Applied Engineering Problem Solving

Lesson \#2: Introduction to Linear Algebra \& Array and Matrix Operations in Matlab

Prof. John R. White
Chemical and Nuclear Engineering
UMass-Lowell, Lowell MA

Linear Algebra Concepts and 2-D Function Evaluation and Plotting

Creating and working with arrays and array indexing

Element-by-element operation versus formal matrix multiplication (and other operations...)
Linear algebra notation and analytical manipulations

Some special matrices

Gilat:
Chapters 2-3 \& 10
Chapra:
Chapters 2, 8, 11.1 \& 13.1
Lesson \# 2 Lecture Notes and Illustrative Examples

Evaluating and plotting functions of two variables

Some visualization options...
CHEN. 3170 Applied Engineering Problem Solving
Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

Array Notation and Indexing

Consider the 2×4 matrix (2 rows and 4 columns):

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & 4 \\
5 & -1 & 3 & 1
\end{array}\right]
$$

We refer to the element in row i and column j as $a_{i j}$
$a=A(2,3)--$ refers to scalar value in row 2, column $3 \quad(a=3)$
$b=A(1,:)$-- assigns all elements in row 1 to variable b
$c=A(:, 3)$-- assigns $3^{\text {rd }}$ column of A to variable c
What do the following commands give:
$d=A(:,[14]) \quad$ and $\quad e=A(1,1: 3: 4)$

> Let's do it in Matlab...

Storage of Information in a 2-D Array

For example, let G be a matrix for storing homework grades:

$$
G(i, j)=\text { grade for student } i \text { on HW } j
$$

Now set the grades between 60 and 100, where the rand command generates uniformly distributed random numbers between 0 and 1:

$$
G=(100-60) * \text { rand }(25,7)+60 ;
$$

Grades for student \#5: GS5 = G(5,:)

Mathematical Form

$$
S 5_{\mathrm{ave}}=\frac{1}{\mathrm{ng}} \sum_{\mathrm{j}=1}^{\mathrm{ng}} \mathrm{~g}_{5 \mathrm{j}}
$$

Number of rows and columns: [NS,NG] = size(G)
Average HW grade for student \#5: S5ave = sum (GS5) /NG
What does the following give? sum ($G(:, 5)$)/NS ???
Let's do it in Matlab...
CHEN. 3170 Applied Engineering Problem Solving

Element by Element Operations

This type of arithmetic is conceptually simple -- one simply performs the desired operation element-by-element for every term of the array.

Consider two arrays: $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$
Addition:
$C=A+B$
$c_{i j}=a_{i j}+b_{i j}$
Subtraction:
$C=A-B$
Multiplication: $\mathbf{C = A}$. ${ }^{*} B$
Division: $\quad \mathbf{C}=\mathrm{A} . / \mathrm{B}$
$c_{i j}=a_{i j}-b_{i j}$

Exponentiation: C = A.^n

Using the following two arrays:
$A=\left[\begin{array}{llllll}0 & 1 & 2 ; & 3 & 4 & 5\end{array}\right]$
$B=\left[\begin{array}{llll}{[3} & 5 & 0 & 1\end{array}\right]$
Let's do it in Matlab...

CHEN. 3170 Applied Engineering Problem Solving Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

Matrix Operations

Matrix addition and subtraction are identical to the element-byelement operations.

Addition \& Subtraction: $\mathrm{C}=\mathrm{A} \pm \mathrm{B} \quad \mathrm{C}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} \pm \mathrm{b}_{\mathrm{ij}}$
However, matrix multiplication is a completely different story!!!
To introduce this concept, consider the following system of linear equations:

$$
\begin{array}{r}
3 x_{1}-2 x_{2}+2 x_{3}=1 \\
x_{1}+2 x_{2}-3 x_{3}=0 \\
4 x_{1}+x_{2}+2 x_{3}=0
\end{array}
$$

Think of each equation as a row, with the coefficients of the three unknowns, $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3}, properly ordered into the corresponding columns or terms of each equation.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& \mathbf{a}_{21} x_{1}+\mathbf{a}_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& \mathbf{a}_{31} \mathbf{x}_{1}+\mathbf{a}_{32} x_{2}+\mathbf{a}_{33} x_{3}=b_{3}
\end{aligned}
$$

For a general 3×3 system of equations, we have

where $a_{i j}$ is the coefficient of x_{i} in the $i^{\text {th }}$ equation, and b_{i} is the value on the RHS of equation i.
Using matrix-vector notation, we have $A x=b$, where

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Definition:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \Rightarrow \begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

CHEN. 3170 Applied Engineering Problem Solving Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

Matrix Operations (cont.)

$$
\begin{aligned}
& \text { Definition: } \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \Rightarrow \quad \begin{array}{l}
a_{11} x_{1}+a_{12} \mathbf{x}_{2}+a_{13} \mathbf{x}_{3}=b_{1} \\
a_{21} x_{1}+a_{22} \mathbf{x}_{2}+\mathbf{a}_{23} \mathbf{x}_{3}=b_{2} \\
a_{31} x_{1}+a_{32} \mathbf{x}_{2}+a_{33} \mathbf{x}_{3}=b_{3}
\end{array}} \\
& \hline
\end{aligned}
$$

For example, for the $1^{\text {st }}$ equation in the set, we see that

$$
\mathbf{a}_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}
$$

can be written as

$$
\mathbf{b}_{1}=\sum_{j=1}^{3} \mathbf{a}_{1 \mathrm{j}} \mathbf{x}_{\mathrm{j}}
$$

and, for any element of b, say for example, b_{i}, which corresponds to row i of the system of equations, we have

$$
b_{i}=\sum_{j=1}^{3} a_{i j} \mathbf{x}_{\mathrm{j}} \quad A x=b \Rightarrow b_{i}=\sum_{j} a_{i j} x_{j}
$$

$$
A x=b \Rightarrow b_{i}=\sum_{j} a_{i j} x_{j}
$$

This is referred to as the row view of matrix-vector multiplication.
The inner product of row i of matrix A with vector x gives the scalar b_{i}.
Recall that the inner product of two vectors, y and z, gives a scalar, α, or

$$
\alpha=y \cdot z=y^{T} \mathbf{z}=\left[\begin{array}{lll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \cdots
\end{array}\right]\left[\begin{array}{c}
\mathbf{z}_{1} \\
z_{2} \\
\vdots
\end{array}\right]=\sum_{i} y_{i} \mathbf{z}_{i}
$$

Thus, matrix-vector multiplication is simply a sequence of inner product operations -- one for each row of the system of equations.

Sample Application

Resistive Networks

Kirchoff's voltage law states: the algebraic sum of the voltage drops around a closed loop must be zero
Loop 1: $\mathbf{R}_{1} \mathbf{i}_{1}+\mathbf{v}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\left(\mathrm{i}_{\mathbf{1}}-\mathbf{i}_{2}\right)-\mathbf{v}_{\mathbf{3}}=\mathbf{0}$
Loop 2: $\mathbf{R}_{\mathbf{2}}\left(\mathbf{i}_{\mathbf{2}}-\mathbf{i}_{\mathbf{1}}\right)+\mathbf{R}_{3} \mathbf{i}_{\mathbf{2}}+\mathbf{v}_{\mathbf{2}}+\mathbf{R}_{\mathbf{4}} \mathbf{i}_{\mathbf{2}}+\mathbf{R}_{\mathbf{5}}\left(\mathbf{i}_{\mathbf{2}}-\mathbf{i}_{\mathbf{4}}\right)=\mathbf{0}$
Loop 3: $\mathbf{R}_{6} \mathbf{i}_{\mathbf{3}}+\mathbf{v}_{\mathbf{3}}+\mathbf{R}_{8}\left(\mathbf{i}_{3}-\mathbf{i}_{4}\right)+\mathbf{v}_{\mathbf{4}}+\mathbf{R}_{7} \mathbf{i}_{\mathbf{3}}=\mathbf{0}$
Loop 4: $-v_{4}+\mathbf{R}_{8}\left(i_{4}-i_{3}\right)+\mathbf{R}_{5}\left(\mathbf{i}_{4}-\mathbf{i}_{2}\right)+\mathbf{R}_{9} \mathbf{i}_{4}+\mathbf{v}_{5}=\mathbf{0}$
This can be written as $A x=b$, where

$\left[\begin{array}{cccc}\mathbf{R}_{1}+\mathbf{R}_{2} & -\mathbf{R}_{2} & 0 & 0 \\ -\mathbf{R}_{2} & \left(\mathbf{R}_{2}+\mathbf{R}_{3}+\mathbf{R}_{4}+\mathbf{R}_{5}\right) & \mathbf{0} & -\mathbf{R}_{5} \\ \mathbf{0} & 0 & \mathbf{R}_{6}+\mathbf{R}_{7}+\mathbf{R}_{8} & -\mathbf{R}_{8} \\ 0 & -\mathbf{R}_{5} & -\mathbf{R}_{8} & \mathbf{R}_{5}+\mathbf{R}_{8}+\mathbf{R}_{9}\end{array}\right]\left[\begin{array}{c}\mathbf{i}_{1} \\ \mathbf{i}_{2} \\ \mathbf{i}_{3} \\ \mathbf{i}_{4}\end{array}\right]=\left[\begin{array}{c}\mathbf{v}_{3}-\mathbf{v}_{1} \\ -\mathbf{v}_{2} \\ -\mathbf{v}_{3}-\mathbf{v}_{4} \\ \mathbf{v}_{4}-\mathbf{v}_{5}\end{array}\right]$

CHEN. 3170 Applied Engineering Problem Solving

More Matrix Multiplication

Extending our view of matrix-vector multiplication to matrixmatrix multiplication is quite straightforward.

Consider the system, $\mathbf{A x}=\mathrm{b}$, for two different RHS vectors, or

$$
A x_{1}=b_{1} \quad \text { and } \quad A x_{2}=b_{2}
$$

Now, with our view that a matrix is simply a convenient form for storage of information, let's store the two solution vectors x_{1} and x_{2} in a matrix, or

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{x}_{1} & \mathbf{x}_{2}
\end{array}\right]=\left[\begin{array}{lc}
\mathbf{x}_{11} & \mathbf{x}_{12} \\
\mathbf{x}_{21} & \begin{array}{|c}
\mathbf{x}_{22} \\
\mathbf{x}_{31}
\end{array} \\
\mathbf{x}_{32}
\end{array}\right] \quad \begin{aligned}
& 2^{\text {nd }} \text { element of } \\
& \text { the } 1^{\text {st }} \mathrm{x} \text { vector }
\end{aligned}
$$

Writing the two RHS vectors in a similar way, we can form a matrix equation:

$$
\text { ux } \text { uation: } \Rightarrow\left[\begin{array}{lll}
a_{11} & a_{12} & a_{3} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
x_{31} & x_{32}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]
$$

More Matrix Multiplication (cont.)

In general, if the size of A is $\mathrm{n} \times \mathrm{p}$ and X is of order $\mathrm{p} \times \mathrm{m}$, then the resultant matrix, B, is of order $\mathrm{n} \times \mathrm{m}-$-- where we note that, for valid matrix multiplication, the "inner matrix dimensions must agree".

The number of columns of A must be equal to the number of rows of X for the operation, $A X$, to be valid, or

$$
(n \times p)(p \times m)=n \times m
$$

This also implies that, in general, $\mathbf{A X} \neq \mathbf{X A}-$ that is, the order of operation is absolutely essential!!!

In the above example, $A X=B$, we have $(3 \times 3)(3 \times 2)=(3 \times 2)$, so the result will be a 3×2 matrix!

However, note that the operation XA is not even defined since $(3 \times 2)(3 \times 3)$ has inner matrix dimensions that do not match...

More Matrix Multiplication (cont.)

Following the row view of matrix multiplication, we can write the discrete form of $A X=B$ as

$$
b_{i j}=\sum_{k} a_{i k} x_{k j}
$$

where the individual element, $b_{i j}$, of the resultant matrix, B, is given as the inner product of row i of matrix A and column j of matrix X -- where clearly the number of elements (columns) in each row of A must be equal to the number of values (rows) in each column of X (i.e. the "inner matrix dimensions must agree").

In summary, you should view the value of $b_{i j}$ simply as "row i of A into column j of X ". With this view, the precise definition of matrix-matrix multiplication is given by

$$
\mathbf{A X}=\mathbf{B} \quad \Rightarrow \quad \mathbf{b}_{\mathbf{i j}}=\sum_{\mathbf{k}} \mathbf{a}_{\mathbf{i k}} \mathbf{x}_{\mathrm{kj}}
$$

Matrix Multiplication (in detail)

Let's do some
 examples by hand...

$\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 1 \\ 0\end{array}\right]$ $\left[\begin{array}{lll}2 & 1 & 0 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 1 & -2 & 0 & 0\end{array}\right]=\left[\begin{array}{cccc}2 & 3 & -1 & 4 \\ 3 & 2 & -2 & 6\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 2 \\ 3 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ 1 & -2\end{array}\right]=\left[\begin{array}{ll}0 & 6\end{array}\right]$
$\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]=3$
$\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]=\left[\begin{array}{lll}3 & 6 & -3 \\ 1 & 2 & -1 \\ 2 & 4 & -2\end{array}\right]$

Transpose Operator and Some Special Matrices

Matrix Transpose: $B=A^{\top} \rightarrow b_{i j}=a_{j i} \quad$ (interchange rows \& columns)
Identity Matrix: $\mathbf{I}=\left[\begin{array}{lll}1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1\end{array}\right] \quad \begin{array}{r}\text { Matlab: } \mathrm{B}=\mathrm{A}^{\prime} \\ \text { (square matrix with unity along main diagonal) } \\ \text { Matlab: } \mathrm{I}=\operatorname{eye}(3) \\ \hline\end{array}$
zeros command: zeros $(2,3)=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
ones command: ones $(4,2)=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]$
$A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 2 & 2 & 2\end{array}\right]$
A = [zeros(3,1),eye(3);2*ones(1,4)]
diag command:

$$
\left.\operatorname{diag}\left(\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]\right]\right)=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

A Note about "Matrix Division"

Our illustrations of linear algebra operations thus far have not included matrix division. This is because there is no such thing as formal matrix division!
Instead, one defines an inverse matrix and does matrix multiplication with the inverse matrix.
For example, for an equation containing scalar variables, say $\mathrm{ax}=\mathrm{b}$, we can write x as

$$
x=\frac{b}{a}=\left(\frac{1}{a}\right) b=a^{-1} b
$$

where each of these forms are equivalent.
However, for a matrix equation, $\mathbf{A x}=\mathrm{b}$, the only valid way to formally write the solution vector x is given by

$$
\mathbf{x}=\mathrm{A}^{-1} \mathbf{b} \text { where } \mathrm{A}^{-1} \mathrm{~A}=\mathbf{I}
$$

There is no division involved here!!!

This is a confusing point because Matlab, and many of the texts that describe various Matlab matrix operations, routinely refer to matrix division.

This is a point that we will discuss at some length in Lesson \#6. For now, however, if you need to solve a system of linear equations, you want to use Matlab's backslash,
, operater.

That is, to solve $A x=b$, use $x=A l b$ in Matlab.
One could also compute and use A^{-1}, that is, $x=A^{-1} b$, but this is much less efficient than the backslash operator.

To see this point and many other insights related to linear equations, we need to briefly introduce some additional concepts, terminology, and techniques from Linear Algebra!

Linear Algebra: Notation and Calculation

Need to discuss:

The matrix inverse, determinants, adjoints, cofactors, minors, rank of a matrix, etc.

Elementary row operations
The uniqueness and existence of solutions for both homogeneous and inhomogeneous equations
The classical eigenvalue problem and how to compute the eigenvalues and eigenvectors of a matrix
... We will do all this via hand manipulations

CHEN. 3170 Applied Engineering Problem Solving Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

The Maxwellian Distribution Revisited

(from Lesson \#1 "1-D Evaluation and Plotting")
In a dilute gas, the kinetic energies of the molecules are distributed according to the Maxwellian distribution function:
$\mathrm{f}(\mathrm{E}, \mathrm{T}) \mathrm{dE}=$ probability of finding a particle in energy interval dE for a particular gas temperature T

Since $f(E, T)$ is a probability density function (i.e. probability per unit energy), then

$$
\int_{0}^{\infty} f(E, T) d E=1
$$

At a particular gas temperature,

$$
\mathrm{f}(\mathbf{E}, \mathbf{T})=\frac{2 \pi}{(\pi \mathrm{kT})^{3 / 2}} \mathbf{E}^{1 / 2} \mathrm{e}^{-\mathrm{E} / \mathrm{kT}}
$$

where E is in eV, T is the absolute temperature in K , and the Boltzmann constant, k, has a value of $k=8.6170 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

The Maxwellian Distribution Revisited
(from Lesson \#1 "1-D Evaluation and Plotting")

Solution Algorithm:

1. define k and the absolute gas temperature, T
2. define a discretized energy grid, E_{i}
3. evaluate $f(E, T)$ using element-by-element vector arithmetic
4. plot and label $f(E, T)$ as appropriate and interpret...

Let's do this in Matlab (see maxwell_1.m)...

Some specific things to look for when using maxwell_1.m:

1. basic distribution of $f(E)$ for a given T (should match expectations)
2. use of logspace and semilogx commands
3. proper use of "dot" arithmetic
4. use of the num2str, input, and axis commands

CHEN. 3170 Applied Engineering Problem Solving

The Maxwellian Distribution Revisited

Now, for this Lesson, we want to focus on the 2-D nature of this function, $f(E, T)$

Solution Algorithm:

1. define k and a vector of absolute gas temperatures, T_{j}
2. define a discretized energy grid, E_{i}
3. evaluate $f(E, T) \rightarrow f\left(E_{i}, T_{j}\right) \rightarrow f_{i j}$
4. plot and label $f(E, T)$ in various ways, highlighting both quantitative and qualitative visualization techniques

Steps 1-3, the computational steps, can be done three different ways using scalar, vector, or matrix arithmetic

The Scalar Approach

Evaluate and Plot:
$\mathbf{f}(\mathbf{E}, \mathbf{T})=\mathbf{c}(\mathbf{T}) \mathrm{E}^{\frac{1}{2} \mathbf{e}^{-\frac{\mathrm{E}}{K T}} \quad \text { for } \mathbf{0}<\mathbf{E}<\mathbf{0 . 2 5} \quad \& \quad \text { several } T \text { values }}$

Assume that k, E and T are defined with proper units. Then

```
NE = length(E); NT = length(T);
f = zeros(NE,NT);
for j = 1:NT
    c = 2*pi/(pi*k*T(j))^1.5;
    for i = 1:NE
            f(i,j) = c*sqrt(E(i))*exp(-E(i)/(k*T(j));
    end
end
```

Note the two nested for ... end loops for the scalar approach!!!

The Vector Approach

Evaluate and Plot:

$$
\mathbf{f}(\mathbf{E}, \mathbf{T})=\mathbf{c}(\mathbf{T}) \mathbf{E}^{\frac{1}{2}} \mathbf{e}^{-\frac{\mathrm{E}}{K T}} \quad \text { for } 0<\mathbf{E}<0.25 \quad \& \quad \text { several } T \text { values }
$$

Assume that k, E and T are defined with proper units. Then
$\mathrm{NE}=$ length (E) ; NT $=$ length (T);
$\mathrm{f}=$ zeros (NE,NT) ; Now we need dot arithmetic!!!
c $=2 * \mathrm{pi} . /(\mathrm{pi} * k * T) . \wedge 1.5$;
for $\mathbf{j}=1: N T$

Also note that E should be a column vector with this code...
$f(:, j)=c(j) * \operatorname{sqrt}(E) \cdot * \exp (-E /(k * T(j)) ;$
end

Only one for ... end loop is needed for the vector approach!!!

The Matrix Approach

Evaluate and Plot:
$\mathbf{f}(\mathbf{E}, \mathbf{T})=\mathbf{c}(\mathbf{T}) \mathrm{E}^{\frac{1}{2} \mathbf{e}^{-\frac{\mathrm{E}}{K T}} \quad \text { for } \mathbf{0}<\mathbf{E}<\mathbf{0 . 2 5} \quad \& \quad \text { several } T \text { values }}$

For the moment, let's assume that E has 5 values and that T has 3 values. This means that f will be a 3×5 array (15 values) evaluated on a grid with 5 E values and 3 T values.
$\mathrm{E}=[1357$ 9]; $\mathrm{T}=[300400$ 500];
[EE,TT] = meshgrid(E,T)
EE =

Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

The Matrix Approach (cont.)

Evaluate and Plot:

$$
f(E, T)=\mathbf{c}(T) \mathbf{E}^{\frac{1}{2} e^{-\frac{E}{K T}}} \quad \text { for } 0<E<0.25 \quad \& \quad \text { several } T \text { values }
$$

Assume that k, E and T are defined with proper units. Then

```
[EE,TT] = meshgrid(E,T);
kT = k*TT; c = 2*pi./(pi*kT).^1.5;
F = c.*sqrt(EE).*exp (-EE./kT);
```

Everything is now a 2-D array -- all with the same size...

Now, NO loops are required!!!
Pretty nice!!!

CHEN. 3170 Applied Engineering Problem Solving Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

The Maxwellian Distribution Revisited

Okay, now that we have the fundamentals of how to do the evaluations, let's put some of these ideas to work in Matlab and address how to plot functions of two variables...

Let's do this in Matlab (see maxwell_2a and maxwell_2b.m)

CHEN. 3170 Applied Engineering Problem Solving Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

More Illustrative Examples

Sand Pit Utilization

Example that illustrates how to use array indexing and various matrix operations (matrix multiplication and the transpose operation) to assist in the analysis of data stored in a couple of 2-D arrays.

2-D Projectile Motion: A Bottle Cap Tossing Simulation
This example is a good introduction to our next subject, "Programming in Matlab", where we will expand upon some of the programming techniques used here...

CHEN. 3170 Applied Engineering Problem Solving Lesson \#2 Linear Algebra + Array and Matrix Operations in Matlab

Lesson \#2 Summary

In this Lesson we have discussed the following topics:

> | |
| :---: |
| 2-D Function Evaluation and Plotting in Matlab |

Creating and working with arrays and array indexing
Element-by-element operation versus formal matrix multiplication (and other operations...)

Linear algebra notation and analytical manipulations
Some special matrices
Evaluating and plotting functions of two variables
Some visualization options...

You should now be much more comfortable with these topics...

