)=c_{1}+c_{2} T
$$

The governing continuous ODE for this problem is still given by

$$
\frac{d^{2} T}{d x^{2}}-m^{2}\left(T-T_{\infty}\right)=0 \quad \text { with } \quad m^{2}=\frac{h P}{k A_{c}}
$$

but the $\mathbf{m}^{2} \mathbf{T}$ term now represents a nonlinear element since m^{2} is a function of T.

Motivation Problems

Problem 3: Nonlinear Fin Heat Transfer via the FD Method (cont.) For the Linear Model, the FD equations are:
node 1

$$
-\left(2+m^{2} \Delta x^{2}\right) T_{1}+T_{2}=-m^{2} \Delta x^{2} T_{\infty}-T_{b}
$$

node 2:N-1
$T_{i-1}-\left(2+m^{2} \Delta x^{2}\right) T_{i}+T_{i+1}=-m^{2} \Delta x^{2} T_{\infty}$

node $N \quad T_{N-2}-\left(2 m^{2} \Delta x^{2}+1+\frac{2 h \Delta x}{k}\right) T_{N}=-\left(\frac{2 h \Delta x}{k}+2 m^{2} \Delta x^{2}\right) T_{\infty}$
For the case where $\mathbf{N}=5$, this gives a linear matrix equation with the following structure:

FD model for 1-D fin ($\mathrm{N}=5$)

$$
\begin{aligned}
& \text { CHEN. } 3170 \text { Applied Engineering Problem Solving }
\end{aligned}
$$

Lesson 6: Solution of Linear \& Nonlinear Equations
(Nov. 2017)

Motivation Problems

Problem 3: Nonlinear Fin Heat Transfer via the FD Method (cont.)
However, for the Nonlinear Model, the FD equations have temperature (and space) dependent coefficients since

$$
\mathbf{m}_{\mathrm{i}}^{2}=\frac{\mathbf{h}_{\mathrm{i}} \mathbf{P}}{\mathbf{k A _ { c }}}=\frac{\mathbf{P}}{\mathbf{k A _ { c }}}\left(\mathbf{c}_{1}+\mathbf{c}_{2} \mathbf{T}_{\mathrm{i}}\right)
$$

For the case where $\mathbf{N}=5$, this gives a nonlinear matrix equation with the following structure:
$\left[\begin{array}{ccccc}a_{11}\left(T_{1}\right) & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22}\left(T_{2}\right) & a_{3} & 0 & 0 \\ 0 & a_{32} & a_{33}\left(T_{3}\right) & a_{34} & 0 \\ 0 & 0 & a_{43} & a_{44}\left(T_{4}\right) & a_{45} \\ 0 & 0 & a_{53} & 0 & a_{55}\left(T_{5}\right)\end{array}\right]\left[\begin{array}{l}T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5}\end{array}\right]=\left[\begin{array}{l}b_{1}\left(T_{1}\right) \\ b_{2}\left(T_{2}\right) \\ b_{3}\left(T_{3}\right) \\ b_{4}\left(T_{4}\right) \\ b_{5}\left(T_{5}\right)\end{array}\right]$

Motivation Problems Summary

These motivation problems suggest that we need to develop methods for the solution of both linear and nonlinear systems of equations.

$$
\text { Linear: } \quad \mathbf{A x}=\mathbf{b} \quad \text { Nonlinear: } \quad \mathbf{A}(\mathbf{x}) \mathbf{x}=\mathbf{b}(\mathbf{x}) \text { or } \mathbf{f}(\mathbf{x})=\mathbf{0}
$$

This lesson will focus on the Solution of Linear Equations (both via hand manipulations for small systems and via computer implementation for large systems)...

Recall that we have already discussed basic Linear Algebra terminology \& techniques, and performed some hand calculations back in Lesson 2...

And we will also briefly introduce some methods for the Solution of Nonlinear Equations, since this class of equations is so important for solving real engineering problems...

Computer Solution Methods

Two general schemes for solving linear systems on the computer: Direct Elimination Methods and Iterative Methods

Direct Methods

All direct methods are based on the standard Gauss Elimination technique, which systematically applies row operations to transform the original system of equations into a form that is easier to solve.
We will discuss:
Gauss Elimination scheme with partial pivoting
Basics of the LU Decomposition method (functionally equivalent to the Gauss Elimination method, but it provides some additional flexibility for computer implementation).
Some variation of the LU decomposition method is often the preferred direct solution method for low to medium sized systems.

Computer Solution Methods
 (cont.)

Two general schemes for solving linear systems on the computer:
Direct Elimination Methods and Iterative Methods
Iterative Methods
For large systems, iterative methods are almost always used.
This switch is required from accuracy considerations (related to round-off errors), from memory limitations for physical storage of the equation constants, from considerations for treating nonlinear problems, and from overall efficiency concerns.

Most iterative methods build upon the base Gauss Seidel method, usually with some acceleration scheme to help convergence.

Thus, our focus as part of Lesson \#6 is on the basic Gauss Seidel scheme and on the use of Successive Relaxation (SR) to help accelerate convergence.

CHEN. 3170 Applied Engineering Problem Solving
Lesson 6: Solution of Linear \& Nonlinear Equations

Gauss Elimination

Direct elimination methods formally implement the three standard row operations:
normalization by a constant
row interchange
addition of a constant times one row to another
The goal is to convert the original fully coupled system into a sequentially coupled system (often called row echelon form) that can be easily solved via back substitution:

Formal Gauss Elimination Algorithm

With reference to a system of n equations and n unknowns, $\mathrm{Ax}=\mathbf{b}$, the Forward Elimination Step (with partial pivoting) becomes:

$$
\text { Step } 0-\text { - Create an augmented matrix, } \tilde{\mathbf{A}}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]
$$

\longrightarrow Step 1 -- Determine the coefficient in the $i^{\text {th }}$ column with the largest absolute value and interchange rows such that this element is the pivot element $(\mathrm{i}=1,2,3$, to $\mathrm{n}-1)$
Step 2 -- Normalize the pivot equation (i.e. divide by the i,i element)
\rightarrow Step 3 -- Multiply normalized eqn. i by the j,i element of eqn. j
Step 4 -- Subtract the resultant equation in Step 3 from eqn. j
forward
elimination step
repeat Steps 3 and 4 for $j=i+1$ to n go to Step 1 for next $\mathrm{i}=\mathrm{i}+1$ to $\mathrm{n}-1$
and the Back Substitution Step is given by:

where the primes indicate that the coefficients at this stage are different from the original coefficients.

CHEN. 3170 Applied Engineering Problem Solving
Lesson 6: Solution of Linear \& Nonlinear Equations

Gauss Elimination via an Example

CHEN. 3170 Applied Engineering Problem Solving Lesson 6: Solution of Linear \& Nonlinear Equations

What about Multiple b vectors?

One disadvantage of the Gauss Elimination (GE) algorithm is that the b vector is manipulated along with the A matrix.

What if we wanted to solve several systems with the same A but different b vectors? For example,

$$
\begin{array}{cccc}
A x_{1}=b_{1}, & A x_{2}=b_{2}, & A x_{3}=b_{3}, & \text { etc. } \\
A\left[x_{1} x_{2} x_{3} \ldots\right]=\left[b_{1} b_{2} b_{3} \ldots\right] & \text { or simply } & A X=B
\end{array}
$$

We can simply use the standard GE algorithm multiple times, but this would be quite inefficient, since the A matrix would be transformed several times!

Certainly it would be better if we could devise a method to modify the A and B matrices separately -- and this is the advantage of the LU Decomposition Method...

LU Decomposition

To develop the basic LU Decomposition method, let's break the coefficient matrix into a product of two matrices,

$$
A=L U
$$

where L is a lower triangular matrix and U is an upper triangular matrix.

Now, the original system of equations, $A x=b$, becomes
LUx = b

This expression can be broken into two problems,
$\mathrm{Ly}=\mathrm{b} \quad$ and $\quad \mathrm{Ux}=\mathrm{y}$

$$
\left[\begin{array}{ccc}
x & 0 & 0 \\
\times & \times & 0 \\
\times & x & x
\end{array}\right]\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\mathbf{y}_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
\mathbf{b}_{2} \\
b_{3}
\end{array}\right]
$$

use forward substitution

$$
\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\mathbf{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\mathbf{y}_{3}
\end{array}\right]
$$ use back substitution

LU Decomposition (cont.)

So how do we find the two matrices, L and U ?
This is referred to as the Decomposition Step and there are a variety of algorithms available (note that this can be performed without knowledge of the \mathbf{b} vector).

For example, Doolittle Decomposition (for a 4×4 system) would be written as
and, because of the specific structure of the matrices, a systematic set of formulae for the components of L and U results.

LU Decomposition (cont.)

A few steps in a simple scheme (i.e. no partial pivoting) are as follows:
row 1 of L into column 1 of U : $\quad u_{11}=a_{11}$
row 1 of L into column 2 of U : $\quad u_{12}=a_{12}$

or
$u_{1 j}=a_{1 j} \quad$ for $j=1,2, \ldots, n$
row 2 of L into column 1 of U : $\quad \ell_{21} u_{11}=a_{21} \quad$ or $\quad \ell_{21}=\frac{a_{21}}{u_{11}}=\frac{a_{21}}{a_{11}}$
row 2 of L into column 2 of U : $\ell_{21} u_{12}+u_{22}=a_{22}$ or $u_{22}=a_{22}-\ell_{21} u_{12}$
etc...

$$
=\mathbf{a}_{22}-\frac{\mathbf{a}_{21}}{\mathbf{a}_{11}} \mathbf{a}_{12}
$$

This can be developed into an efficient computational scheme for the elements of the L and U matrices (with only one unknown per equation).

Matlab's Backslash Operator

>> help \}
\ Backslash or left matrix divide.
$A \backslash B$ is the matrix division of A into B, which is roughly the same as $\operatorname{INV}(A) * B$, except it is computed in a different way. If A is an $N-b y-N$ matrix and B is a column vector with N components, or a matrix with several such columns, then $X=A \backslash B$ is the solution to the equation $A * X=B$.

Unless the A matrix has some special form that can be solved more efficiently,
$x=A l b$ uses an LU Decomposition scheme to solve the problem.

Iterative Methods

For large systems, iterative methods are almost always used!!!
A one point iterative formulation can always be written as

$$
\begin{gathered}
A x=b \\
\left(A_{1}-A_{2}\right) x=b \\
A_{1} x=A_{2} x+b \\
x=A_{1}{ }^{-1} A_{2} x+A_{1}^{-1} b
\end{gathered} \rightarrow \quad x^{p+1}=B^{p}+c
$$

where B is the iteration matrix, c is a constant vector, and p is an iteration counter.

Convergence of Iterative Methods

Recall that the disadvantage of one-point iteration schemes is that they are not guaranteed to converge -- so the convergence properties of a particular scheme is of considerable interest.

Convergence is guaranteed if the largest eigenvalue of the iteration matrix is less that unity, where

$\rho=$ spectral radius $=\left|\lambda_{\text {max }}\right|$

> | converges for $\rho<1$ |
| :---: |
| diverges for $\rho>1$ |

Since the spectral radius is not generally available, another test, although not as informative, is often applied.

Diagonal Dominance

A matrix is said to be diagonally dominant if

$$
\left|\mathbf{a}_{\mathrm{ii}}\right|>\sum_{\mathbf{j} \neq \mathrm{i}}\left|\mathbf{a}_{\mathrm{ij}}\right| \quad \text { for all i }
$$

Rule of Thumb

Most systems derived from physical balance equations are "nearly diagonally dominant" and these systems "usually converge" ...

This says that "the magnitude of the diagonal element is greater than the absolute sum of all the other elements in a row" -- and this must be true for every row.

Diagonal dominance of the original coefficient matrix is a sufficient (but not necessary) condition for convergence
-- if the system is diagonally dominant it will converge
-- if the system is not diagonally dominant it may or may not converge

Gauss Seidel Iterative Method

The most common 1-point iteration scheme in use for linear systems is the Gauss Seidel Method.
To develop this method, we start with

$$
A x=b
$$

and break the original matrix into three specific components, or

$$
A=L+D+U
$$

where the 3 matrices on the right hand side, are strictly lower triangular, diagonal, and strictly upper triangular matrices.

For example, for a generic 3×3 system, we have
$\mathbf{L}=\left[\begin{array}{ccc}\mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{a}_{21} & \mathbf{0} & 0 \\ \mathbf{a}_{31} & \mathbf{a}_{32} & 0\end{array}\right]$
$D=\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33}\end{array}\right]$
$\mathrm{U}=\left[\begin{array}{ccc}0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0\end{array}\right]$

Gauss Seidel Iterative Method (cont.)

Upon substitution, we have

$$
(L+D) x+U x=b
$$

or

$$
(L+D) x=b-U x
$$

We now pre-multiply by $(\mathrm{L}+\mathrm{D})^{-1}$ and note that the solution vector appears on both sides of the equation -- so we can write the resultant equation in an iterative form, with p as the iteratipn counter, as

$$
\mathbf{x}^{\mathbf{p}+1}=-(\mathbf{L}+\mathbf{D})^{-1} \mathbf{U} \mathbf{x}^{p}+(\mathbf{L}+\mathbf{D})^{-1} \mathbf{b}
$$

where, clearly, this is in standard iterative form

$$
\mathbf{x}^{\mathbf{p}+1}=\mathbf{B} \mathbf{x}^{\mathbf{p}}+\mathbf{c}
$$

with

$$
B=-(L+D)^{-1} U \quad \text { and } \quad c=(L+D)^{-1} b
$$

Gauss Seidel Iterative Method (cont.)

This formal structure is useful for studying the convergence rate of model problems, but it is not useful as a program algorithm, since finding the inverse matrix is computationally intensive!!!

For actual implementation on the computer, one writes these equations differently, never having to formally take the inverse as indicated above.

In practice, instead of pre-multiplying by ($L+D)^{-1}$, we write the equation in iterative form as

$$
(L+D) x^{p+1}=b-U x^{p}
$$

and manipulate this to give

$$
D x^{p+1}=b-L x^{p+1}-U x^{p}
$$

or

$$
\mathbf{x}^{\mathrm{p}+1}=\mathrm{D}^{-1}\left(\mathbf{b}-\mathbf{L x} \mathrm{x}^{\mathrm{p}+1}-\mathbf{U} x^{\mathrm{p}}\right)
$$

CHEN. 3170 Applied Engineering Problem Solving Lesson 6: Solution of Linear \& Nonlinear Equations

Gauss Seidel Iterative Method (cont.)

UMASS
This specific form is somewhat odd at first glance, since x^{p+1} appears on both sides of the equation.

This formulation is justified because of the special form of the strictly lower triangular matrix, L, which can be easily seen if the matrix equations are written explicitly, as follows:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{p+1}=\left[\begin{array}{ccc}
\frac{1}{a_{11}} & 0 & 0 \\
0 & \frac{1}{a_{22}} & 0 \\
0 & 0 & \frac{1}{a_{33}}
\end{array}\right]\left(\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{21} & 0 & 0 \\
a_{31} & a_{32} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{p+1}-\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & a_{23} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{p}\right)
$$

or as individual equations:

$$
x_{1}^{p+1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{p}-a_{13} x_{3}^{p}\right) \quad x_{2}^{p+1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{p+1}-a_{23} x_{3}^{p}\right)
$$

If taken in sequence, all the terms on the right hand side are known...
$\mathbf{x}_{3}^{\mathrm{p}+1}=\frac{1}{\mathbf{a}_{33}}\left(\mathbf{b}_{3}-\mathbf{a}_{31} \mathbf{x}_{1}^{\mathrm{p}+1}-\mathbf{a}_{32} \mathbf{x}_{2}^{\mathrm{p}+1}\right)$
CHEN. 3170 Applied Engineering Problem Solving

Thus, this is indeed a practical Gauss Seidel algorithm...

Lesson 6: Solution of Linear \& Nonlinear Equations
—.
(Nov. 2017)

Successive Relaxation (SR)

Now, since the convergence properties of a system are so important, to improve the rate of convergence, one might consider using a weighted average of the results of the two most recent estimates to obtain the next best guess of the solution.

If the solution is converging, this might help extrapolate to the real solution more quickly.
If the solution is diverging, this might help it to converge.
This idea is the basis of the successive relaxation (SR) method.
In particular, let α be some weight factor with a value between 0 and 2 -- this is called the relaxation factor.

Successive Relaxation (SR) (cont.)

Now, let's compute the next value of x^{p+1} to use in the Gauss Seidel method as a linear combination of the current value, x^{p+1}, and the previous solution, x^{p}, as follows:

$$
\left.\mathrm{x}^{\mathrm{p}+1}\right|_{\text {new }}=\alpha \mathrm{x}^{\mathrm{p}+1}+(1-\alpha) \mathrm{x}^{\mathrm{p}} \quad \text { with } \quad 0<\alpha<2
$$

If α is unity, we simply get the standard Gauss Seidel method.
When $\alpha>1$, the system is said to be over-relaxed, and the system is under-relaxed when $\alpha<1$.

The choice of α affects the iteration matrix, B, and the spectral radius, ρ, and the goal here is to reduce ρ as much as possible.
An illustrative example is described in detail in the formal Lecture Notes and the results are summarized on the next slide -- which illustrates nicely how the choice of α affects the convergence rate of the overall iterative scheme...

Successive Relaxation (SR)
 (cont.)

These results are for a simple 3×3 example system solved via Gauss Seidel with Successive Relaxation

For this situation, the iteration matrix is

 $\left.B=(\alpha \mathbf{L}+\mathbf{D})^{-1}(\mathbf{1}-\alpha) \mathbf{D}-\alpha \mathbf{U}\right)$

Knowing this, one can calculate ρ vs. α and the \# iterations to converge vs. α-- and generate the plots shown here...

Problem 1: Resistive Networks

see
resisitive_networks0.m

Problem 2: Geometry of a Cylindrical Parabolic Fin
see parabolic_fin1.m

Illustrative Example: On the Convergence of Iterative Methods
This example gives further insight into the subject of diagonal dominance and how this affects the convergence of iterative schemes (specifically the Gauss Seidel method).

One More Linear Illustrative Example

Reaction Stoichiometry

Gives example of two chemical reactions and how to set up and determine the relative mole
see
reaction_eqns.pdf fractions of the reactants and products.

In a chemical reaction, the number of atoms of each element must be conserved

This conservation law leads to a system of linear equations for the stoichiometric coefficients in the reaction balance equations.

Case 1: $\mathrm{a}_{1} \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{a}_{2} \mathrm{O}_{2} \rightarrow \mathrm{a}_{3} \mathrm{CO}_{2}+\mathrm{a}_{4} \mathrm{H}_{2} \mathrm{O}$

Case 2: $\mathrm{a}_{1} \mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{a}_{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{a}_{3} \mathrm{HNO}_{3} \rightarrow \mathrm{a}_{4} \mathrm{NO}+\mathrm{a}_{5} \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{a}_{6} \mathrm{H}_{2} \mathrm{SO}_{4}$
hese examples come directly from your CHEN. 2010 Material

Balances class

Solution is obtained in Matlab via $\mathbf{a}=\mathbf{A l b}$
CHEN. 3170 Applied Engineering Problem Solving Lesson 6: Solution of Linear \& Nonlinear Equations

Techniques for Nonlinear Systems

... Linearized Iteration Method ...
(discuss this via hand illustration)
also discuss Motivation Problem \#3
The Nonlinear Fin Heat Transfer Problem

See the formal
Lecture Notes
(linear_nonlinear_eqns.pdf)
for the details...

Newton's Method (from the Taylor Series)

The one-point linearized iteration scheme outlined above is not appropriate for many problems because of the arbitrary nature for choosing the iteration function, $A\left(x^{k}\right) x^{k+1}=b\left(x^{k}\right)$.

As we have seen before when discussing a single nonlinear equation, the most common one-point iteration algorithm used in practice is Newton's method.

You should recall that, for a single equation, the iteration formula for this method is easily derived using a truncated Taylor series expansion,

$$
f_{k+1}=f_{k}+f_{k}^{\prime}\left(x_{k+1}-x_{k}\right)+O\left(\Delta x^{2}\right)
$$

Dropping the error term, solving this expression for $\mathrm{x}_{\mathrm{k}+1}$, and setting $f_{k+1}=0$, gives

$$
x_{k+1}-x_{k}=\frac{f_{k+1}-f_{k}}{f_{k}^{\prime}} \quad \text { or } \quad x_{k+1}=x_{k}-\left(f_{k}^{\prime}\right)^{-1} f_{k}
$$

CHEN. 3170 Applied Engineering Problem Solving Lesson 6: Solution of Linear \& Nonlinear Equations

Newton's Method (cont.)

Now, of interest here, is finding the solution vector \underline{x} to a system of coupled nonlinear equations written in the form $\underline{f}(\underline{x})=\underline{0}-$ - that is, what is \underline{x} such that $\underline{f}(\underline{x})=\underline{0}$?

This is essentially the same problem as described previously except we now have \mathbf{n} nonlinear equations and n unknowns -thus we need to write the Taylor series for the case of n independent variables.

In particular, we can write the Taylor series expansion for each function, as

$$
\begin{aligned}
& f_{1}\left(\underline{x}_{i+1}\right)=f_{1}\left(\underline{x}_{i}\right)+\left.\frac{\partial f_{1}(\underline{x})}{\partial x_{1}}\right|_{\underline{x_{i}}}\left(x_{1, i+1}-x_{1, i}\right)+\left.\frac{\partial f_{1}(\underline{x})}{\partial x_{2}}\right|_{\underline{x}_{i}}\left(x_{2, i+1}-x_{2, i}\right)
\end{aligned}
$$

Newton's Method (cont.)

$$
\begin{aligned}
& \sum_{\substack{\text { nd } \\
\text { nor } \\
\text { for } 2 \text { nis } \\
\text { is } \\
\text { is }}} \leq \\
& +\cdots+\left.\frac{\partial \mathbf{f}_{2}(\underline{\mathbf{x}})}{\partial \mathrm{x}_{\mathrm{n}}}\right|_{\underline{x}_{i}}\left(\mathrm{x}_{\mathrm{n}, \mathrm{i}, 1}-\mathbf{x}_{\mathrm{n}, \mathrm{i}}\right)+\mathbf{O}\left(\mathrm{h}^{2}\right)
\end{aligned}
$$

etc. for n equations...
Using summation notation to treat the \mathbf{n} first-derivative terms for the $k^{\text {th }}$ function, $f_{k}(x)$, we can generalize the above expressions, as follows:

$$
\mathbf{f}_{\mathbf{k}}\left(\underline{\mathbf{x}}_{\mathrm{i}+1}\right)=\mathbf{f}_{\mathbf{k}}\left(\underline{\mathbf{x}}_{\underline{i}}\right)+\left.\sum_{\ell=1}^{\mathbf{n}} \frac{\partial \mathbf{f}_{\mathbf{k}}(\underline{\mathbf{x}})}{\partial \mathbf{x}_{\ell}}\right|_{\underline{\mathbf{x}}_{\mathrm{i}}}\left(\mathbf{x}_{\ell, \mathbf{i}+1}-\mathbf{x}_{\ell, \mathbf{i}}\right)
$$

where we have truncated the $2^{\text {nd }}$ and higher order terms.

Newton's Method (cont.)

Note that the second term on the right hand side of this last expression looks like a matrix times a vector -- recall that $\underline{\underline{w}}=\underline{\underline{A}} \underline{z}$ is written in discrete form as

$$
\mathbf{w}_{\mathbf{k}}=\sum_{\ell} \mathbf{a}_{\mathbf{k} \ell} \mathbf{z}_{\ell}
$$

Therefore, defining the Jacobian matrix, $\mathbf{J}(\underline{\mathbf{x}})$, as

$$
\underline{\underline{\mathbf{J}}}(\underline{\mathbf{x}})=\left[\frac{\partial \mathbf{f}_{\mathbf{k}}(\underline{\mathbf{x}})}{\partial \mathbf{x}_{\ell}}\right] \quad \text { for } \ell=\mathbf{1 , 2}, \cdots \mathbf{n}
$$

and the increment vector on the $i^{\text {th }}$ step, $\underline{\mathbf{h}}_{\mathbf{i}}$, as

$$
\underline{\mathbf{h}}_{\mathbf{i}}=\underline{\mathbf{x}}_{\mathbf{i}+\mathbf{1}}-\underline{\mathbf{x}}_{\mathbf{i}}=\left[\mathbf{x}_{\ell, \mathbf{i}+\mathbf{1}}-\mathbf{x}_{\ell, \mathbf{i}}\right]
$$

the boxed equation from the previous slide becomes

$$
\underline{\mathbf{f}}\left(\underline{\mathbf{x}}_{i+1}\right)=\underline{\mathbf{f}}\left(\underline{\mathbf{x}}_{\mathrm{i}}\right)+\left.\underline{\underline{\mathbf{J}}}(\underline{\mathbf{x}})\right|_{\underline{\mathbf{x}}_{i}} \mathbf{h}_{i}
$$

Newton's Method (cont.)

This matrix equation is of the same form as for a single nonlinear function $f(x)$.

As before, we solve this matrix expression for \underline{x}_{i+1} and set $\underline{f}\left(\underline{x}_{i+1}\right)=\underline{0}$, since this represents the next estimate of the vector \underline{x} such that $\underline{f}(\underline{x})=\underline{0}$.

Doing this gives

$$
\left.\underline{\underline{\mathbf{J}}}(\underline{\underline{x}})\right|_{\underline{\mathbf{x}}_{\underline{i}}} \mathbf{h}_{\mathrm{i}}=-\underline{\mathbf{f}}\left(\underline{\mathbf{x}}_{\mathrm{i}}\right)
$$

or

$$
\underline{\mathbf{x}}_{i+1}=\underline{x}_{i}+\underline{h}_{i} \quad \text { where } \quad \underline{h}_{i}=-\left.\underline{\underline{J}}(\underline{\mathbf{x}})\right|_{\underline{x}_{i}} ^{-1} \underline{\mathbf{f}}\left(\underline{x}_{i}\right)=-\left.\underline{\underline{J}}(\underline{\mathbf{x}})\right|_{\underline{\mathbf{x}}_{i}} \underline{\underline{\mathbf{f}}}\left(\underline{\mathbf{x}_{i}}\right)
$$

where the last equality uses Matlab's backslash operator to actually solve for the increment in the \underline{x} vector on step $i . .$.

CHEN. 3170 Applied Engineering Problem Solving
Lesson 6: Solution of Linear \& Nonlinear Equations

More Examples (Nonlinear Cases)

Problem 3: The Nonlinear Fin Heat Transfer Problem

We have already solved this problem using the Linearized Iteration method.

see
rect1d_fin_3.m

Basic Demo: Example from the Lecture Notes

This example involves a simple 3×3 system solved via Linearized Iteration, the Newton method, and using Matlab's built-in fsolve command.

More Examples (Nonlinear Cases)

Illustrative Example: A Two-Pipe Parallel Flow System
This example involves the simple parallel flow system shown in the sketch given below.

Clearly, the $\Delta P=P_{A}-P_{B}$ must be the same in both the upper and lower paths.

However, since balancing the friction loss in each line involves terms containing Q^{2}, the problem gives a system of nonlinear equations.

CHEN. 3170 Applied Engineering Problem Solving Lesson 6: Solution of Linear \& Nonlinear Equations

