CHEN. 3170 Applied Engineering Problem Solving
 A Short Quiz on
 Using Looping Structures within Matlab

The value of π can be estimated by the following infinite series

$$
\mathrm{S}=\sum_{\mathrm{k}=0}^{\mathrm{N}} \frac{1}{16^{\mathrm{k}}}\left(\frac{4}{8 \mathrm{k}+1}-\frac{2}{8 \mathrm{k}+4}-\frac{1}{8 \mathrm{k}+5}-\frac{1}{8 \mathrm{k}+6}\right)
$$

where $\mathrm{S} \rightarrow \pi$ as $\mathrm{N} \rightarrow \infty$. Using this expression write a short Matlab script file that continues to add more terms in the series until the relative contribution of the next term is less than 10^{-8}. That is, what is the value of N needed to give a relative accuracy of about 10^{-8} for the value of π ? Simply print the final values of S and N to the screen.
Note: Do not use the built-in $\boldsymbol{p i}$ function in your Matlab code -- assume we do not know this value and that the above series expansion is to be used to estimate the actual value of π.

