Applied Engineering Problem Solving (CHEN.3170)
 Homework Assignment \#2a -- Fall 2017
 Matrix and Linear Algebra Operations

Problem \#1: Matrix Operations -- Hand and Matlab Computations

Given the following matrices
$\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ 1 & -2\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 3 & 1\end{array}\right]$
$\mathbf{C}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 0 \\ -1 & 3 & 2\end{array}\right]$
$\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
a. Perform the indicated operations via hand calculations (show intermediate results, as appropriate):
$\mathbf{B}^{\mathbf{T}} \mathbf{B}, \quad \mathbf{A B C}, \quad \mathbf{x}^{\mathrm{T}} \mathbf{A x}, \quad \mathbf{x x}^{\mathrm{T}}, \quad$ and $\quad \mathbf{A}^{\mathbf{2}}$
b. Now, define the above arrays in a short Matlab script file and perform the indicated operations in Matlab. Do your results from Part a agree with the Matlab results?
c. What is the difference between $\mathbf{A}^{*} \mathbf{A}$ and $\mathbf{A} . * \mathbf{A}$ in Matlab? Explain and show the results...

Problem \#2: Linear Algebra Calculations -- Hand and Matlab Computations

Given the following data:

$$
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & -1 & -3 \\
-4 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 2 & -1 \\
2 & 1 & 3 \\
2 & 4 & -9
\end{array}\right] \quad C=\left[\begin{array}{ccc}
-4 & 4 & 0 \\
6 & -12 & 6 \\
0 & 4 & -4
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad y=\left[\begin{array}{c}
1 \\
-4 \\
-5
\end{array}\right]
$$

a. Calculate $\operatorname{det} \mathbf{A}$

1. Using Laplace's Expansion
2. By performing row operations to obtain an upper triangular matrix
b. Find the inverses of \mathbf{A} and \mathbf{B}
c. Solve the following matrix equation for the solution vector $\mathbf{x}: \mathbf{A x}=\mathbf{y}$
d. Calculate the eigenvalues and eigenvectors of \mathbf{C}
e. Parts $\mathrm{a}-\mathrm{d}$ should be done via hand calculation. Now, for Part e, use Matlab to verify that you did these correctly, and address any differences that you get (note: just use Matlab's det command to do the Matlab implementation of Part a).

Note: Most of the exercises requested here in Probs. $1 \& 2$ were already demonstrated as part of Lab \#2a -- the primary difference here is the use of different matrices. Thus, you should refer to your work from Lab\#2a as a starting point for this HW.

Documentation

Documentation for this assignment should include your hand calculations for Problems \#1 and \#2, a listing of the Matlab script files that were generated, the resultant Matlab outputs, and a brief description of the data and results of your analyses for each problem. Note that, for this HW, there is not much to discuss other than a statement indicating if the hand and Matlab results agree or not -- however, every problem should have a brief description/discussion, even if it is somewhat trivial. Thus, always be sure to include the key results along with a brief discussion for every problem -- and please keep each problem separate for ease of evaluation! An overall professional job is expected here!!!
See HW\#1 for a description of the expected format -- every HW in this course should follow these basic instructions...

