
1

(Sept. 2017)

Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Prof. John R. White

Chemical and Nuclear Engineering

UMass-Lowell, Lowell MA

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

(Sept. 2017)

Lesson #3 Goals

The use of function subprograms for

developing well-structured programs

Controlling the flow of a program via

conditional tests and looping structures

Implementation of discrete formulas

Processing/documenting input and output

data within Matlab (including proper

internal documentation)

Developing proper programming logic and

problem solving strategies (via example)…

Additional Programming Features

Gilat:

Chapters 1 – 7 & 10

Chapra:

Chapters 1 – 3

Lesson # 3 Lecture Notes

and Illustrative Examples

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

2

(Sept. 2017)

Functions…

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Script file:

-- list of Matlab commands

-- no explicit input or output (in a manner of speaking)

-- all variables are stored in the Matlab workspace

-- data in workspace can be accessed within the command

window or by another script file

-- can call another script file

Function file:

-- also contains list of Matlab commands

-- first executable line must start with the word “function”

-- all variables within the function are local to that function (not

available from the command window)

-- communicates to main program via input and output

argument list or via global variables

-- allows for development of modular well-structured programs

Both file types use

the same *.m

naming convention

(Sept. 2017)

Functions… (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Basic Syntax:

function [output arguments] = function_name(input arguments)

(do something useful with the input arguments, being sure

to define the output arguments)

where the function… line must be the first executable line within

the function file

The best way to illustrate the use of functions is via example:

In the formal notes, there is a series of examples using the

functions fxy.m, fst.m, and fxyz.m to work with the simple math

relationship:

Here, in class, we will do a similar set of manipulations using the

mathematical relation:

2
f (x,y) (x 2)y 

at
f (t) e sin t (a and are parameters)  

You should spend a few

minutes reading these notes!!!

3

(Sept. 2017)

Functions… (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

where a = decay/growth factor and  = angular frequency

and  = 2f with f = 1/T and T = time per cycle

function f = fun1(t,a,w)

f = exp(a*t).*sin(w*t);

This function is called by fun1_main.m to perform various tasks.

In addition, fun1_anon.m treats the same example with f(t)

incorporated as an anonymous function instead of a separate file.

Note: This example is visited again after we discuss the use of

conditional tests within Matlab…

at
f (t) e sin t 

a & w are scalars

t is a vector

Let’s do it in Matlab…

(Sept. 2017)

Program Flow Control

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Control of program flow is an essential ingredient of any full-

featured programming language.

The ability to repeat mathematical evaluations or groups of

commands many times is also a necessary feature.

Within Matlab,

flow control: if … else … end or switch … end structures

repeat operations: for … end or while … end constructs

In most cases, the for … end looping structure is used when

some fixed number of loops is desired, whereas the while … end

syntax is used when the loop is repeated until some test or

condition is no longer valid.

Note also that the switch … end structure is sometimes useful as

an alternative to a long sequence of elseif blocks within an if …

elseif … else … end structure.

4

Conditional Tests

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Most of these programming features -- the if … else … end,

switch … end, and while … end structures, require some

mechanism for determining whether a conditional test is true or

false.

If the test it true, the loop is continued or the code segment

within the if … else … end structure is executed.

If, however, the test is not satisfied, then program flow

proceeds to the next elseif or else condition or to the end of the

structure.

The tests are performed with a series of relational and logical

operators, including an equality test, ==, a less than or equal to

test, <=, the not equal to test, ~=, etc., etc...

see your texts or the Matlab help

facility for a full list and for a

discussion of operator precedence

(Sept. 2017)

(Sept. 2017)

Conditional Tests (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

As a simple example, consider the following Matlab code:

>> format compact

>> x = [1 2 3 4 5]; y = [1 -2 3 -4 5];

>> z = x == y

z =

1 0 1 0 1

>> z2 = x ~= y

z2 =

0 1 0 1 0

>> z3 = x > y

z3 =

0 1 0 1 0

>> z4 = x >= y

z4 =

1 1 1 1 1

The result of the test is a

logical array filled with

0 (false) or 1 (true) values

5

(Sept. 2017)

Conditional Tests (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

For example, the following code displays the second statement
since the if z == 1 statement fails (recall z = [1 0 1 0 1]),

>> if z == 1

disp('x and y are identical')

else

disp(‘Not all corresponding values are equal')

end

>> Not all corresponding values are equal

This means that, in most cases, you will want to check on

individual elements of a logical array within a looping structure!!!

All the elements of the

logical array must be true

for this test to be true

Let’s show an example in Matlab…

It is important to note that a conditional test with a

logical array returns a single logical variable that is

true only if all the elements are true.

(Sept. 2017)

Conditional Tests (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

To do this, let’s revisit the example with the decaying sinusoid:

However, for this case, we will allow the decay factor, a, to change

discontinuously at t = 5 sec, or

This capability is implemented and tested within the following files:

fun2_main.m -- main program to call the function files and plot f(t)

fun2a.m -- function file to evaluate f(t) within looping structure

fun2b.m -- function file to evaluate f(t) using a vector approach

Let’s show this in Matlab…

at
f (t) e sin t 

1

1

0.2 s for t 5 s
a

0.5 s for t 5 s





 
 

 

6

(Sept. 2017)

for … end vs. while … end loops

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

In most cases, the for … end looping structure is used when some

fixed number of loops is desired, whereas the while … end syntax

is used when the loop is repeated until some test or condition is

no longer valid.

As an example, consider the evaluation of the following discrete

expression:

Case 1: What is the value of f for M = 30?

f = 0; M = 30;

for k = 1:M

f = f + (k-2)^2;

end

f

add kth term to running sum

M
2

k 1

f (k 2)


 

must initialize variables

for M known, a for … end loop that is

indexed from 1 to M makes perfect sense…

(Sept. 2017)

for … end vs. while … end loops

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Case 2: What is the minimum value of M such that f > 5000?

ff = 5000; f = 0; k = 0;

while ff > f

k = k+1;

f = f + (k-2)^2;

end

M = k

add kth term to running sum

M
2

k 1

f (k 2)


 

must initialize variables

for unknown M, a while … end loop that is continued until

the desired condition is met makes perfect sense…

Let’s do these in Matlab (see series_1.m) …

here we need to increment the index k

7

(Sept. 2017)

Calculation of Error

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Error based on a known value:

Error based on successive estimates:

Often we do not know the exact answer.

Here, we iterate towards an answer and when the result no

longer changes significantly, the solution has “converged”:

Note that the sign of the relative error is often not of interest,

just its magnitude is important.

Thus, the solution is converged when abs() is small…

calculated - known

known
 

k 1 k

k 1

S - S

S





  relative change from

iteration k to k+1

(Sept. 2017)

Calculation of Error (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

For example, consider an infinite series,

The partial sum after k+1 terms, Sk+1, minus the partial sum

after k terms, Sk, is simply the (k+1)th term in the series,

or

Thus, we have

If abs() is small, this simply says that the last term added to

the running sum was small relative to the total sum…

k 1

k 1

T

S





  relative change from

iteration k to k+1

k 1 2 3

k 1

S T T T T






    Tk refers to the kth

term of the series

k 1 k 1 kT S S  

8

(Sept. 2017)

Calculation of Error (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

As a specific example, consider the following infinite series.

Let’s estimate S where

S = 0; k = 1; x = 0.8;

rerr = 1.0; tol = 1e-5;

while rerr > tol

Tk = x^(k-1);

S = S + Tk;

rerr = abs(Tk/S);

k = k+1;

end

S

Note that

and, for x = 0.8, S = 5

Let’s do this in Matlab
(see series_2.m)

k 1

k 1

S x for x 0.8






 

k 1

k 1

1
x for x 1

1 x






 




(Sept. 2017)

Discrete Equations: An Example

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Implement the following discrete

expression in Matlab:
N N

T
i ij j

i 1 j 1

x Ax x a x
 

   

Case 1: Using Matlab’s

built-in capability

alf = x’*A*x

Case 2: Using a discrete representation

function alf = qform(A,x)

N = length(x)

alf = 0

for i = 1:N

sum1 = 0.0

for j = 1:N

sum1 = sum1+A(i,j)*x(j)

end

alf = alf+x(i)*sum1

end

Here, two nested

loops are required and

the result is a scalar

9

(Sept. 2017)

Input and Output Operations
(including Internal & External Documentation)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

This is a very broad subject, because input and output operations

can involve communication between the user and the program as

well as information exchange between programs via data files --

and there are a lot of different options here.

This discussion will only briefly touch on a few key points:

1. Always properly document your programs and analysis results.

Use internal comments to describe various program sections,

the primary variables and their units, and always select

meaningful variable names for use within the code…

Follow these same practices in all the printed and plotted

results with the use of gtext, legend, title, num2str, sprintf,

etc., for the plots and disp and fprintf for printed output…

2. For simple user interaction with Matlab programs, the input

and menu commands are quite useful (for only a few variables).

(Sept. 2017)

Input and Output Operations
(including Internal & External Documentation)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

3. For more extensive data transfer, there are many options:

use a separate Matlab script file with the data of interest

use Matlab’s load and save commands to read/write *.mat

files

read/write space- or comma-delimited ascii files with simple

formats with the dlmread or dlmwrite commands

write case-specific scripts using the built-in IO routines

(fopen, fclose, fgetl, fscanf, textscan, …) to treat any special

cases

use the built-in import data GUI when appropriate…

To see many of the

available options, type:

help iofun

See the formal Lecture Notes for

a simulated HW problem that

uses the loadColData.m file to

read/process an ascii data file…

10

More Illustrative Examples

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Hurricane Edouard (Aug. 21 –

Sept. 3, 1996)

Example that illustrates how to

use an m-file as a data file (see

ed96.pdf)…

Heat Transfer in a Rectangular Fin

Another problem solving example, where we do the formal

model development from base principles, solve the resultant

BVP using analytical techniques, and then analyze the results of

a parametric study that addresses how the thermal conductivity

affects the heat transfer process -- and we also highlight the use

of the fprintf command in Matlab to prepare some formatted

tabular data (see rect1d_fin_1.pdf)...

(Sept. 2017)

More Illustrative Examples (cont.)

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

Measurement Error in a

Temperature Probe

Another realistic parametric study

that involves the temperature profile

and overall heat transfer for a fin

with a constant cross-sectional area

(see pin_fin_1.pdf) …

(Sept. 2017)

11

(Sept. 2017)

Lesson #3 Summary

CHEN.3170 Applied Engineering Problem Solving

Lesson #3: Programming in Matlab

In this Lesson we have discussed the following topics:

The use of function subprograms for developing well-

structured programs

Controlling the flow of a program via conditional tests and

looping structures

Implementation of discrete formulas

Processing input and output data within Matlab (including

proper internal documentation)

Developing proper programming logic and problem-

solving strategies (via example)…

Additional Programming Features

You should now be

much more comfortable

with these topics…

