>> vdwaal_1
Input the desired temperature (C): 20
the out the desired molar volume (L/mole): 10

Pressure of helium at T = 20 C and v = 10 L/mole is 2.40973 atm.

>> vdwaal_1
Input the desired temperature (C): 20
Input the desired molar volume (L/mole): 10

Pressure of hydrogen at T = 20 C and v = 10 L/mole is 2.40833 atm.

>> vdwaal_1
Input the desired temperature (C): 20
Input the desired molar volume (L/mole): 10

Pressure of oxygen at T = 20 C and v = 10 L/mole is 2.39843 atm.

>> vdwaal_1
Input the desired temperature (C): 20
Input the desired molar volume (L/mole): 10

Pressure of chlorine at T = 20 C and v = 10 L/mole is 2.35305 atm.

>> vdwaal_1
Input the desired temperature (C): 20
out the desired molar volume (L/mole): 10

Pressure of carbon dioxide at T = 20 C and v = 10 L/mole is 2.37877 atm.

```
00
    VDWAAL_1.M Main program to test the VDWAAL_1A function
00
    This program simply calls the VDWAAL_1A function with a given set of data that is
    selected/input by the user. The gas pressure is output for the conditions given.
    The goal here is to get some experience with a few relatively simple programming
    tasks -- that is, to become familiar with the use of functions and the input
8
    and menu commands in Matlab.
8
00
    File prepared by J. R. White, UMass-Lowell (last update: Oct. 2017)
00
      clear all, close all, nfig = 0;
00
00
    select gas of interest
      gases = {'helium';'hydrogen';'oxygen';'chlorine';'carbon dioxide'};
      ng = menu('Select the gas of interest:','helium', ...
                           hydrogen
                'oxygen', 'chlorine', 'carbon dioxide');
      gas = char(gases(ng)); % gas of interest (this is now a character string)
00
00
    input the desired conditions
      TC = input('Input the desired temperature (C): '); TK = TC+273;
      v = input('Input the desired molar volume (L/mole): ');
    call function to determine the pressure of the gas under the input conditions
      P = vdwaal_1a(TK, v, ng);
   now edit the numerical results
      fprintf(1,'\n');
      fprintf(1,'Pressure of %s at T = %g C and v = %g L/mole is %g atm. n', ...
              gas, TC, v, P);
010
00
   end of program
```

```
00
    VDWAAL_1A.M Function file to evaluate van der Waal's eqn
%
                        for several gases (given T and v)
    Inputs:
8
     T -- temperature of gas (K)
     v -- molar volume of gas (L/mole)
90
00
     ng -- gas of interest (position number in table of available gases)
00
    Outputs:
8
     P -- pressure (atm) of gas selected at conditions given
8
    NOTE: All inputs and outputs are scalars (will not work for vector inputs)
010
8
    File prepared by J. R. White, UMass-Lowell (last update: Oct. 2017)
00
      function [P] = vdwaal_la(T, v, ng)
00
00
    test input data
      N = length(T) + length(v);
      if N > 2
        disp(' Warning -- This function was not designed for vector inputs!!!');
      end
00
    data for various gases (order is important)
    order -> helium, hydrogen, oxygen, chlorine, carbon dioxide
      a = [0.0341 \ 0.244 \ 1.36 \ 6.49 \ 3.59]; % a coeff (L^2-atm/mole^2)
     b = [0.0237 \ 0.0266 \ 0.0318 \ 0.0562 \ 0.0427]; % b coeff (L/mole)
     R = 0.08206;
                           % universal gas constant (L-atm/mole-K)
00
   now compute pressure for the given input data
     P = R*T/(v-b(ng)) - a(ng)/v^2;
010
00
    end of function
```

```
010
    LOOPS 2.M
               Demo to evaluate finite and infinite series in Matlab
    Written by J. R. White, UMass-Lowell (last update: Oct. 2017)
010
    Part a -- evaluate series with finite number of terms
00
      N = 25; S = 0;
      for k = 1:N
        Sk = (-1)^{(k+1)}/(2*k-1);
        S = S + Sk;
      end
      fprintf(' Part a \n');
      fprintf(' Value of the series with N = %3i is: %8.5f \n\n', N,S);
00
010
   Part b -- evaluate infinite series until relative error < 0.001
      S = 0; k = 0;
      rerr = 1.0; tol = 1e-3;
      while rerr > tol
        k = k+1;
        Sk = (-1)^{(k+1)}/(2*k-1);
        S = S + Sk;
        rerr = abs(Sk/S);
      end
      fprintf(' Part b \n');
      fprintf(' Final relative error is = %10.5e \n',rerr);
      fprintf(' Value of the series with %3i terms is: %8.5f \n', k,S);
   end of program
>> loops 2
Part a
Value of the series with N = 25 is: 0.79539
Part b
Final relative error is = 9.99689e-04
Value of the series with 637 terms is: 0.78579
```

90

```
00
    This program simply calls the DINT function using y(x) = \exp(-x) to generate
    the integral over the range a = 0 to b = 2. This represents a simple test
    of the function. The exact result is I = 0.8647, so the integral estimate
    should approach this result as the number of intervals, N, is increased.
    Let's see...
90
90
   File prepared by J. R. White, UMass-Lowell (last update: Oct. 2017)
용
      clear all, close all, nfig = 0;
00
%
    set the range, number of intervals, the function parameters, and the desired I
      a = 0; b = 2;
      N = input('Enter the number of intervals to use: ');
      x = linspace(a,b,N+1); y = exp(-x);
      I = dint(x,y);
      disp('Desired Integral = '), disp(I)
%
8
  end of program
00
             Function file to integrate discrete data
    DINT.M
8
    Inputs:
    x -- discrete independent variable (vector)
    y -- discrete dependent variable (vector)
00
   Outputs:
     I -- scalar value of estimate of integral of y(x) over x range
00
%
00
    File prepared by J. R. White, UMass-Lowell (last update: Oct. 2017)
     function I = dint(x, y)
00
     N = length(x);
     I = 0.0;
     for i = 1: (N-1)
       ym = (y(i+1)+y(i))/2;
       dx = x(i+1) - x(i);
       I = I + ym*dx;
     end
   end of function
```

DINT_MAIN.M Main program to test the DINT function

00