
1

Applied Engineering Problem Solving

Lesson #4: Numerical Error

Prof. John R. White

Chemical and Nuclear Engineering

UMass-Lowell, Lowell MA

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Lesson #4 Goals

Computer representation of numbers

(just the basics)

Round-off error and machine precision

Implication of round-off error in iterative

techniques

Taylor series expansions and the

truncation error associated with a finite

approximation to infinite series (FD

approximation to derivatives)

Trade-offs associated with round-off and

truncation errors

Numerical Error: Round-Off and Truncation Error…

Gilat:

none

Chapra:

Chapter 4

Lesson # 4 Lecture Notes

and Illustrative Examples

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

2

Numerical Error

Round-Off Error

Due to the fact that computers can only represent

quantities with a finite number of digits

Truncation Error

Associated with the approximations that are

usually required when attempting to represent an

exact mathematical expression or operation

Floating point arithmetic is NOT exact…

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Interesting Matlab Demo…

Case 1: Let’s start with a value, say 5.000, and add 0.125 to

it several times:

We should get 5.000 + 0.125 = 5.125

5.125 + 0.125 = 5.250

5.250 + 0.125 = 5.375 …

Case 2: Let’s start with 5.000 again, and add 0.126 to it

several times:

We should get 5.000 + 0.126 = 5.126

5.126 + 0.125 = 5.252

5.252 + 0.126 = 5.378 …

Floating point arithmetic is NOT exact…

Let’s do it in Matlab…

but Matlab gives

5.252000000000001e+000

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

3

Computer Representation of Numbers

Base 10 Arithmetic:

and

Thus, x.y could be written as …b5b4b3b2b1b0 . c1c2c3… using

base 10 notation.

Human computers do

arithmetic in base 10

k
k

k 0

x b 10



k

k

k 1

y c 10






0 1 2 3
5.125 5 10 . 1 10 2 10 5 10

        

0 1 2 3
5.126 5 10 . 1 10 2 10 6 10

        

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Computer Representation of Numbers

Base 2 (binary) Arithmetic:

and

Thus, x.y could be written as …b5b4b3b2b1b0 . c1c2c3… using

base 2 notation.

Electronic computers do arithmetic in base 2

k
k

k 0

x b 2



k

k

k 1

y c 2






2 1 0 1 2 3
5.125 1 2 0 2 1 2 . 0 2 0 2 1 2

4 0 1 . 0 0 0.125

            

   

   
10 2

5.125 101.001

   

 
10 2

10

5.126 101.0010000001000001

5.125991821289063





see next

slide

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

4

Computer Representation of Numbers

Electronic computers

do arithmetic in base 2

   

 
10 2

10

5.126 101.0010000001000001

5.125991821289063





   
10 2

5.125 101.001

exact with 3

digits

approximate

with 16 digits

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

The important point here is that all computers have a finite

number of digits (bits) to represent a given number (or word)

For 32 bit machines:

each binary digit (0 or 1) → bit

8 bits → byte

single precision word → 4 bytes = 32 bits

double precision word → 8 bytes = 64 bits

Matlab does all its computations with 64 bit arithmetic to

minimize round-off error.

Computer Representation of Numbers

However, there is always a

finite precision limit!!!

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

5

This precision limit is characterized by a number called

machine epsilon, m.

It is defined precisely as the smallest floating point number, m,

such that

We can easily estimate machine epsilon, m, on any computer

by continually reducing a number (say, by a factor of two) until

the above condition is no longer valid.

epsilon = 1.0;

while epsilon + 1.0 > 1.0

epsilon = epsilon/2;

end

Matlab has a built-in variable, eps, to store this value…

Machine Epsilon, m

see meps.m

m1 1  

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Although proper algorithm design and 64-bit arithmetic tend to

minimize round off error, it is always something that you

should be aware of when doing numerical computations and

code development.

Because of round off error, we almost never ask the question

“Is x = y?”.

Instead, we ask “Is x close to y?” and this is often implemented

as follows:

rerr = 1; tol = 1e-5;

while rerr > tol

continue calculation that updates x and/or y

rerr = abs((x-y)/y);

end

where tol is some user-defined tolerance…

Ramifications of Round-Off Error…

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

6

As mentioned previously, truncation error is often introduced

when we approximate continuous mathematical functions and

operations with a discrete algebraic representation.

This error is usually associated with the actual truncation of an

infinite series expansion for the quantity of interest to a finite

number of terms -- thus the term, truncation error.

Understanding series -- primarily the Taylor Series -- is

absolutely essential for the study of numerical methods and for

understanding the concept of truncation error.

From a simplistic perspective, the Taylor series is a way to

evaluate a function at a point x = xo + x in terms of the

function and all its derivatives evaluated at point xo, or

Taylor Series and Truncation Error

0 1 2 3
o o o o

o

f (x)h f '(x)h f ''(x)h f '''(x)h
f (x h)

0! 1! 2! 3!
     

where h = |x|

is called the step size
(Oct. 2017)

CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

The forward Taylor series can be written in many forms:

where

O(hn) = hn is the error or remainder which, upon truncation,

accounts for all the remaining terms in the series. This term is

“proportional to hn”

xi = xo and xi+1 = xi + h just puts things into discrete form…

Taylor Series and Truncation Error

0 1 2 3
o o o o

o

f (x)h f '(x)h f ''(x)h f '''(x)h
f (x h)

0! 1! 2! 3!
     

O(hn) = hn

0 1 2 3
o o o o

o
4f (x)h f '(x)h f ''(x)h f '''(x)h

f (x h)
0! 1! 2! 3!

O(h)     

0 1
i

2 3
4i i i

i 1

f ()h f '()h f ''()h f '''()h
f () O(h)

0! 1! 2! 3!

x x x x
x      

2 3
4i i

i 1 i i

f ''h f '''h
f f f 'h h

2! 3!
      

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

7

For f(x) = ex with the reference point at xo = 0, the forward

Taylor series

becomes

But, now we can let h = x for convenience of notation.

Thus,

Similarly,

Example of Round-Off & Truncation Error

0 1 2 3
o o o o

o

f (x)h f '(x)h f ''(x)h f '''(x)h
f (x h)

0! 1! 2! 3!
     

1 2 3
h 1 h h h

f (h) e
0! 1! 2! 3!

      since dn(ex)/dxn = ex

and e0 = 1

2 3 4 n
x

n 0

x x x x
e 1 x

2! 3! 4! n!

      

2 3 4 n n
x

n 0

x x x (1) x
e 1 x

2! 3! 4! n!






      

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Consider the computation of e3 and e-3 using the Taylor series

truncated to 8 terms with only 5 significant digits in our

calculations.

Doing the calculations gives:

Case 1:

and my calculator gives e3 = 20.086 -- thus, our 8-term estimate

has an error of about –1.2% .

This error is dominated by truncation error, with only a minor loss

in accuracy associated with rounding the individual calculations

to 5 figures -- that is, the addition of a few more terms in the

series would give very accurate results.

Example of Round-Off & Truncation Error

3 9 27 81 243 729 2187
e 1 3

2 6 24 120 720 5040

1 3 4.5 4.5 3.375 2.025 1.0125 0.43393 19.846

       

        

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

8

Case 2:

and the actual value is e-3 = 4.9787e-2 -- which shows that our

estimate is terrible with about –243% error (we didn’t even get

the correct sign!!!).

This example has a serious case of both truncation error and

round off error -- in particular, notice that some of the individual

terms are nearly a factor of 100 larger than the final result.

Although additional terms in the series would help considerably,

we could never get 5 significant figures of accuracy, because the

subtraction of nearly equal terms leads to the loss of significant

digits (this is often referred to as catastrophic cancellation).

Example of Round-Off & Truncation Error

3
e 1 3 4.5 4.5 3.375 2.025 1.0125 0.43393

7.1430e-2

        

 

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Notice, however, that if we compute the result for e-3 using the

inverse of the Case 1 result, we have

which only represents an error of 1.2%.

This is an example of what I mean by “proper algorithm design” !

Many times, however, “proper algorithm design” is not so simple,

so we will leave much of the hard-core development of various

numerical algorithms to the mathematicians and numerical

analysis experts.

In fact, that is why we will use Matlab to do many of the needed

computations, since many years of experience has shown that

most of the built-in algorithms are quite efficient and robust for a

wide range of applications.

Example of Round-Off & Truncation Error

3

3

1 1
e 5.0388e-2

19.846e

   

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

9

Forward TS:

Backward TS:

Forward Approximation to fi:

(from FTS)

Backward Approximation to fi:

(from BTS)

Derivative Approximations

2 3 (n) n
n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h O(h)

2! 3! n!


       

2 3 (n) n
n n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h (1) O(h)

2! 3! n!


       

2
i 1 i if f f 'h O(h)   

i 1 i
i

f f
f ' O(h)

h

 
 

2
i 1 i if f f 'h O(h)   

i i 1
i

f f
f ' O(h)

h


 

1st order forward

estimate to fi

1st order backward

estimate to fi

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Forward TS:

Backward TS:

Central Approximation to fi:

(from FTS-BTS)

Central Approximation to fi :

(from FTS+BTS)

Derivative Approximations (cont.)

2 3 (n) n
n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h O(h)

2! 3! n!


       

2 3 (n) n
n n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h (1) O(h)

2! 3! n!


       

3
i 1 i 1 if f 2f 'h O(h)   

2i 1 i 1
i

f f
f ' O(h)

2h

 
 

2i 1 i i 1
i 2

f 2f f
f '' O(h)

h

  
 

2nd order central

estimate to fi

2nd order central

estimate to fi

2 4
i 1 i 1 i if f 2f f ''h O(h)    

1st derivative

2nd derivative

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

10

Let’s estimate, using some FD approximations, the

1st and 2nd derivatives of ex at x = 0

Example with Derivative Approximations

see deriv_approx.m

again dn(ex)/dxn = ex and e0 = 1

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Truncation error is often “proportional to the step size to some

power n”, or

The order of error, n , can often be estimated via a set of

numerical experiments that use different step sizes.

For example, a plot of  vs. h on a log-log scale gives a straight

line with slope n:

Or, with just two separate evaluations, we have

Order of Error from Numerical Tests

n
h  

 n n
log log h log logh log nlogh        

n n
1 1 2 2h and h     

 
 

nn
1 21 1 1

n
2 2 1 22

logh h
or n

h log h hh

   
   

   

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

11

Reducing the step size, h, is the most common way to reduce

truncation error.

However, this often leads to an increased number of

computations and, since round-off error is accumulative, more

floating point arithmetic leads to more round-off error.

Truncation vs. Round-off Errors

This is illustrated in the

sketch, where the total

error is simply the sum of

the truncation and round-

off errors.

However, for most

practical engineering

problems, the truncation

error dominates.

normal

operation

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

Problem:

Discrete Form:

Solution is implemented

in a simple recursive

loop and repeated with

various h values…

Example: Truncation vs. Round-off Errors

Let’s show

this in Matlab

see tradeoff.m

xdy
e with y(0) 1

dx
 

ix

i 1 iy y e h  

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

TradeOff: Relative Error vs Step Size for given IVP -- y' = ex with y(0) = 1

Step Size

R
e
la

ti
v
e
 E

rr
o
r

in
 y

f =
 y

(x
f)

=
 y

(2
)

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

12

More Illustrative Examples

On Evaluating Infinite Series – An Example

Example that illustrates how to generate a Taylor

series for f(x) = sinh(x) and on how to efficiently

evaluate this infinite power series in Matlab.

Algorithm to Evaluate Infinite Power Series

Set maxT and tol for stopping the calculation (also set  > tol)

Initialize counter and first term -- set n = 1 and T = T1

Initialize the partial sum to the first term -- set f = T

while  > tol && n < maxT

compute r, where rn = Tn+1/Tn (specific to function of interest)

T = r*T (compute next term in series)

f = f + T (update partial sum)

 = max(abs(T/f)) (compute maximum relative change)

n = n + 1 (increment counter)

end

see

infinite_series.pdf

3 5 2n 1

n 1

x x x
f (x) sinhx x

3! 5! (2n 1)!





     



Can you

derive this?

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

How do we compute rn?

For the specific case of f(x) = sinh(x):

Thus rn becomes

where we have used the fact that

3 5 2n 1

n 1

x x x
f (x) sinhx x

3! 5! (2n 1)!





     




 
 

   
 

  

2(n 1) 1
n 1

n 2n 1
n

2 2n 1 2

2n 1

2n 1 !T x
r

T 2(n 1) 1 ! x

2n 1 !x x x

2n 1 2n 2n 1 ! 2n 1 2nx

 









  

 


  

  

         2(n 1) 1 ! 2n 2 1 ! 2n 1 ! 2n 1 2n 2n 1 !         

again, see infinite_series.pdf for the detailed

development and implementation within Matlab

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

13

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
PlaneWall_1: Plate Temperature Profile at Various Times

Distance (cm)

T
e
m

p
e
ra

tu
re

 (
C

)

 0.0 sec

 1.0 sec

 5.0 sec

 15.0 sec

 30.0 sec

 60.0 sec

More Illustrative Examples (cont.)

Evaluating and Plotting Space-Time Temperature Distributions

with
2
nt

n n

n 1

T(x,t) a sin(x) e






  i
n n

4T(2n 1)
and a

2L (2n 1)

 
  

 

see

planewall_1.pdf
(Oct. 2017)

CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

More Illustrative Examples (cont.)

Introduction to Finite

Difference Methods

for Solution of ODEs

This is a BIGGIE -- we will emphasize

this in a separate presentation…

The goal here is to convert continuous differential

equations into discrete difference equations…

IVPs and BVPs are treated quite differently

IVPs lead to recursive equations

BVPs lead to simultaneous equations

Let’s look at the details…

(Oct. 2017)
CHEN.3170 Applied Engineering Problem Solving

Lesson 4: Numerical Error

