CHEN. 3170 Applied Problem Solving with Matlab

A Short Quiz on
Function Evaluation and Plotting in Matlab (using function subprograms)

The volume, V, and surface area, A, of a cone-shaped paper cup are given as

$$
\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \quad \text { and } \quad \mathrm{A}=\pi \mathrm{r} \sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}
$$

where r is the radius of the base and h is the height of the cup (see sketch).
Note: The questions below ask you to write a series of Matlab routines to evaluate and plot these functions. Of course, this can be done in a number of ways, but the tasks here take you down a specific path to evaluate your understanding of several features within Matlab -- so please follow the steps/instructions given here carefully.

a. Write a function routine to compute the volume, V , and area, A , given
the values of r and h as inputs. The function should allow a vector input for the radius of the base, r , but only scalar values of height are treated. The outputs, V and A , should be the same size as r .
b. Write a Matlab script file that uses your function file from Part a to evaluate and plot both $\mathrm{V}(\mathrm{r})$ and $\mathrm{A}(\mathrm{r})$ for four different values of h (for $\mathrm{h}=4,6,8$, and 10 cm). Note that the volume and area are functions of two variables and they should be stored as 2-D arrays in your Matlab program. The program should plot the computed results in a quantitative fashion, where r varies from 5 to 20 cm . Visualize the $\mathrm{V}(\mathrm{r}, \mathrm{h})$ and $\mathrm{A}(\mathrm{r}, \mathrm{h})$ behavior in two separate well-labeled figures (no subplots here please), where each plot will have multiple curves to account for the different h values (you do not need to worry about different line styles). Use the back side of the page as needed...

