
Applied Engineering Problem Solving  (CHEN.3170) 

Optional Extra Credit Project #2  --  Fall 2017 

Solving Nonlinear Equations  --  The Classical Three-Reservoir Problem 

 

Project Overview 

Consider the classical three-reservoir water distribution problem sketched below. 

 

Three pipes connect the three reservoirs as shown and these meet at junction point j.  The 

elevation at the surface of each reservoir is denoted as zi, the length of each pipe is Li, and the 

volumetric flow rate in line i is Qi.  At the junction of the three pipes, the continuity equation 

requires that 
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where Qi is related to the average velocity in line i by 
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where Ai is the flow area within the pipe.   

Also, if we write the general energy equation from the free surface of reservoir i to point j, we 

have 

 
i

2 2
jsurface surface i

i L j

PP v v
z h z

2g 2g
     

 
      (3) 

where vi refers to the average velocity in line i as given by eqn. (2).  With Psurface = 0 and      

vsurface = 0 because of the free surface condition associated with a large reservoir, and zj = 0 since 

we can choose this as the reference elevation, we have 
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Now, with eqn. (2) and Darcy’s equation for the head loss term, hL, with 
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we have 
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To simplify, we can define the coefficient of the 2
iQ  term as a kind of resistance coefficient, Ki,  
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and rewrite eqn. (6) as 
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However, it is important to note that Ki is not a constant.  In fact, since the friction factor, f, is a 

complicated function of the Reynolds number, which, in turn, is a function of the fluid velocity, 

the friction coefficient is indeed a relatively complicated function of the flow rate, Qi.  We can 

summarize this relationship with the following equations (see any good Fluid Mechanics text): 
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64

f for Re 2000
Re

   (laminar flow region)   (10) 

   
2

0.9

0.25
f for Re 2000

D 5.74
log

3.7 Re

 
   

  
  

    (turbulent flow) (11) 

where we have extended the Swamee-Jain turbulent flow friction factor correlation down to the 

transition flow regime (2000 < Re < 4000). 

Now, writing eqns. (1) and (8) specifically for the three-reservoir problem gives four equations 

with four unknowns, or 
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Clearly, this system of equations is nonlinear and, in general, they are not particularly easy to 

solve. 

Before we actually attempt a solution however, we need to address one more level of 

complication.  As you know, the energy equation for incompressible flow [see eqn. (3)] must be 

written in the direction of flow.  In the above development, we assumed a direction  --  from the 

reservoir surface to the junction point  --  but, in fact, for a steady flow situation, at least one of 

the flow paths must be reversed.  For example, if we assume that Q1 and Q2 are positive (i.e. in 

the assumed direction) and Q3 is negative (i.e. opposite to the assumed direction), then the 

energy equation for line 3 would be 
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or, with the same simplifications as above, we have 
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The only difference between this expression and eqns. (6) and (7) with i = 3 is the sign of the 

head loss term.  Thus, we can modify eqns. (6) and (7) to generalize the situation to be 

independent of the flow direction by using the sign(Q) function, or 
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Thus, eqns. (9) - (16) completely define this nonlinear flow situation.  

Note:  Since Q and v can take on negative values (just indicates that the flow direction is 

opposite to the assumed direction), be sure to use abs(Q) and/or abs(v) when computing the 

Reynolds number or other quantities that are dependent on the magnitude of the flow rate. 

Solution Schemes  --  Linearized Iteration Method   and   Matlab's fsolve Function 

As discussed in class, one relatively easy way to solve “mildly” nonlinear problems is via a 

linearized iteration method.  In this method, we simply linearize the nonlinear terms by making 

the coefficient matrix a function of the solution vector, A = A(x).  However, with a given guess 

for x, A(x) is known  --  call this Ap for the pth iteration --  and then we have a set of simple 

linear equations, 

 
p p 1 A x b           (17) 

which we can solve for the (p+1)th estimate of the desired solution vector x.  This process is 

continued until convergence or the maximum number of iterations is reached.   

Note that one often simply lets the next estimate of the solution be the current best guess, xold = 

xnew (where xold is the guess used for the next iteration and xnew is the current best estimate of the 

solution xp+1).  However, in some cases, the computed solution tends to oscillate around the real 
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solution if this approach is used.  When this happens, we often use the next guess as the average 

of the previous two solution estimates, xold = (xnew + xold)/2  --  where the xold on the left hand 

side (LHS) is the new guess for the next iteration and the xold on the RHS is the old guess used to 

generate xnew.  This approach usually eliminates the oscillatory behavior that can occur. 

For the current problem, we can write the linearized form of the equations as 
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where we see that the 4x4 A-matrix is indeed a function of the solution T
j 1 2 3[P Q Q Q ]x . 

In the Lecture Notes we also illustrated the use of Matlab's built-in fsolve function to solve 

unconstrained nonlinear equations.  The goal here is to find the solution vector x to a system of 

coupled nonlinear equations written in the form f(x) = 0  --  that is, what is x such that f(x) = 0?   

If we visualize eqn. (18) as Ax = b, where A = A(x), then we can simply write f(x) = Ax − b and 

search for the vector x that makes this vector function vanish.  This is what the fsolve routine is 

designed to do... 

Problem Description 

Your job for this project is to solve this system of equations using both the linearized iteration 

scheme and Matlab's fsolve routine for a variety of conditions and to interpret the results within 

the context of this fluid flow application.  In particular, you should break the project into two 

major tasks, as follows: 

Part A:  With the above background and the following data for the three-reservoir problem: 

1. 20 oC water is the working fluid. 

2. All pipes are 3” Sch 40 steel pipes. 

3. The three pipe lengths are:   L1 = 75 m   L2 = 50 m   L3 = 150 m 

4. The reservoir heights relative to the junction level are:   z1 = 60 m   z2 = 40 m   z3 = 20 m 

find the three volumetric flow rates (m3/s) and the junction pressure (kPa) for the specific 

situation given here using both of the methods outlined in the above paragraphs (this is done as a 

check on the base methods).  In addition, you should print out a table of intermediate results and 

also verify that the energy equation is in balance for each pipeline (do this for both methods).  

Is the continuity equation also satisfied?  Discuss and explain your results in detail.  Does 

everything make sense?   

Part B:  Now that you have a good understanding of the basic system, select one of the methods 

(either the linearized iteration method or the use of fsolve) to perform a parametric study of how 

things change as the height of Reservoir #3 varies.  In particular, let the height of Reservoir #3 

vary from 20 m to 140 m and plot the three flow rates and the junction pressure versus z3.  Do 

the results make sense?  Explain and interpret your solutions within the context of the physical 

problem.  Did you observe any interesting or unexpected behavior?  Explain in detail… 
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Documentation 

You are expected to treat this extra credit assignment as a Formal Project, and to produce a 

short, but formal report on your work (refer to the Project #1 write-up for an overview of what is 

expected).  Again, team efforts with two students per team are encouraged for this project, with 

each two-person team submitting a single report.  This assignment will be worth up to 25 extra 

points towards your HW grade, so it can contribute significantly to your composite HW score.  

Good Luck  --  this should be a lot of fun!!! 


