
Heat Transfer in a Rectangular Fin 

 

Fourier’s law of heat conduction tells us that the rate of energy transfer is proportional to the heat 

transfer area.  Because of this, extended surfaces are used in many applications to help enhance 

the energy transfer process.  In general, the study of fin heat transfer is rather complicated 

because some of the geometries can become quite complex.  In these cases, finite difference or 

finite element modeling is used to discretize the geometry of interest.  Energy balances on each 

nodal volume are performed, which leads to a system of simultaneous algebraic equations.  

Solving these equations gives a discrete approximation to the temperature profile in the system.  

This process is relatively straightforward and many computer codes have been developed to 

handle this type of problem.  However, the detailed study of finite difference (FD) or finite 

element (FE) methods for the solution of boundary value problems (BVPs) is beyond the scope 

of this course (although a brief introduction to the FD method is treated in one of the case studies 

in Lesson 4:  Numerical Errors). 

Fortunately, however, there are several practical cases that involve simple 1-D geometries that 

can be solved analytically.  The usual assumption in these problems is that heat conduction along 

the fin is primarily in one direction, and a simple energy balance on a differential element leads 

to the defining ODE  --  that is, the differential energy balance for the system.  The solution of 

this ODE, along with specific boundary conditions, gives the 1-D temperature profile in the 

system of interest.  Knowing the temperature profile, one can then determine the total energy 

transfer, the fin efficiency, and several other quantities of interest. 

To illustrate this process, consider the sketch of a typical extended surface (obtained from      

Ref. 1).  For steady state, a simple energy balance gives 

  energy flow rate in  =  energy flow rate out 

or, using the notation from the diagram, 

x x dx convq q dq     (1) 

For 1-D problems, Fourier’s law of 

conduction can be written as 

x c

dT
q kA

dx
    (2) 

and Newton’s Law of Cooling for convection 

heat transfer between a solid surface and a 

fluid gives 

conv sdq hdA (T T )          (3) 

where Ac =  cross sectional area for conduction heat transfer 

dAs =  surface area of differential element for convection heat transfer 

Using a first-order Taylor series representation for qx+dx within the 1-D steady state balance 

equation, we have 
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x
x x conv

dq
q q dx dq

dx
    

or  

x
conv

dq
dx dq 0

dx
   

Now, with the above expressions for qx and dqconv, we have 

 s
c

dAd dT
kA h T T 0

dx dx dx


 
    
 

 

or 

 s
c

dAd dT
kA h T T 0

dx dx dx


 
   

 
       (4) 

This 2nd order ODE represents the 1-D steady state differential energy balance for an extended 

surface.  In general, it is valid for any 1-D geometry, even ones with variable area (i.e. Ac and As 

vary with x).  Note that the heat transfer coefficient, h, is assumed to be constant over the surface 

in the current development. 

Now, since we want to keep things relatively simple to 

illustrate the basics, let’s assume a simple rectangular fin 

arrangement as shown in the sketch (again taken from     

Ref. 1).  Here we see that, in the special case of a 

rectangular fin, the following conditions apply 

         cA constant wt          and        sdA Pdx  

where P is the perimeter (P = 2w+2t).    

Now, for the case of constant thermal conductivity, k, 

eqn. (4) reduces to 

2

2
c

d T hP
(T T ) 0

kAdx
    

or 

2
2

2

d T
m (T T ) 0

dx
     with 2

c

hP
m

kA
     (5) 

where m2 is simply a constant that simplifies writing the ODE.  This equation is often studied in 

some detail in introductory heat transfer texts since it can give lots of insight into the subject of 

fin heat transfer. 

To obtain a unique solution to eqn. (5), we need to specify two unique boundary conditions 

(BCs) for the problem.  One common situation is for a fixed base temperature, Tb, and a 

convective tip condition.  Mathematically, these specific BCs can be written as 
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bT(0) T         and        
x L

x L

dT
k h (T T )

dx
 



        (6) 

Equations (5) and (6) define a specific BVP.  Since this problem has constant coefficients, its 

solution is particularly straightforward, as follows: 

First, we let  T T    to give a homogeneous equation, where 

T T     
d dT

dx dx


    

2 2

2 2

d d T

dx dx


  

Therefore, eqns. (5) and (6) become 

2
2

2

d
m 0

dx


            (7) 

with 

b b(0) T T             and          Lx L
x L

d
k h T(L) T h h

dx
 




         (8) 

Now, since the ODE has constant coefficients and is homogeneous, we assume a solution of the 

form rx(x) e  , which leads to the characteristic equation 

2 2r m 0   

with roots 1,2r m  . 

Thus, the general solution to eqn. (7) becomes 

mx mx
1 2(x) A e A e           (9a) 

or  

1 2(x) C sinh mx C cosh mx          (9b) 

where the hyperbolic sine and cosine functions are defined as follows: 

mx mxe e
sinh mx

2


         and        

mx mxe e
cosh mx

2


  

For problems with a finite length, it is usually more convenient to use the second form.  Thus, 

applying the BCs to eqn. (9b) gives 

   BC #1: 1 2 b(0) C (0) C (1)             or         2 bC       (10) 

   BC #2: 
x L

x L

d
k h

dx 



    

   1 2 1 2x L x L
k C mcosh mx C msinh mx h C sinh mx C cosh mx

 
     

   1 2 1 2k C mcosh mL C msinh mL h C sinh mL C cosh mL     
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and, with the use of eqn. (10), we can solve this for C1, giving  

1 b

h
sinh mL cosh mL

mk
C

h
cosh mL sinh mL

mk

 
 

  



       (11) 

Putting the constants C1 and C2 back into the general solution gives the unique solution, 

b

h
sinh mL cosh mL

(x) mk
cosh mx sinh mx

h
cosh mL sinh mL

mk

 
    




 

We can simplify this a bit by putting all terms on the RHS over the same denominator,  

b

h h
cosh mL sinh mL cosh mx sinh mL cosh mL sinh mx

(x) mk mk

h
cosh mL sinh mL

mk

   
         




 

Now, from the following identities for the hyperbolic functions, 

sinh(u v) sinh u cosh v cosh u sinh v    

and 

cosh(u v) cosh u cosh v sinh u sinh v    

we have, upon substitution of u = mL and v = mx, our final expression for the desired 

temperature profile, 

b

h
cosh m(L x) sinh m(L x)

(x) mk
h

cosh mL sinh mL
mk

  







      (12) 

Once one has the desired temperature profile, a variety of analyses can be performed.  Here we 

will compute the total heat transfer, qf, the fin effectiveness, f, and the fin efficiency, f, which 

are defined as follows: 

total heat transfer, qf: 

b c

f c c

x 0 x 0

x 0

h
kA m sinh m(L x) cosh m(L x)

dT d mk
q kA kA

hdx dx
cosh mL sinh mL

mk
 



 
          



 

or 
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f

h
M sinh mL cosh mL

mk
q

h
cosh mL sinh mL

mk

 
 

 



       (13) 

where b cM kA hP  , since c c c

c

hP
kA m kA kA hP

kA
   

fin effectiveness, f: 

f
f

c b

qenergy transfer with fin

energy transfer without fin hA
  


      (14) 

fin efficiency, f: 

b

f f
f

max f

q qenergy transfer with fin

max energy that could be transferred with fin q hA
   


  (15) 

where Af is the total heat transfer area of fin, f cA PL A  . 

As a specific application of the above development, let’s consider a rectangular fin with the 

following properties: 

        L = 5 cm = .05 m        t = 1.0 cm = 0.01 m        w = 1 m (unit width) 

        Tb  = 200 C                 T   = 30 C                      h = 500 W/m2-C 

and, as part of our analysis, we will look at three different values of thermal conductivity, k, to 

represent the use of three different fin materials, where 

         1

W
k 5

m C



,          2

W
k 50

m C



,          3

W
k 200

m C



 

Using these values, our goal is to compute and plot the temperature profiles for the three 

different fin materials.  In addition, we will create a short table of results that includes L, qf, f, 

and f for the different fin materials, as well as a short table of temperatures that show T(x) for 

several discrete xi values.  Specifically, the three profiles will be on a single well-labeled plot 

and the numerical data will be formatted into a table that includes sufficient data so that one can 

easily draw appropriate conclusions. 

The goals identified in the previous paragraph have been realized in Matlab file rect1d_fin_1.m.  

A listing of this program is given in Table 1.  The program is quite straightforward, with the 

three standard sections that include data specification, computation, and presentation of results.  

The computational section includes appropriate array arithmetic and a loop that treats the three 

different fin materials. The plot section is also standard, with nothing much different from our 

previous examples (note how the labels for use in the legend command are generated in the 

computational section and stored in a cell array). 
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Table 1  Listing of the rect1d_fin_1.m program. 

% 

%   RECT1D_FIN_1.M   Function Evaluation, Plotting, and Table Formation 

%                 Heat Transfer Analysis of a Rectangular Fin Arrangement 

% 

%   This file does some computational analysis for a rectangular fin with a fixed 

%   base or wall temperature and a convective environment at the tip.  The  

%   equations programmed for the temperature profiles assume that the energy flow  

%   in the fin is essentially one-dimensional along the length of the fin.   

%   Several performance parameters are also tabulated for the fins, including 

%   the thermal conductivity, the base and tip temperatures, the total heat  

%   transferred from the fin, the fin effectiveness, and the overall fin efficiency. 

% 

%   The goal of this file is to illustrate several of Matlab's basic capabilities, 

%   including function evaluation and plotting and the use of the fprintf command 

%   to create a summary table of results in an easy-to-read format.  It also shows 

%   how to use a for...end loop to perform a parametric study involving a single  

%   parameter (in this case we look at three different values of the fin's  

%   thermal conductivity).  Also, of course, you should gain a little further  

%   understanding of some simple heat transfer principles (conduction and  

%   convection heat transfer). 

% 

%   The basic idea for this problem came from the text "Fundamentals of Heat  

%   and Mass Transfer" 5th Ed by Incropera and Dewitt (2002, John Wiley & Sons). 

% 

%   File prepared by J. R. White, UMass-Lowell  (last update: Sept. 2017) 

% 

  

      clear all,  close all,  nfig = 0; 

% 

%   identify basic problem data 

      w = 1;                            % unit width of fin (m) 

      thk = 0.01;                       % fin thickness (m) 

      L = 0.05;                         % fin length  (m) 

      Tb = 200;                         % fin base temperature (C) 

      Tinf = 30;                        % environment temperature (C) 

      h = 500;                          % heat transfer coeff  (W/m^2-C) 

      k = [5 50 200];                   % fin thermal conductivities (W/m-C) 

% 

%   compute some derived parameters (note the use of 'dot arithmetic' where needed) 

      P = 2*w + 2*thk;                  % perimeter 

      Ac = w*thk;                       % cross section area (conduction area) 

      Af = P*L + Ac;                    % total fin surface area (for convection) 

      qmax = h*Af*(Tb - Tinf);          % max feat transfer in fin 

      qmin = h*Ac*(Tb - Tinf);          % heat transfer if no fin is present 

      Bi = h*thk./k;                    % Biot number 

      m = sqrt(h*P./(k*Ac));            % constant in derived equations (see notes) 

      M = sqrt(k*Ac*h*P)*(Tb - Tinf);   % constant in derived equations (see notes) 

      hmk = h./(m.*k);                  % constant in derived equations (see notes) 

      bot = cosh(m*L) + hmk.*sinh(m*L); % constant in derived equations (see notes) 

      qf = M.*(sinh(m*L) + hmk.*cosh(m*L))./bot;   % total fin heat transfer 

% 

%   compute temp profile for different materials (i.e. different thermal conductivities) 

      Nk = length(k);                   % number of different materials  

      Nx = 51;  x = linspace(0,L,Nx)';  % independent spatial variable 

      T = zeros(Nx,Nk);                 % allocate space for temperature profiles 

      lstr = cell(1,Nk);                % initialize space for legend labels 

      for n = 1:Nk 

        T(:,n) = Tinf + (Tb - Tinf)*(cosh(m(n)*(L-x)) + hmk(n)*sinh(m(n)*(L-x)))/bot(n); 

        lstr(n) = {['k = ',num2str(k(n),'%3i'),' W/m-C']}; 

      end 

% 

%   plot temp profiles 

      nfig = nfig+1;   figure(nfig) 

      plot(x*100,T(:,1),'r-.',x*100,T(:,2),'b--',x*100,T(:,3),'g-','LineWidth',2),grid 

      title('T(x) Profiles in Fin for Different Values of k ') 

      xlabel('Spatial Position (cm)') 

      ylabel('Temperature (^oC)') 

      legend(lstr) 

% 
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%   write summary table of results (note that this assumes Nk = 3) 

      fprintf(1,'\n\n'); 

      fprintf(1,'           Summary Results from the RECT1D_FIN_1.M Program \n'); 

      fprintf(1,'\n'); 

      fprintf(1,'    Case-Independent Parameters      \n'); 

      fprintf(1,'  Base Temperature (C):               %8.2f    \n',Tb); 

      fprintf(1,'  Environment Temperature (C):        %8.2f    \n',Tinf); 

      fprintf(1,'  Heat Transfer Coeff (W/m^2-C):      %8.2f    \n',h); 

      fprintf(1,'  Fin Length (cm):                    %8.2f    \n',L*100); 

      fprintf(1,'  Fin Thickness (cm):                 %8.2f    \n',thk*100); 

      fprintf(1,'  Min Heat Transfer possible (W):     %8.2f    \n',qmin); 

      fprintf(1,'  Max Heat Transfer possible (W):     %8.2f    \n',qmax); 

      fprintf(1,'\n'); 

      fprintf(1,'    Case-Dependent Parameters          Case #1    Case #2   Case #3 \n'); 

      fprintf(1,'  Thermal Conductivity (W/m-C):       %8.2f   %8.2f  %8.2f  \n',k); 

      fprintf(1,'  Tip Temperature (C):                %8.2f   %8.2f  %8.2f  \n',T(Nx,:)); 

      fprintf(1,'  Heat Transfer per unit width (W):   %8.2f   %8.2f  %8.2f  \n',qf); 

      fprintf(1,'  Fin Effectiveness (dimensionless):  %8.2f   %8.2f  %8.2f  \n',qf/qmin); 

      fprintf(1,'  Fin Efficiency (dimensionless):     %8.2f   %8.2f  %8.2f  \n',qf/qmax); 

      fprintf(1,'  Biot Number (dimensionless):        %8.2f   %8.2f  %8.2f  \n',Bi); 

      fprintf(1,'\n'); 

      fprintf(1,'    Actual Temperature Profiles, T(x) in C, for the Three Cases \n'); 

      fprintf(1,'\n'); 

      fprintf(1,'        Position      Case #1   Case #2   Case #3 \n'); 

      fprintf(1,'          (cm)          T(x)      T(x)      T(x)  \n'); 

      for i = 1:2:Nx 

        fprintf(1,'         %5.1f      %8.1f  %8.1f  %8.1f  \n',x(i)*100,T(i,:)); 

      end 

% 

%  end of problem 

 

The only unique feature, and the real point of this Matlab example, is the use of the fprintf 

command to create summary tabular results for this problem.  We have used this command 

before, but only to print out a few key results.  Here, our goal was to create a full page of results 

that fully documents this particular analysis.  Your texts for this course give a good overview of 

the fprintf command syntax and, of course, the Matlab help facility gives very detailed 

information.  You certainly need to review these information sources!  However, I feel that the 

best way to learn how to effectively use the fprintf function is to see its use in a real example.  

The last portion of rect1d_fin_1.m provides this demonstration, where the output is sent to the 

screen (fid = 1 in all the fprintf statements, where unit 1 is the display screen). 

The results from rect1d_fin_1.m are summarized in Table 2 and in Fig. 1.  The figure is a copy 

of the single plot produced in the program and Table 2 is an image of the tabular output produced 

with the use of fprintf in the last section of rect1d_fin_1.m.  Since a high thermal conductivity 

implies that energy can be conducted more easily, the relative results from both Table 2 and Fig. 

1 are as expected.  Clearly, the T(x) profiles indicate that there is less of a temperature variation 

in the fin with increasing k.  In addition, the total heat transfer, the fin effectiveness, and the fin 

efficiency are all enhanced when using a fin material with a higher thermal conductivity.  Thus, 

you can correctly conclude that real fins are made of materials with high k  --  the higher the 

better! 

However, even with a high k, the fin analyzed here is not very efficient, with the best case 

having an efficiency less than 70%.  This is because the temperature drop from the base to the tip 

is too high  --  since the area near the tip with a temperature of 120 C loses much less energy per 

unit length than a similar area near the fin’s base (which is near 200 C).  Thus, for good 

efficiency (i.e. effective use of the fin material), we desire to minimize the temperature decrease 

along the fin’s length, where the best possible scenario is when T(x)  Tb everywhere.  In this 
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case, one easy way to increase the efficiency would be to decrease the length of the fin.  This 

would, of course, decrease the total heat transfer area and the total energy transfer of a single fin, 

but multiple fins could be used to counter this effect, and keep the efficiency high. 

 

Table 2  Tabular results from rect1d_fin_1.m. 

           Summary Results from the RECT1D_FIN_1.M Program  

 

    Case-Independent Parameters       

  Base Temperature (C):                 200.00     

  Environment Temperature (C):           30.00     

  Heat Transfer Coeff (W/m^2-C):        500.00     

  Fin Length (cm):                        5.00     

  Fin Thickness (cm):                     1.00     

  Min Heat Transfer possible (W):       850.00     

  Max Heat Transfer possible (W):      9435.00     

 

    Case-Dependent Parameters          Case #1    Case #2   Case #3  

  Thermal Conductivity (W/m-C):           5.00      50.00    200.00   

  Tip Temperature (C):                   30.16      59.19    121.72   

  Heat Transfer per unit width (W):    1208.08    3766.37   6449.51   

  Fin Effectiveness (dimensionless):      1.42       4.43      7.59   

  Fin Efficiency (dimensionless):         0.13       0.40      0.68   

  Biot Number (dimensionless):            1.00       0.10      0.03   

 

    Actual Temperature Profiles, T(x) in C, for the Three Cases  

 

        Position      Case #1   Case #2   Case #3  

          (cm)          T(x)      T(x)      T(x)   

           0.0         200.0     200.0     200.0   

           0.2         157.9     185.6     193.7   

           0.4         126.3     172.5     187.8   

           0.6         102.5     160.5     182.1   

           0.8          84.5     149.5     176.8   

           1.0          71.0     139.6     171.8   

           1.2          60.9     130.5     167.1   

           1.4          53.2     122.2     162.6   

           1.6          47.5     114.7     158.4   

           1.8          43.2     107.9     154.5   

           2.0          39.9     101.7     150.8   

           2.2          37.5      96.0     147.3   

           2.4          35.6      90.9     144.1   

           2.6          34.2      86.3     141.2   

           2.8          33.2      82.2     138.4   

           3.0          32.4      78.5     135.9   

           3.2          31.8      75.1     133.6   

           3.4          31.4      72.1     131.5   

           3.6          31.0      69.5     129.6   

           3.8          30.8      67.2     127.9   

           4.0          30.6      65.2     126.4   

           4.2          30.4      63.5     125.0   

           4.4          30.3      62.0     123.9   

           4.6          30.3      60.8     123.0   

           4.8          30.2      59.9     122.3   

           5.0          30.2      59.2     121.7   
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Fig. 1  Temperature profiles in the rectangular fin for different fin materials. 

 

One final point that should be mentioned here is the appropriateness of the 1-D approximation 

that was made in the development of the equations used here.  The 1-D approximation essentially 

assumes that the temperature variation through the thickness of the fin (the z-direction in our 

original sketch for a general extended surface) is negligible  --  that is T(x,z)  T(x).  The 

goodness of the approximation is characterized by the Biot number, which is a ratio of the 

conduction resistance to the convection resistance in the direction of interest (the transverse 

direction in this case), or 

 cond s

conv s

R t kA ht
Bi

R 1 hA k
           (16) 

Typically, if Bi << 1, then the resistance to conduction heat transfer is small compared to the 

resistance to convection heat transfer.  When this happens, the temperature distribution through 

the thickness of the fin is nearly flat and the 1-D approximation is very good.  If the Biot number 

is close to or greater than unity, then you should seriously question the results of a 1-D analysis  -  

since a high Biot number implies that a 2-D analysis is probably needed.  As a test of this, the 

Biot number was computed in rect1d_fin_1.m and printed along with the other numerical 

results.  As apparent in Table 2, the Biot number for Case 1 with k = 5 W/m-C is exactly unity.  

Thus, the results given here for Case 1 are probably not very reliable.  The other two cases, with 

Bi = 0.10 and 0.03, should be quite accurate relative to a more detailed 2-D analysis. 

Well, we have come to the end of another example.  This treatment of a 1-D rectangular fin 

represents a standard approach to problem solving, where we have done the formal model 
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development from base principles, solved the resultant BVP using analytical techniques, and 

then analyzed the results of a parametric study that addressed how the thermal conductivity 

affects the heat transfer process.  Matlab was used in the analysis portion of our study to evaluate 

the resultant equations, plot the temperature profiles, and tabulate summary results from the 

parametric study  --  where we highlighted the use of the fprintf command in Matlab to prepare 

the formatted tabular data.  Later in the semester, we will bypass the analytical solution step and 

show you how to use Matlab to directly solve the BVP numerically.  Thus, we will revisit this 

example when we get to the subject of Numerical Solution of ODEs.  For now, you should leave 

this application with a better understanding of some heat transfer fundamentals, a good example 

of the usefulness of the fprintf command, and another illustration of a solid approach to solving 

problems in engineering design and analysis…   

 

Reference:  The basic idea for this problem came from the text "Fundamentals of Heat and Mass 

Transfer" 5th Ed. by Incropera and Dewitt, John Wiley & Sons, 2002.  The two sketches used at 

the beginning of this example also came from this reference (pgs. 129 and 130). 

 

 

 

 


