Applied Engineering Problem Solving
Lesson \#4: Numerical Error
Prof. John R. White
Chemical and Nuclear Engineering
UMass-Lowell, Lowell MA
CHEN.3170 Appied Engineering Problem Solving
Lesson 4: Numerical Eror

| Lesson \#4 Goals |  |
| :---: | :---: |
| Numerical Error: Round-Off and Truncation Error... |  |
| Computer representation of numbers Cilat: <br> (just the basics) <br> Round-off error and machine precision none <br> Chapra: <br> Implication of round-off error in iterative <br> Chapter 4  <br> techniques Lesson \# 4 Lecture Notes <br> and Illustrative Examples <br> Taylor series expansions and the  |  |
|  |  |
|  |  |
|  |  |
| truncation error associated with a finite approximation to infinite series (FD approximation to derivatives) |  |
| Trade-offs associated with round-off and truncation errors | FDMO ODES |

## Round-Off Error

Due to the fact that computers can only represent quantities with a finite number of digits

Floating point arithmetic is NOT exact...


## Truncation Error

Associated with the approximations that are usually required when attempting to represent an exact mathematical expression or operation

## Interesting Matlab Demo...



Floating point arithmetic is NOT exact...
Case 1: Let's start with a value, say 5.000 , and add 0.125 to it several times:
We should get
$5.000+0.125=5.125$
$5.125+0.125=5.250$
$5.250+0.125=5.375$


Case 2: Let's start with 5.000 again, and add 0.126 to it several times:


## Computer Representation of Numbers

Base 10 Arithmetic:

$$
x=\sum_{k=0} b_{k} 10^{k} \quad \text { and } \quad y=\sum_{k=1} c_{k} 10^{-k}
$$

Thus, $x . y$ could be written as $\ldots b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} . c_{1} c_{2} c_{3} \ldots$ using base 10 notation.

$$
\begin{aligned}
& 5.125 \rightarrow 5 \times 10^{0} .1 \times 10^{-1}+2 \times 10^{-2}+5 \times 10^{-3} \\
& 5.126 \rightarrow 5 \times 10^{0} .1 \times 10^{-1}+2 \times 10^{-2}+6 \times 10^{-3}
\end{aligned}
$$

## Human computers do

 arithmetic in base 10
## Computer Representation of Numbers

## UMASS

Base 2 (binary) Arithmetic:

$$
x=\sum_{k=0} b_{k} 2^{k} \quad \text { and } \quad y=\sum_{k=1} c_{k} 2^{-k}
$$

Thus, $x . y$ could be written as $\ldots b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} . c_{1} c_{2} c_{3} \ldots$ using base 2 notation.

$$
\begin{array}{r}
5.125 \rightarrow \begin{array}{c}
1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \cdot 0 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3} \\
4+0+1 \cdot 0
\end{array}+0 \begin{array}{l}
+0.125
\end{array} \\
\underbrace{(5.125)_{10} \rightleftarrows(101.001)_{2}}
\end{array}
$$

see next slide

$$
\begin{aligned}
(5.126)_{10} & \approx(101.0010000001000001)_{2} \\
& \approx(5.125991821289063)_{10}
\end{aligned}
$$

## Electronic computers do arithmetic in base 2

Computer Representation of Numbers


CHEN. 3170 Applied Engineering Problem Solving Lesson 4: Numerical Error

Electronic computers do arithmetic in base 2


$$
(5.126)_{10} \approx(101.0010000001000001)_{2}
$$

$$
\approx(5.125991821289063)_{10}
$$

## Computer Representation of Numbers

The important point here is that all computers have a finite number of digits (bits) to represent a given number (or word)
For 32 bit machines:
each binary digit (0 or 1 ) $\rightarrow$ bit
8 bits $\quad \rightarrow$ byte
single precision word $\rightarrow 4$ bytes $=32$ bits
double precision word $\rightarrow 8$ bytes $=64$ bits
Matlab does all its computations with 64 bit arithmetic to minimize round-off error.

However, there is always a finite precision limit!!!

## Machine Epsilon, $\varepsilon_{\mathrm{m}}$

This precision limit is characterized by a number called machine epsilon, $\varepsilon_{m}$.
It is defined precisely as the smallest floating point number, $\varepsilon_{\mathrm{m}}$, such that

$$
1+\varepsilon_{\mathrm{m}}>1
$$

We can easily estimate machine epsilon, $\varepsilon_{\mathrm{m}}$, on any computer by continually reducing a number (say, by a factor of two) until the above condition is no longer valid.
epsilon $=1.0$;
while epsilon $+1.0>1.0$ epsilon $=$ epsilon/2;
end


Matlab has a built-in variable, eps, to store this value...

## Ramifications of Round-Off Error...



Although proper algorithm design and 64-bit arithmetic tend to minimize round off error, it is always something that you should be aware of when doing numerical computations and code development.
Because of round off error, we almost never ask the question "Is $x=y$ ?".
Instead, we ask "Is $x$ close to $y$ ?" and this is often implemented as follows:

```
rerr = 1; tol = 1e-5;
while rerr > tol
    continue calculation that updates x and/or y
    rerr = abs((x-y)/y) ;
end
```

where tol is some user-defined tolerance...

## Taylor Series and Truncation Error

As mentioned previously, truncation error is often introduced when we approximate continuous mathematical functions and operations with a discrete algebraic representation.
This error is usually associated with the actual truncation of an infinite series expansion for the quantity of interest to a finite number of terms -- thus the term, truncation error.
Understanding series -- primarily the Taylor Series -- is absolutely essential for the study of numerical methods and for understanding the concept of truncation error.
From a simplistic perspective, the Taylor series is a way to evaluate a function at a point $x=x_{0}+\Delta x$ in terms of the function and all its derivatives evaluated at point $x_{0}$, or

$$
\mathbf{f}\left(\mathbf{x}_{0}+h\right)=\frac{\mathbf{f}\left(\mathbf{x}_{0}\right) \mathbf{h}^{0}}{\mathbf{0}!}+\frac{\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right) \mathbf{h}^{1}}{1!}+\frac{\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{0}\right) \mathbf{h}^{2}}{2!}+\frac{\mathbf{f}^{\prime \prime \prime}\left(\mathbf{x}_{0}\right) \mathbf{h}^{3}}{3!}+\cdots
$$

where $h=|\Delta x|$ is called the step size

CHEN. 3170 Applied Engineering Problem Solving Lesson 4: Numerical Error
(Oct. 2017)

## Taylor Series and Truncation Error

The forward Taylor series can be written in many forms:

$$
\begin{aligned}
& \mathbf{f}\left(\mathbf{x}_{0}+\mathbf{h}\right)=\frac{\mathbf{f}\left(\mathbf{x}_{0}\right) \mathbf{h}^{0}}{0!}+\frac{\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right) \mathbf{h}^{1}}{1!}+\frac{\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{0}\right) h^{2}}{2!}+\frac{\mathbf{f}^{\prime \prime \prime}\left(\mathbf{x}_{0}\right) h^{3}}{3!}+\cdots \\
& f\left(x_{0}+h\right)=\frac{f\left(x_{0}\right) h^{0}}{0!}+\frac{f^{\prime}\left(x_{0}\right) h^{1}}{1!}+\frac{f^{\prime \prime}\left(x_{0}\right) h^{2}}{2!}+\frac{f^{\prime \prime \prime}\left(x_{0}\right) h^{3}}{3!}+O\left(h^{4}\right) \\
& \mathbf{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)=\frac{\mathbf{f}\left(\mathrm{x}_{\mathrm{i}}\right) \mathbf{h}^{\mathbf{0}}}{\mathbf{0 !}}+\frac{\mathbf{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathbf{h}^{\mathbf{1}}}{1!}+\frac{\mathbf{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathbf{h}^{\mathbf{2}}}{2!}+\frac{\mathbf{f}^{\prime \prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathbf{h}^{\mathbf{3}}}{3!}+\mathbf{O}\left(\mathbf{h}^{4}\right) \\
& f_{i+1}=f_{i}+f_{i}{ }^{\prime} h+\frac{f_{i}{ }^{\prime \prime} h^{2}}{2!}+\frac{f_{i}{ }^{\prime \prime} h^{3}}{3!}+\alpha h^{4} \quad O\left(h^{n}\right)=\alpha h^{n}
\end{aligned}
$$

where
$O\left(h^{n}\right)=\alpha h^{n}$ is the error or remainder which, upon truncation, accounts for all the remaining terms in the series. This term is "proportional to $h^{n}$ "
$\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{o}}$ and $\mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}+\mathrm{h}$ just puts things into discrete form...
CHEN. 3170 Applied Engineering Problem Solving

## Example of Round-Off \& Truncation Error

For $f(x)=e^{x}$ with the reference point at $x_{0}=0$, the forward
Taylor series

$$
\mathbf{f}\left(\mathbf{x}_{0}+\mathbf{h}\right)=\frac{\mathbf{f}\left(\mathbf{x}_{0}\right) \mathbf{h}^{0}}{0!}+\frac{\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right) \mathbf{h}^{1}}{1!}+\frac{\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{0}\right) h^{2}}{2!}+\frac{\mathbf{f}^{\prime}{ }^{\prime \prime}\left(\mathbf{x}_{0}\right) h^{3}}{3!}+\cdots
$$

becomes

$$
f(h)=e^{h}=\frac{1}{0!}+\frac{h^{1}}{1!}+\frac{h^{2}}{2!}+\frac{h^{3}}{3!}+\cdots
$$

since $d^{n}\left(e^{x}\right) / d x^{n}=e^{x}$ and $\mathrm{e}^{0}=1$

But, now we can let $h=x$ for convenience of notation.
Thus,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0} \frac{x^{n}}{n!}
$$

Similarly,

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0} \frac{(-1)^{n} x^{n}}{n!}
$$

CHEN. 3170 Applied Engineering Problem Solving Lesson 4: Numerical Error

## Example of Round-Off \& Truncation Error

Consider the computation of $\mathrm{e}^{3}$ and $\mathrm{e}^{-3}$ using the Taylor series truncated to 8 terms with only 5 significant digits in our calculations.

Doing the calculations gives:
Case 1: $\mathrm{e}^{3} \approx 1+3+\frac{9}{2}+\frac{\mathbf{2 7}}{6}+\frac{\mathbf{8 1}}{\mathbf{2 4}}+\frac{\mathbf{2 4 3}}{\mathbf{1 2 0}}+\frac{\mathbf{7 2 9}}{\mathbf{7 2 0}}+\frac{\mathbf{2 1 8 7}}{\mathbf{5 0 4 0}}$

and my calculator gives $\mathrm{e}^{3}=20.086$-- thus, our 8-term estimate has an error of about $-1.2 \%$.
This error is dominated by truncation error, with only a minor loss in accuracy associated with rounding the individual calculations to 5 figures -- that is, the addition of a few more terms in the series would give very accurate results.

## Example of Round-Off \& Truncation Error

UMASS을
Case 2: $\quad \mathrm{e}^{-3} \approx 1-3+4.5-4.5+3.375-2.025+1.0125-0.43393$ $=-7.1430 \mathrm{e}-2$
and the actual value is $\mathrm{e}^{-3}=4.9787 \mathrm{e}-2$-- which shows that our estimate is terrible with about $-243 \%$ error (we didn't even get the correct sign!!!).

This example has a serious case of both truncation error and round off error -- in particular, notice that some of the individual terms are nearly a factor of 100 larger than the final result.

Although additional terms in the series would help considerably, we could never get 5 significant figures of accuracy, because the subtraction of nearly equal terms leads to the loss of significant digits (this is often referred to as catastrophic cancellation).

## Example of Round-Off \& Truncation Error

Notice, however, that if we compute the result for $\mathrm{e}^{-3}$ using the inverse of the Case 1 result, we have

$$
\mathrm{e}^{-3}=\frac{1}{\mathrm{e}^{3}}=\frac{1}{19.846}=5.0388 \mathrm{e}-2
$$

which only represents an error of $1.2 \%$.
This is an example of what I mean by "proper algorithm design" !
Many times, however, "proper algorithm design" is not so simple, so we will leave much of the hard-core development of various numerical algorithms to the mathematicians and numerical analysis experts.

In fact, that is why we will use Matlab to do many of the needed computations, since many years of experience has shown that most of the built-in algorithms are quite efficient and robust for a wide range of applications.

## Derivative Approximations

Forward TS: $\quad f_{i+1}=f_{i}+f_{i}{ }^{\prime} h+\frac{f_{i}{ }^{\prime \prime} h^{2}}{2!}+\frac{f_{i}{ }^{\prime \prime} h^{3}}{3!}+\cdots+\frac{f_{i}^{(n)} h^{n}}{n!}+O\left(h^{n+1}\right)$
Backward TS: $f_{i-1}=f_{i}-f_{i} \cdot h+\frac{f_{i}{ }^{\prime \prime} h^{2}}{2!}-\frac{f_{i}{ }^{\prime \prime \prime} h^{3}}{3!}+\cdots(-1)^{n} \frac{f_{i}^{(n)} h^{n}}{n!}+O\left(h^{n+1}\right)$

Forward Approximation to $f_{i}$ :
(from FTS)

$$
\begin{aligned}
& f_{i+1}=f_{i}+f_{i}{ }^{\prime} h+O\left(h^{2}\right) \\
& f_{i}{ }^{\prime}=\frac{f_{i+1}-f_{i}}{h}+O(h)
\end{aligned}
$$

$1^{\text {st }}$ order forward estimate to $f_{i}^{\prime}$

## Backward Approximation to $f_{i}^{\prime}$ :

(from BTS)

$$
\begin{aligned}
& f_{i-1}=f_{i}-f_{i}{ }^{\prime} h+O\left(h^{2}\right) \\
& f_{i}{ }^{\prime}=\frac{f_{i}-f_{i-1}}{h}+O(h)
\end{aligned}
$$

$1^{\text {st }}$ order backward estimate to $f_{i}{ }^{\prime}$

## Derivative Approximations (cont.)



Forward TS: $\quad f_{i+1}=f_{i}+f_{i} ' h+\frac{f_{i}{ }^{\prime \prime} h^{2}}{2!}+\frac{f_{i}{ }^{\prime \prime} h^{3}}{3!}+\cdots+\frac{f_{i}^{(n)} h^{n}}{n!}+O\left(h^{n+1}\right)$
Backward TS: $f_{i-1}=f_{i}-f_{i} \cdot h+\frac{f_{i}{ }^{\prime \prime} h^{2}}{2!}-\frac{f_{i}{ }^{\prime \prime \prime} h^{3}}{3!}+\cdots(-1)^{n} \frac{f_{i}^{(n)} h^{n}}{n!}+O\left(h^{n+1}\right)$

Central Approximation to $f_{i}^{\prime}$ :
(from FTS-BTS)

$$
f_{i+1}-f_{i-1}=2 f_{i}{ }^{\prime} h+O\left(h^{3}\right)
$$

$1^{\text {st }}$ derivative

$$
\mathbf{f}_{\mathrm{i}}{ }^{\prime}=\frac{\mathbf{f}_{i+1}-\mathbf{f}_{\mathrm{i}-1}}{2 h}+\mathbf{O}\left(\mathbf{h}^{2}\right)
$$

## Central Approximation to $f_{i}^{\prime \prime}$ :

(from FTS + BTS) $f_{i+1}+f_{i-1}=2 f_{i}+f_{i}{ }^{\prime \prime} h^{2}+O\left(h^{4}\right)$

```
\(2^{\text {nd }}\) derivative
```

$$
f_{i}{ }^{\prime \prime}=\frac{f_{i-1}-2 f_{i}+f_{i+1}}{h^{2}}+O\left(h^{2}\right)
$$

## Example with Derivative Approximations

Let's estimate, using some FD approximations, the $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives of $\mathrm{e}^{\mathrm{x}}$ at $\mathrm{x}=0$

$$
\text { again } d^{n}\left(e^{x}\right) / d x^{n}=e^{x} \text { and } e^{0}=1
$$

Table 3 Approximate derivatives for $\mathrm{e}^{\mathrm{x}}$ at $\mathrm{x}=0$ (from deriv_approx.m).

| step size, $\mathbf{h}$ | $f_{i}{ }^{\prime}=\frac{f_{i}-f_{i-1}}{h}$ | $f_{i}{ }^{\prime}=\frac{f_{i+1}-f_{i}}{h}$ | $f_{i}{ }^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}$ | $f_{i}{ }^{\prime \prime}=\frac{f_{i-1}-2 f_{i}+f_{i+1}}{h^{2}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.50000 | 0.78694 | 1.29744 | 1.04219 | 1.02101 |
| 0.25000 | 0.88480 | 1.13610 | 1.01045 | 1.00522 |
| 0.12500 | 0.94002 | 1.06519 | 1.00261 | 1.00130 |
| 0.06250 | 0.96939 | 1.03191 | 1.00065 | 1.00033 |
| 0.03125 | 0.98454 | 1.01579 | 1.00016 | 1.00008 |

## Order of Error from Numerical Tests

Truncation error is often "proportional to the step size to some power n", or

$$
\varepsilon=\alpha h^{n}
$$

The order of error, n , can often be estimated via a set of numerical experiments that use different step sizes.
For example, a plot of $\varepsilon$ vs. $h$ on a log-log scale gives a straight line with slope n :

$$
\log \varepsilon=\log \left(\alpha h^{n}\right)=\log \alpha+\log h^{n}=\log \alpha+n \log h
$$

Or, with just two separate evaluations, we have

$$
\begin{array}{cc}
\varepsilon_{1}=\alpha h_{1}^{n} & \text { and } \\
\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{\alpha h_{1}^{n}}{\alpha h_{2}^{n}}=\left(\frac{h_{1}}{h_{2}}\right)^{n} & \text { or } \\
n=\frac{\log \left(\varepsilon_{1} / \varepsilon_{2}\right)}{\log \left(h_{1} / h_{2}\right)}
\end{array}
$$

## Truncation vs. Round-off Errors

Reducing the step size, $h$, is the most common way to reduce truncation error.

However, this often leads to an increased number of computations and, since round-off error is accumulative, more floating point arithmetic leads to more round-off error.


This is illustrated in the sketch, where the total error is simply the sum of the truncation and roundoff errors.
However, for most practical engineering problems, the truncation error dominates.


## More Illustrative Examples

## On Evaluating Infinite Series - An Example

Example that illustrates how to generate a Taylor series for $f(x)=\sinh (x)$ and on how to efficiently evaluate this infinite power series in Matlab.


Algorithm to Evaluate Infinite Power Series
Set maxT and tol for stopping the calculation (also set $\varepsilon>$ tol) Initialize counter and first term -- set $\mathrm{n}=1$ and $\mathrm{T}=\mathrm{T}_{1}$ Initialize the partial sum to the first term -- set $f=T$ while $\varepsilon>$ tol $\& \& n<\max T$
$\mathrm{T}=\mathrm{r}^{\star} \mathrm{T}$
$\mathbf{f}=\mathbf{f}+\mathbf{T}$
$\varepsilon=\max (\mathrm{abs}(\mathrm{T} / \mathrm{f}))$
$\mathrm{n}=\mathrm{n}+1$
end
(specific to function of interest) (compute next term in series) (update partial sum) (compute maximum relative change) $\mathbf{n}=\mathbf{n + 1} \quad$ (increment counter)

CHEN. 3170 Applied Engineering Problem Solving Lesson 4: Numerical Error

## How do we compute $r_{n}$ ?



For the specific case of $f(x)=\sinh (x)$ :

$$
f(x)=\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots=\sum_{n=1}^{\infty} \frac{x^{2 n-1}}{(2 n-1)!}
$$

Thus $r_{n}$ becomes

$$
\begin{aligned}
r_{n}=\frac{T_{n+1}}{T_{n}} & =\frac{x^{2(n+1)-1}}{(2(n+1)-1)!} \times \frac{(2 n-1)!}{x^{2 n-1}} \\
& =\frac{x^{2} x^{2 n-1}}{(2 n+1)(2 n)(2 n-1)!} \times \frac{(2 n-1)!}{x^{2 n-1}}=\frac{x^{2}}{(2 n+1)(2 n)}
\end{aligned}
$$

where we have used the fact that

$$
(2(n+1)-1)!=(2 n+2-1)!=(2 n+1)!=(2 n+1)(2 n)(2 n-1)!
$$

again, see infinite_series.pdf for the detailed development and implementation within Matlab

## More Illustrative Examples (cont.)

Evaluating and Plotting Space-Time Temperature Distributions

$$
T(x, t)=\sum_{n=1}^{\infty} a_{n} \sin \left(\lambda_{n} x\right) e^{-\alpha \lambda_{n}^{2} t} \quad \text { with } \quad \lambda_{n}=\frac{(2 n-1) \pi}{2 L} \quad \text { and } \quad a_{n}=\frac{4 T_{i}}{(2 n-1) \pi}
$$



## More Illustrative Examples (cont.)

## Introduction to Finite Difference Methods for Solution of ODEs

This is a BIGGIE -- we will emphasize this in a separate presentation...

The goal here is to convert continuous differential equations into discrete difference equations...

IVPs and BVPs are treated quite differently
IVPs lead to recursive equations BVPs lead to simultaneous equations

Let's look at the details...

