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Lesson 6:  Solution of Linear & Nonlinear Equations

Lesson #6 Goals

General system of equations (linear or 

nonlinear):

What are the real values of x such that f(x) = 0?

Gilat: 

Chapters 8 and 9

Chapra: 

Chapters 8 - 12

Lesson # 6 Lecture Notes 

and Illustrative Examples

1 1 2 n

2 1 2 n

n 1 2 n

f (x ,x , ,x ) 0

f (x ,x , ,x ) 0

f (x ,x , ,x ) 0







If the equations are linear, then we have

f (x) 0

1 1 2 n 11 1 12 2 1n n 1

2 1 2 n 21 1 22 2 2n n 2

n 1 2 n n1 1 n2 2 nn n n

f (x ,x , ,x ) a x a x a x b 0

f (x ,x , ,x ) a x a x a x b 0

f (x ,x , ,x ) a x a x a x b 0

    

    

    

Ax b

linear or nonlinear

linear
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Motivation Problems

Problem 1:  Resistive Networks

Kirchhoff's voltage law states: the algebraic 

sum of the voltage drops around a closed 

loop must be zero

Loop 1:

Loop 2:

Loop 3:

Loop 4:

This can be written as Ax = b, where

1 1 1 2 1 2 3R i v R (i i ) v 0    

2 2 1 3 2 2 4 2 5 2 4R (i i ) R i v R i R (i i ) 0      

6 3 3 8 3 4 4 7 3R i v R (i i ) v R i 0     

4 8 4 3 5 4 2 9 4 5v R (i i ) R (i i ) R i v 0       

1 2 2 3 11

2 2 3 4 5 5 2 2

6 7 8 8 3 3 4

5 8 5 8 9 4 4 5

R R R 0 0 v vi

R (R R R R ) 0 R i v

0 0 R R R R i v v

0 R R R R R i v v

      
         

    
        

            
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Motivation Problems

Problem 2:  Geometry of a Cylindrical Parabolic Fin

The goal is to determine the fin 

surface area versus length, L.

The shape of the fin is given by

with the constraints

2
1 2 3y(r) a a r a r  

o

o o

r R L

H h dy
y(R ) , y(R L) , and 0

2 2 dr  

   

These three constraints give three equations for the unknown 

coefficients, a1, a2, and a3 -- which vary as a function of the 

fin’s length, L.
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Motivation Problems

In particular, for a given set of geometry parameters, 

Ro, H, h, and L, applying the above constraints gives

Problem 2:  Geometry of a Cylindrical Parabolic Fin (cont.)

2
1 2 o 3 o

H
a a R a R

2
  

   
2

1 2 o 3 o

h
a a R L a R L

2
    

 2 3 o0 a 2a R L  

These three equations can be written in standard Ax = b form:

 
 

2
o o

1
2

o o 2

3o

1 R R a H 2

A 1 R L R L x a and b h 2

a 00 1 2 R L

 
    
        
            
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Motivation Problems

For this problem, knowing y(r) for each L is not the final result  --

we are interested in the fin’s surface area vs. L (that is, heat loss 

from the fin is related to its heat transfer surface area, A).  

From the sketch, we can compute A for each L from the following 

expression:

Problem 2:  Geometry of a Cylindrical Parabolic Fin (cont.)

From basic calculus: 

Upon substitution we have:

A = 2*top surface area +  tip area

oA 2 2 rds 2 (R L)h    ds is the differential 

length along the 

surface at position r
2

dy
ds 1 dr

dr

 
   

 

o

o

2
R L

oR

dy
A 4 r 1 dr 2 (R L)h

dr

  
      

 

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Solution Algorithm:

Set up basic problem parameters (Ro, H, h, and range of L values)

Loop over number of L values

1. Set up coefficient matrices as defined above

2. Solve system of equations to find the a1, a2, and a3

coefficients for the y(r) expression

3. Use quadl or integral to evaluate the fin’s surface area as 

defined above

Plot and tabulate the key results [i.e. y(r) and A for several L 

values] 

Motivation Problems

Problem 2:  Geometry of a Cylindrical Parabolic Fin (cont.)
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Motivation Problems

This problem is similar to the fin HT example 

in Lesson 4, but now there is a temperature 

dependent heat transfer coefficient, h(T), 

The governing continuous ODE for this 

problem is still given by

but the m2T term now represents a nonlinear 

element since m2 is a function of T.

Problem 3:  Nonlinear Fin Heat Transfer via the FD Method 

The goal here is to determine the 

temperature distribution, T(x)

1 2h h(T) c c T  

2
2 2

2
c

d T hP
m (T T ) 0 with m

kAdx
   
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Motivation Problems

For the Linear Model, the FD equations are: 

node 1

node 2:N-1

node N

For the case where N = 5, this gives a linear matrix 

equation with the following structure:

Problem 3:  Nonlinear Fin Heat Transfer via the FD Method (cont.) 

 2 2 2 2
1 2 b2 m x T T m x T T       

 2 2 2 2
i 1 i i 1T 2 m x T T m x T        

2 2 2 2
N 2 N

2h x 2h x
T 2m x 1 T 2m x T

k k
 

    
          
   

11 12 1 1

21 22 3 2 2

32 33 34 3 3

43 44 45 4 4

53 55 5 5

a a 0 0 0 T b

a a a 0 0 T b

0 a a a 0 T b

0 0 a a a T b

0 0 a 0 a T b

     
     
     

     
     
     
     
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Motivation Problems

However, for the Nonlinear Model, the FD equations have 

temperature (and space) dependent coefficients since 

For the case where N = 5, this gives a nonlinear matrix 

equation with the following structure:

Problem 3:  Nonlinear Fin Heat Transfer via the FD Method (cont.) 

11 1 12 1 1 1

21 22 2 3 2 2 2

32 33 3 34 3 3 3

43 44 4 45 4 4 4

53 55 5 5 5 5

a (T ) a 0 0 0 T b (T )

a a (T ) a 0 0 T b (T )

0 a a (T ) a 0 T b (T )

0 0 a a (T ) a T b (T )

0 0 a 0 a (T ) T b (T )

     
     
     

     
     
     
     

 2 i
i 1 2 i

c c

h P P
m c c T

kA kA
  
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Motivation Problems Summary

These motivation problems suggest that we need to develop 

methods for the solution of both linear and nonlinear systems 

of equations. 

Linear:      Ax = b Nonlinear:      A(x)x = b(x)  or   f(x) = 0 

This lesson will focus on the Solution of Linear Equations (both 

via hand manipulations for small systems and via computer 

implementation for large systems)…

And we will also briefly introduce some methods for the 

Solution of Nonlinear Equations, since this class of equations is 

so important for solving real engineering problems…

(Nov. 2017)
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Recall that we have already discussed basic Linear 

Algebra terminology & techniques, and performed 

some hand calculations back in Lesson 2…

Computer Solution Methods

Two general schemes for solving linear systems on the computer: 

Direct Elimination Methods and  Iterative Methods

Direct Methods

All direct methods are based on the standard Gauss Elimination 

technique, which systematically applies row operations to 

transform the original system of equations into a form that is 

easier to solve.  

We will discuss:

Gauss Elimination scheme with partial pivoting

Basics of the LU Decomposition method (functionally equivalent

to the Gauss Elimination method, but it provides some additional

flexibility for computer implementation).  

Some variation of the LU decomposition method is often the 

preferred direct solution method for low to medium sized systems.
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Computer Solution Methods  (cont.)

Two general schemes for solving linear systems on the computer: 

Direct Elimination Methods and  Iterative Methods

Iterative Methods

For large systems, iterative methods are almost always used.  

This switch is required from accuracy considerations (related to 

round-off errors), from memory limitations for physical storage of 

the equation constants, from considerations for treating nonlinear 

problems, and from overall efficiency concerns.  

Most iterative methods build upon the base Gauss Seidel method, 

usually with some acceleration scheme to help convergence. 

Thus, our focus as part of Lesson #6 is on the basic Gauss Seidel 

scheme and on the use of Successive Relaxation (SR) to help 

accelerate convergence.

(Nov. 2017)
CHEN.3170  Applied Engineering Problem Solving                               

Lesson 6:  Solution of Linear & Nonlinear Equations

Gauss Elimination

Direct elimination methods formally implement the three standard 

row operations:

normalization by a constant

row interchange

addition of a constant times one row to another 

The goal is to convert the original fully coupled system into a 

sequentially coupled system (often called row echelon form) that 

can be easily solved via back substitution:

1 1

2 2

3 3

x x

x 0 x

0 0x x

             
                
          

            

   

  

 
fully coupled sequentially coupled
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Formal Gauss Elimination Algorithm

forward 

elimination step

backward 

substitution step
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Gauss Elimination via an Example

1

x 2

1

 
 
 
  
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What about Multiple b vectors?

One disadvantage of the Gauss Elimination (GE) algorithm 

is that the b vector is manipulated along with the A matrix.

What if we wanted to solve several systems with the same A

but different b vectors?  For example, 

Ax1 = b1,          Ax2 = b2,          Ax3 = b3,          etc.

A[x1 x2 x3 … ] = [b1 b2 b3 … ]    or simply     AX = B

We can simply use the standard GE algorithm multiple 

times, but this would be quite inefficient, since the A matrix 

would be transformed several times!  

Certainly it would be better if we could devise a method to 

modify the A and B matrices separately -- and this is the 

advantage of the LU Decomposition Method...

(Nov. 2017)
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LU Decomposition

To develop the basic LU Decomposition method, let's break the 

coefficient matrix into a product of two matrices,

A = LU

where L is a lower triangular matrix and U is an upper triangular 

matrix.

Now, the original system of equations, Ax = b, becomes

LUx = b

This expression can be broken into two problems,

Ly = b              and              Ux = y

1

3

1

2 2

3

x

0 x

0 0 x

y

y

y

    
     

 

    
    











11

2

33

2

b

b

y

0

by

0

y

0     
     




    

    



  

use forward substitution use back substitution
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LU Decomposition  (cont.)

So how do we find the two matrices, L and U?

This is referred to as the Decomposition Step and there are a 

variety of algorithms available (note that this can be performed 

without knowledge of the b vector).  

For example, Doolittle Decomposition (for a 44 system) would be 

written as

and, because of the specific structure of the matrices, a 

systematic set of formulae for the components of L and U results.

11 12 13 1411 12 13 14

21 21 22 23 2422 23 24

31 32 31 32 33 3433 34

41 42 43 41 42 43 4444

1 0 0 0 a a a au u u u

1 0 0 a a a a0 u u u

1 0 a a a a0 0 u u

1 a a a a0 0 0 u

    
    
     
    
    

    
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LU Decomposition  (cont.)

A few steps in a simple scheme (i.e. no partial pivoting) are as 

follows:

row 1 of L into column 1 of U:     u11 = a11

row 1 of L into column 2 of U:     u12 = a12

or u1j = a1j for j = 1, 2, …, n

row 2 of L into column 1 of U:  

row 2 of L into column 2 of U:  

etc…

This can be developed into an efficient computational scheme 

for the elements of the L and U matrices (with only one 

unknown per equation).  

21 21
21 11 21 21

11 11

a a
u a or

u a
  

21 12 22 22 22 22 21 12

21
22 12

11

u u a or u a u

a
a a

a

   

 
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Matlab’s Backslash Operator

>> help \

\ Backslash or left matrix 

divide.

A\B is the matrix division of A 

into B, which is roughly the same 

as INV(A)*B , except it is 

computed in a different way.  If 

A is an N-by-N matrix and B is a 

column vector with N components, 

or a matrix with several such 

columns, then X = A\B is the 

solution to the equation A*X = B.

Unless the A matrix has some special 

form that can be solved more efficiently, 

x = A\b uses an LU Decomposition 

scheme to solve the problem.
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Iterative Methods

For large systems, iterative methods are almost always used!!! 

A one point iterative formulation can always be written as

→

where B is the iteration matrix, c is a constant vector, and p is an 

iteration counter.  

p 1 p
x Bx c

  

Ax = b

(A1 – A2)x = b

A1x = A2x + b

x = A1
-1A2x + A1

-1b
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Convergence of Iterative Methods

Recall that the disadvantage of one-point iteration schemes is 

that they are not guaranteed to converge  -- so the convergence 

properties of a particular scheme is of considerable interest.  

Convergence is guaranteed if the largest eigenvalue of the 

iteration matrix is less that unity, where

 = spectral radius = |max|

Since the spectral radius is not generally available, another test, 

although not as informative, is often applied.

converges for  < 1

diverges for  > 1
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Diagonal Dominance

A matrix is said to be diagonally dominant if

This says that “the magnitude of the diagonal element is greater 

than the absolute sum of all the other elements in a row”  -- and 

this must be true for every row.

Diagonal dominance of the original coefficient matrix is a 

sufficient (but not necessary) condition for convergence

-- if the system is diagonally dominant it will converge

-- if the system is not diagonally dominant it may or may not converge

ii ij

j i

a a for all i



Rule of Thumb

Most systems derived from physical 

balance equations are “nearly 

diagonally dominant” and these 

systems “usually converge” …
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Gauss Seidel Iterative Method

The most common 1-point iteration scheme in use for linear 

systems is the Gauss Seidel Method.

To develop this method, we start with

Ax = b

and break the original matrix into three specific components,

or                   A = L + D + U

where the 3 matrices on the right hand side, are strictly lower 

triangular, diagonal, and strictly upper triangular matrices. 

For example, for a generic 33 system, we have

11 12 13

21 22 23

31 32 33

0 0 0 a 0 0 0 a a

L a 0 0 D 0 a 0 U 0 0 a

a a 0 0 0 a 0 0 0

     
       
     

         
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Gauss Seidel Iterative Method  (cont.)

Upon substitution, we have

(L + D)x + Ux = b

or

(L + D)x = b  Ux

We now pre-multiply by (L + D)-1 and note that the solution 

vector appears on both sides of the equation -- so we can write 

the resultant equation in an iterative form, with p as the iteration 

counter, as 

where, clearly, this is in standard iterative form

with B = (L + D)-1U       and       c = (L + D)-1b

p 1 1 p 1
x (L D) Ux (L D) b

      

p 1 p
x Bx c

  
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Gauss Seidel Iterative Method  (cont.)

This formal structure is useful for studying the convergence rate 

of model problems, but it is not useful as a program algorithm, 

since finding the inverse matrix is computationally intensive!!!

For actual implementation on the computer, one writes these 

equations differently, never having to formally take the inverse 

as indicated above.  

In practice, instead of pre-multiplying by (L + D)-1 , we write the 

equation in iterative form as 

(L + D)xp+1 = b  Uxp

and manipulate this to give

Dxp+1 = b  Lxp+1  Uxp

or
xp+1 = D-1(b  Lxp+1  Uxp)
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Gauss Seidel Iterative Method  (cont.)

This specific form is somewhat odd at first glance, since xp+1

appears on both sides of the equation.

This formulation is justified because of the special form of the 

strictly lower triangular matrix, L, which can be easily seen if the  

matrix equations are written explicitly, as follows: 

or as individual equations:

If taken in sequence, all 

the terms on the right 

hand side are known…

11

22

33

1p 1 p 1 p
a1 1 1 12 13 1

1
2 2 21 2 23 2a

1
3 3 31 32 3 3

a

0 0x b 0 0 0 x 0 a a x

x 0 0 b a 0 0 x 0 0 a x

x b a a 0 x 0 0 0 x0 0

                                                                     

 p 1 p p
1 1 12 2 13 3

11

1
x b a x a x

a

     p 1 p 1 p
2 2 21 1 23 3

22

1
x b a x a x

a

   

 p 1 p 1 p 1
3 3 31 1 32 2

33

1
x b a x a x

a

     Thus, this is indeed a 

practical Gauss Seidel 

algorithm…
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Successive Relaxation (SR)

Now, since the convergence properties of a system are so 

important, to improve the rate of convergence, one might 

consider using a weighted average of the results of the two 

most recent estimates to obtain the next best guess of the 

solution.  

If the solution is converging, this might help extrapolate to the 

real solution more quickly.  

If the solution is diverging, this might help it to converge.

This idea is the basis of the successive relaxation (SR) method.

In particular, let  be some weight factor with a value between 0 

and 2  -- this is called the relaxation factor.   

(Nov. 2017)
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Successive Relaxation (SR)  (cont.)

Now, let’s compute the next value of xp+1 to use in the Gauss 

Seidel method as a linear combination of the current value, 

xp+1, and the previous solution, xp, as follows:

If  is unity, we simply get the standard Gauss Seidel method.

When  > 1, the system is said to be over-relaxed, and the 

system is under-relaxed when  < 1.

The choice of  affects the iteration matrix, B, and the spectral 

radius, , and the goal here is to reduce  as much as possible.

An illustrative example is described in detail in the formal 

Lecture Notes and the results are summarized on the next 

slide  -- which illustrates nicely how the choice of  affects the 

convergence rate of the overall iterative scheme…

 p 1 p 1 p

new
x x 1 x      with     0 2

       
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Successive Relaxation (SR)  (cont.)
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These results are for a 

simple 3x3 example 

system solved via 

Gauss Seidel with 

Successive Relaxation

For this situation, the 

iteration matrix is 

Knowing this, one can 

calculate  vs.  and the 

# iterations to converge 

vs.  -- and generate 

the plots shown here…

   
1

B L D (1 )D U


      
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The Linear Motivation Problems & 

Illustrative Examples

Problem 1:  Resistive Networks

Problem 2:  Geometry of a Cylindrical Parabolic Fin

Illustrative Example: On the Convergence of Iterative Methods 

This example gives further insight into the subject of diagonal 

dominance and how this affects the convergence of iterative 

schemes (specifically the Gauss Seidel method).

see 

parabolic_fin1.m

see 

resisitive_networks0.m

see

conv_demo1.pdf

(Nov. 2017)
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One More Linear Illustrative Example

Reaction Stoichiometry

Gives example of two chemical reactions and 

how to set up and determine the relative mole 

fractions of the reactants and products. 

This conservation law leads to a system of linear 

equations for the stoichiometric coefficients in 

the reaction balance equations.

Case 1:

Case 2: 

see

reaction_eqns.pdf

1 7 16 2 2 3 2 4 2a C H a O a CO a H O  

1 2 3 2 2 3 3 4 5 3 4 6 2 4a As S a H O a HNO a NO a H AsO a H SO    

In a chemical reaction, the number of atoms 

of each element must be conserved

Solution is obtained in 

Matlab via   a = A\b
These examples come 

directly from your 

CHEN.2010 Material 

Balances class (Nov. 2017)
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Techniques for Nonlinear Systems

…   Linearized Iteration Method   …

(discuss this via hand illustration)

also discuss Motivation Problem #3

The Nonlinear Fin Heat Transfer Problem

(Nov. 2017)
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See the formal             

Lecture Notes

(linear_nonlinear_eqns.pdf) 

for the details…
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Newton’s Method (from the Taylor Series)

The one-point linearized iteration scheme outlined above is not 

appropriate for many problems because of the arbitrary nature 

for choosing the iteration function, A(xk) xk+1 = b(xk).

As we have seen before when discussing a single nonlinear 

equation, the most common one-point iteration algorithm used in 

practice is Newton’s method. 

You should recall that, for a single equation, the iteration formula 

for this method is easily derived using a truncated Taylor series 

expansion,

Dropping the error term, solving this expression for xk+1 , and 

setting fk+1 = 0, gives

or  

  2
k 1 k k k 1 kf f f ' x x O( x )     

k 1 k
k 1 k

k

f f
x x

f '





   

1

k 1 k k kx x f ' f


  
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Newton’s Method  (cont.)

Now, of interest here, is finding the solution vector x to a system 

of coupled nonlinear equations written in the form f(x) = 0 -- that 

is, what is x such that f(x) = 0?  

This is essentially the same problem as described previously 

except we now have n nonlinear equations and n unknowns  --

thus we need to write the Taylor series for the case of n 

independent variables.  

In particular, we can write the Taylor series expansion for each 

function, as 

   

 

i i

i

1 1
1 i 1 1 i 1,i 1 1,i 2,i 1 2,i

1 2x x

21
n,i 1 n,i

n x

f (x) f (x)
f (x ) f (x ) x x x x

x x

f (x)
x x O(h )

x

  



 
    

 


   


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Newton’s Method  (cont.)

etc.  for n equations…

Using summation notation to treat the n first-derivative terms for 

the kth function, fk(x), we can generalize the above expressions, 

as follows:

where we have truncated the 2nd and higher order terms. 

   

 

i i

i

2 2
2 i 1 2 i 1,i 1 1,i 2,i 1 2,i

1 2x x

22
n,i 1 n,i

n x

f (x) f (x)
f (x ) f (x ) x x x x

x x

f (x)
x x O(h )

x

  



 
    

 


   



 
i

n
k

k i 1 k i ,i 1 ,i

1 x

f (x)
f (x ) f (x ) x x

x
 




  



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Newton’s Method  (cont.)

Note that the second term on the right hand side of this last 

expression looks like a matrix times a vector  -- recall that          

is written in discrete form as 

Therefore, defining the Jacobian matrix,         , as

and the increment vector on the ith step, hi, as

the boxed equation from the previous slide becomes

k kw a z

kf (x)
J(x) for 1,2, n

x

 
  

 

i i 1 i ,i 1 ,ih x x x x 
     

i
i 1 i ix

f (x ) f (x ) J(x) h  

w A z

J(x)
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Newton’s Method  (cont.)

This matrix equation is of the same form as for a single nonlinear 

function f(x).  

As before, we solve this matrix expression for xi+1 and set     

f(xi+1) = 0, since this represents the next estimate of the vector x

such that f(x) = 0.  

Doing this gives

or

where the last equality uses Matlab’s backslash operator to 

actually solve for the increment in the x vector on step i…

i
i ix

J(x) h f (x ) 

i i

-1

i 1 i i i i ix x
x x h where h J(x) f (x ) J(x) \ f (x )      

(Nov. 2017)
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More Examples  (Nonlinear Cases)

Problem 3:  The Nonlinear Fin Heat Transfer Problem

We have already solved this problem using the 

Linearized Iteration method.

Basic Demo:  Example from the Lecture Notes

This example involves a simple 3x3 system solved 

via Linearized Iteration, the Newton method, and 

using Matlab’s built-in fsolve command.

see 

rect1d_fin_3.m

see 

nldemo1_lesson6.m

nldemo2_lesson6.m

nldemo3_lesson6.m

(Nov. 2017)
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Illustrative Example:  A Two-Pipe Parallel Flow System 

This example involves the simple parallel flow system 

shown in the sketch given below.  

Clearly, the P = PA – PB must be the same in           

both the upper and lower paths.

However, since balancing the friction loss in each line 

involves terms containing Q2, the problem gives a 

system of nonlinear equations.

More Examples  (Nonlinear Cases)

see 

parallel_flow1.pdf
(Linearized Iteration Method)

parallel_flow2.pdf
(using Matlab’s fsolve function)
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