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Lesson 4:  Numerical Error

Lesson #4 Goals

Computer representation of numbers 

(just the basics)

Round-off error and machine precision

Implication of round-off error in iterative 

techniques

Taylor series expansions and the 

truncation error associated with a finite 

approximation to infinite series (FD 

approximation to derivatives)

Trade-offs associated with round-off and 

truncation errors

Numerical Error:  Round-Off and Truncation Error…

Gilat: 

none

Chapra: 

Chapter 4

Lesson # 4 Lecture Notes 

and Illustrative Examples
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Numerical Error

Round-Off Error

Due to the fact that computers can only represent 

quantities with a finite number of digits

Truncation Error

Associated with the approximations that are 

usually required when attempting to represent an 

exact mathematical expression or operation

Floating point arithmetic is NOT exact…
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Interesting Matlab Demo…

Case 1:   Let’s start with a value, say 5.000, and add 0.125 to 

it several times:

We should get 5.000 + 0.125 = 5.125

5.125 + 0.125 = 5.250

5.250 + 0.125 = 5.375 …

Case 2:   Let’s start with 5.000 again, and add 0.126 to it 

several times:

We should get 5.000 + 0.126 = 5.126

5.126 + 0.125 = 5.252

5.252 + 0.126 = 5.378 …

Floating point arithmetic is NOT exact…

Let’s do it in Matlab…

but Matlab gives

5.252000000000001e+000
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Computer Representation of Numbers

Base 10 Arithmetic:  

and

Thus, x.y could be written as …b5b4b3b2b1b0 . c1c2c3… using 

base 10 notation. 

Human computers do 

arithmetic in base 10

k
k

k 0

x b 10



k

k

k 1

y c 10






0 1 2 3
5.125 5 10 . 1 10 2 10 5 10

        

0 1 2 3
5.126 5 10 . 1 10 2 10 6 10

        
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Computer Representation of Numbers

Base 2 (binary) Arithmetic:  

and

Thus, x.y could be written as …b5b4b3b2b1b0 . c1c2c3… using 

base 2 notation. 

Electronic computers do arithmetic in base 2

k
k

k 0

x b 2



k

k

k 1

y c 2






2 1 0 1 2 3
5.125 1 2 0 2 1 2 . 0 2 0 2 1 2

4 0 1 . 0 0 0.125

            

   

   
10 2

5.125 101.001

   

 
10 2

10

5.126 101.0010000001000001

5.125991821289063





see next 

slide

(Oct. 2017)
CHEN.3170  Applied Engineering Problem Solving                        

Lesson 4:  Numerical Error



4

Computer Representation of Numbers

Electronic computers 

do arithmetic in base 2

   

 
10 2

10

5.126 101.0010000001000001

5.125991821289063





   
10 2

5.125 101.001

exact with 3 

digits

approximate 

with 16 digits
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The important point here is that all computers have a finite 

number of digits (bits) to represent a given number (or word)

For 32 bit machines:

each binary digit (0 or 1) →   bit

8 bits                          →   byte

single precision word        →   4 bytes = 32 bits

double precision word       →   8 bytes = 64 bits

Matlab does all its computations with 64 bit arithmetic to 

minimize round-off error.

Computer Representation of Numbers

However, there is always a 

finite precision limit!!!
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This precision limit is characterized by a number called 

machine epsilon, m.  

It is defined precisely as the smallest floating point number, m, 

such that

We can easily estimate machine epsilon, m, on any computer 

by continually reducing a number (say, by a factor of two) until 

the above condition is no longer valid.  

epsilon = 1.0;

while epsilon + 1.0 > 1.0

epsilon = epsilon/2;

end

Matlab has a built-in variable, eps, to store this value…

Machine Epsilon, m

see meps.m

m1 1  
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Although proper algorithm design and 64-bit arithmetic tend to 

minimize round off error, it is always something that you 

should be aware of when doing numerical computations and 

code development.

Because of round off error, we almost never ask the question 

“Is x = y?”.  

Instead, we ask “Is x close to y?” and this is often implemented 

as follows:

rerr = 1;  tol = 1e-5;

while rerr > tol

continue calculation that updates x and/or y

rerr = abs((x-y)/y);

end

where tol is some user-defined tolerance…

Ramifications of Round-Off Error…
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As mentioned previously, truncation error is often introduced 

when we approximate continuous mathematical functions and 

operations with a discrete algebraic representation.  

This error is usually associated with the actual truncation of an 

infinite series expansion for the quantity of interest to a finite 

number of terms -- thus the term, truncation error.

Understanding series   -- primarily the Taylor Series  -- is 

absolutely essential for the study of numerical methods and for 

understanding the concept of truncation error.

From a simplistic perspective, the Taylor series is a way to 

evaluate a function at a point x = xo + x in terms of the 

function and all its derivatives evaluated at point xo, or

Taylor Series and Truncation Error

0 1 2 3
o o o o

o

f (x )h f '(x )h f ''(x )h f '''(x )h
f (x h)

0! 1! 2! 3!
     

where  h = |x| 

is called the step size
(Oct. 2017)
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The forward Taylor series can be written in many forms:

where 

O(hn) = hn is the error or remainder which, upon truncation, 

accounts for all the remaining terms in the series.  This term is 

“proportional to hn” 

xi = xo and xi+1 = xi + h  just puts things into discrete form…

Taylor Series and Truncation Error

0 1 2 3
o o o o

o

f (x )h f '(x )h f ''(x )h f '''(x )h
f (x h)

0! 1! 2! 3!
     

O(hn) = hn

0 1 2 3
o o o o

o
4f (x )h f '(x )h f ''(x )h f '''(x )h

f (x h)
0! 1! 2! 3!

O(h )     

0 1
i

2 3
4i i i

i 1

f ( )h f '( )h f ''( )h f '''( )h
f ( ) O(h )

0! 1! 2! 3!

x x x x
x      

2 3
4i i

i 1 i i

f ''h f '''h
f f f 'h h

2! 3!
      
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For  f(x) = ex with the reference point at xo = 0,  the forward

Taylor series 

becomes

But, now we can let h = x for convenience of notation.

Thus, 

Similarly,

Example of Round-Off & Truncation Error 

0 1 2 3
o o o o

o

f (x )h f '(x )h f ''(x )h f '''(x )h
f (x h)

0! 1! 2! 3!
     

1 2 3
h 1 h h h

f (h) e
0! 1! 2! 3!

      since dn(ex)/dxn = ex

and e0 = 1

2 3 4 n
x

n 0

x x x x
e 1 x

2! 3! 4! n!

      

2 3 4 n n
x

n 0

x x x ( 1) x
e 1 x

2! 3! 4! n!






      
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Consider the computation of e3 and e-3 using the Taylor series 

truncated to 8 terms with only 5 significant digits in our 

calculations.

Doing the calculations gives:

Case 1:

and my calculator gives e3 = 20.086  -- thus, our 8-term estimate 

has an error of about –1.2% .

This error is dominated by truncation error, with only a minor loss 

in accuracy associated with rounding the individual calculations 

to 5 figures -- that is, the addition of a few more terms in the 

series would give very accurate results. 

Example of Round-Off & Truncation Error

3 9 27 81 243 729 2187
e 1 3

2 6 24 120 720 5040

1 3 4.5 4.5 3.375 2.025 1.0125 0.43393 19.846

       

        
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Case 2:

and the actual value is e-3 = 4.9787e-2  -- which shows that our 

estimate is terrible with about  –243% error (we didn’t even get 

the correct sign!!!).

This example has a serious case of both truncation error and 

round off error  -- in particular, notice that some of the individual 

terms are nearly a factor of 100 larger than the final result.  

Although additional terms in the series would help considerably, 

we could never get 5 significant figures of accuracy, because the 

subtraction of nearly equal terms leads to the loss of significant 

digits (this is often referred to as catastrophic cancellation).

Example of Round-Off & Truncation Error

3
e 1 3 4.5 4.5 3.375 2.025 1.0125 0.43393

7.1430e-2

        

 
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Notice, however, that if we compute the result for e-3 using the 

inverse of the Case 1 result, we have

which only represents an error of 1.2%.  

This is an example of what I mean by “proper algorithm design” !

Many times, however, “proper algorithm design” is not so simple, 

so we will leave much of the hard-core development of various 

numerical algorithms to the mathematicians and numerical 

analysis experts.  

In fact, that is why we will use Matlab to do many of the needed 

computations, since many years of experience has shown that 

most of the built-in algorithms are quite efficient and robust for a 

wide range of applications.

Example of Round-Off & Truncation Error

3

3

1 1
e 5.0388e-2

19.846e

   
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Forward TS:

Backward TS:

------------------------------

Forward Approximation to fi:

(from FTS)

Backward Approximation to fi:

(from BTS)

Derivative Approximations

2 3 (n) n
n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h O(h )

2! 3! n!


       

2 3 (n) n
n n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h ( 1) O(h )

2! 3! n!


       

2
i 1 i if f f 'h O(h )   

i 1 i
i

f f
f ' O(h)

h

 
 

2
i 1 i if f f 'h O(h )   

i i 1
i

f f
f ' O(h)

h


 

1st order forward

estimate to fi

1st order backward

estimate to fi
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Forward TS:

Backward TS:

------------------------------

Central Approximation to fi:

(from FTS-BTS)

Central Approximation to fi :

(from FTS+BTS)

Derivative Approximations  (cont.)

2 3 (n) n
n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h O(h )

2! 3! n!


       

2 3 (n) n
n n 1i i i

i 1 i i

f ''h f '''h f h
f f f 'h ( 1) O(h )

2! 3! n!


       

3
i 1 i 1 if f 2f 'h O(h )   

2i 1 i 1
i

f f
f ' O(h )

2h

 
 

2i 1 i i 1
i 2

f 2f f
f '' O(h )

h

  
 

2nd order central

estimate to fi

2nd order central

estimate to fi

2 4
i 1 i 1 i if f 2f f ''h O(h )    

1st derivative

2nd derivative
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Let’s estimate, using some FD approximations, the 

1st and 2nd derivatives of ex at x = 0

Example with Derivative Approximations

see deriv_approx.m

again dn(ex)/dxn = ex and e0 = 1

(Oct. 2017)
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Truncation error is often “proportional to the step size to some 

power n”, or

The order of error, n , can often be estimated via a set of 

numerical experiments that use different step sizes.

For example, a plot of  vs. h on a log-log scale gives a straight 

line with slope n:

Or, with just two separate evaluations, we have

Order of Error from Numerical Tests

n
h  

 n n
log log h log logh log nlogh        

n n
1 1 2 2h and h     

 
 

nn
1 21 1 1

n
2 2 1 22

logh h
or n

h log h hh

   
   

   
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Reducing the step size, h, is the most common way to reduce 

truncation error.

However, this often leads to an increased number of 

computations and, since round-off error is accumulative, more 

floating point arithmetic leads to more round-off error.

Truncation vs. Round-off Errors

This is illustrated in the 

sketch, where the total 

error is simply the sum of 

the truncation and round-

off errors.

However, for most 

practical engineering 

problems, the truncation 

error dominates. 

normal 

operation

(Oct. 2017)
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Problem:

Discrete Form:

Solution is implemented 

in a simple recursive 

loop and repeated with 

various h values…

Example: Truncation vs. Round-off Errors

Let’s show 

this in Matlab

see tradeoff.m

xdy
e with y(0) 1

dx
 

ix

i 1 iy y e h  

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

TradeOff:  Relative Error vs Step Size for given IVP -- y' = ex with y(0) = 1

Step Size

R
e
la

ti
v
e
 E

rr
o
r 

in
 y

f =
 y

(x
f) 

=
 y

(2
)
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More Illustrative Examples

On Evaluating Infinite Series – An Example 

Example that illustrates how to generate a Taylor 

series for f(x) = sinh(x) and on how to efficiently 

evaluate this infinite power series in Matlab. 

Algorithm to Evaluate Infinite Power Series

Set maxT and tol for stopping the calculation (also set  > tol)

Initialize counter and first term -- set n = 1  and  T = T1

Initialize the partial sum to the first term  -- set f = T

while  > tol && n < maxT

compute r, where rn = Tn+1/Tn (specific to function of interest)

T = r*T (compute next term in series)

f = f + T (update partial sum)

 = max(abs(T/f)) (compute maximum relative change)

n = n + 1 (increment counter)

end

see

infinite_series.pdf

3 5 2n 1

n 1

x x x
f (x) sinhx x

3! 5! (2n 1)!





     



Can you 

derive this?
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How do we compute rn?

For the specific case of f(x) = sinh(x):

Thus rn becomes

where we have used the fact that

3 5 2n 1

n 1

x x x
f (x) sinhx x

3! 5! (2n 1)!





     




 
 

   
 

  

2(n 1) 1
n 1

n 2n 1
n

2 2n 1 2

2n 1

2n 1 !T x
r

T 2(n 1) 1 ! x

2n 1 !x x x

2n 1 2n 2n 1 ! 2n 1 2nx

 









  

 


  

  

         2(n 1) 1 ! 2n 2 1 ! 2n 1 ! 2n 1 2n 2n 1 !         

again, see infinite_series.pdf for the detailed 

development and implementation within Matlab
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More Illustrative Examples  (cont.)

Evaluating and Plotting Space-Time Temperature Distributions

with 
2
nt

n n

n 1

T(x,t) a sin( x) e






  i
n n

4T(2n 1)
and a

2L (2n 1)

 
  

 

see

planewall_1.pdf
(Oct. 2017)
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More Illustrative Examples  (cont.)

Introduction to Finite 

Difference Methods 

for Solution of ODEs

This is a BIGGIE -- we will emphasize 

this in a separate presentation…

The goal here is to convert continuous differential 

equations into discrete difference equations…

IVPs and BVPs are treated quite differently

IVPs lead to recursive equations

BVPs lead to simultaneous equations

Let’s look at the details…
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