
Lab #6b -- Some Practice with Nonlinear Equations

Overview

Well, we have almost made it to the end of the semester!!! In this last lab, we will focus on

some techniques for solving nonlinear equations. In general, nonlinear problems are much more

difficult to solve than linear systems and, in many cases, without a good starting guess, most

solutions methods will simply fail to find a solution. Thus, it is important for the user to supply a

reasonable starting solution to improve his or her chances of success.

For this lab we will focus on a single exercise involving three nonlinear equations. The system

selected for study here is a particularly challenging problem, so the first task will be to attempt to

locate some regions of interest where a root may occur. Then, with a set of reasonable guesses,

we will use both Matlab’s fsolve function and Newton’s method to find all the roots of the given

nonlinear function.

The lab instructor will walk you through most of the exercise but, along the way, you will have

plenty of opportunity to stay engaged by graphically searching for some reasonable starting

guesses for the formal nonlinear solution algorithms, by using fsolve to find a root (once a

starting guess has been identified), by computing the Jacobian needed for Newton’s method, and

finally, by modifying the nldemo2_lesson6.m file to use Newton’s method to solve the current

problem. By the end of the lab, you should have a much better appreciation for the challenge

associated with solving nonlinear equations, and have a new set of tools in your Matlab toolbox

for addressing this type of problem. With success here, you should have no problem in

completing your HW assignment for next week -- since the HW exercise asks you to go through

a set of similar steps to solve a much easier 2-equation nonlinear system…

Problem 1 -- A Challenging 3-Equation Nonlinear System

Our goal with this problem is to gain some experience solving nonlinear equations. In particular,

consider the following 33 system of nonlinear equations:

2x3
1 3

2
2 2
1 3 2 3

1 2 3 3 1 2

x e sinh x 3.6288188

x x x x 4.0

x x x x x x 5.0

We will try to solve this system using both Matlab’s fsolve function and by implementing

Newton’s method.

The first step in finding a solution to a nonlinear system is to identify an appropriate initial guess

for the solution algorithm. However, since this 33 system is purely arbitrary (does not

represent a physical system), we have no idea how many solutions there are (if any) and where

they are located. Thus, our first task is to learn a little about the potential solution space.

In particular, for a 33 system, one way to help identify the number and location of the solutions

is to reduce the vector equations, f(x) = 0, to a scalar system, F(x1,x2) = 0, that is only a function

of two variables, and then plot F(x1,x2) vs. x1 and x2 and visualize the locations where F(x1,x2)

approach zero. We can do this for the above system, as follows:

Applied Engineering Problem Solving -- Lab #6b: Nonlinear Equations…

2

1. Solve the 3rd equation for x3 in terms of x1 and x2.

2. Define a vector of x1 and x2 values and use Matlab’s meshgrid command to create a matrix

of X1 and X2 values.

3. With the X1 and X2 matrices, compute X3 from Step 1 and obtain a measure of the imbalance

in the original equations at each x1,x2 grid location by computing

2 2
1 2 F F F

where F1 and F2 are the matrix versions of f1(x) and f2(x) [that is, evaluated with the X1, X2,

and X3 matrices], with

 2
2

x3 2 2
1 1 3 2 1 3 2 3f () x e sinh x 3.6288188 and f () x x x x 4.0 x x

4. Plot F vs. x1 and x2 with Matlab’s plot3 command to try to “see” where the roots are located.

Note that a view(2) perspective to give a top view might help and other views, such as

view(0,0) may also be useful. Also, Matlab’s contour function could prove to be useful here.

Be creative…

Note that, since we are interested in only small values of F (the scalar function F should be

zero at the solution to the original nonlinear equations), we can focus the plot on the regions

of interest by setting all the large values within matrix F to nan (not a number). For example,

F(F > 1.0) = nan sets all values of F > 1.0 to nan -- and Matlab ignores nan values when

plotting.

With the above background, perform the following analyses/computations:

a. Use the graphical technique described above to find a complete set of reasonable starting

guesses within the domain defined by -5 ≤ x1 ≤ 5 and -4 ≤ x2 ≤4. Use a fine grid (i.e. lots of

points) here so that you don’t miss any potential regions of interest.

b. With appropriate guesses from the graphical analysis in Part a, use Matlab’s fsolve command

to find all the solutions to the original three coupled nonlinear equations within the domain

defined in Part a. Here you will need a separate function file or an anonymous function to

define the original three nonlinear equations, f(x) = 0, for use by the fsolve routine.

c. Now, based on the description and the nldemo2_lesson6.m file from the Lecture Notes,

implement Newton’s method into Matlab for solution of this problem. Here you will need to

evaluate the vector function and the Jacobian matrix at each guess for the root. Using the

same initial guesses as in Part b, compare your solutions using Newton’s method with those

obtained using Matlab’s fsolve command.

