
Maxwellian Distribution Revisited 

 

Now that we are more familiar working with 2-D arrays in Matlab, let’s go back and revisit the 

Maxwell Boltzmann distribution function that was discussed in one of the Lesson #1 examples.  

Recall that the Maxwellian was given by 
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where E is in eV, T is the absolute gas temperature in K, and the Boltzmann constant, k, has a 

value of k = 8.6170x10-5 eV/K. 

We have written this relationship as an explicit function of energy, E, and gas temperature, T.  In 

our previous example with this distribution function (see maxwell_1.pdf), we plotted this 

function on both linear and logarithmic energy scales for a single value of T that was specified in 

an interactive session by the user.  However, what if we wanted to evaluate f(E,T) for several 

values of T and plot these in a single plot?  Since the quantity of interest is a function of two 

variables, E and T, this naturally leads to a 2-D array of discrete values, fij, where the i subscript 

refers to discrete values of energy, Ei, and the j subscript corresponds to temperature, Tj. 

There are a variety of standard techniques for plotting functions of two variables, but they can 

usually be broken into two general classes depending upon whether you are interested primarily 

in a qualitative or quantitative presentation of the functional behavior.  Usually, if a quantitative 

representation is desired, then a series of 2-D plots, f(E,Tj), for several different values of 

temperature, Tj, is chosen.  For example, Table 1  --  which gives a listing of the maxwell_2a.m 

program  --  evaluates and plots the Maxwell Boltzmann distribution for three different 

temperatures (20, 150, and 300 C).  Matlab’s vector arithmetic is used to evaluate the function 

for all values of E in a single statement, and this computation is repeated three times within a 

standard for … end structure in Matlab.  Each time through the loop, the column index, j, gets 

incremented by one unit, and we compute f(E,Tj) and store it in the jth column of the program 

variables F1 and F2 (for the linear and logarithmic evaluations, respectively).  Note, for 

example, that the notation, F1(:,j), refers to all rows in column j of array F1. 

 

Table 1  Program listing for maxwell_2a.m. 

% 

%   MAXWELL_2A.M   Plots Maxwellian Distribution for Several Temperatures 

% 

%   This is a demo that illustrates several aspects of programming within the  

%   Matlab environment.  The goal here is simply to evaluate and plot the  

%   the Maxwellian Distribution for several temperatures.  Both linear and   

%   logarithmic energy scales are used.  The function of interest is: 

%        f(E,T) = (2*pi/(pi*kT)^1.5)*sqrt(E)*exp(-E/kT) 

%   

%   In evaluating this function, we will illustrate some of the vector processing 

%   capabilities and simple 2-d plotting functions available in Matlab. 

% 

%   Related files, MAXWELL_1.M and MAXWELL_2B.M, perform similar operations.  

%   MAXWELL_1.M is a simplified version of this file and only plots f(E) for one  

%   temperature at a time.  MAXWELL_2B.M does a similar evaluation as the current  

%   file, with a focus on some of Matlab's 3-D plotting options.  

% 

%   File prepared by J. R. White, UMass-Lowell (last update: September 2017) 
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% 

  

      clear all,  close all,  nfig = 0; 

% 

%   define the Boltzmann constant  

      k = 8.6170e-5;               % Boltzmann constant (eV/K) 

% 

%   define desired temperatures and evaluate some other equation constants 

      Tc = [20 150 300];           % desired temperature vector (C) 

      T = Tc+273;                  % convert to absolute temperature (K) 

      kT = k*T;                    % energy associated with given temperature (eV) 

      c = 2*pi./(pi*kT).^1.5;      % normalization constant in equation for f(E) 

% 

%   Case 1  Evaluate function, f(E,T), on a linear energy grid 

      E1o = 0;    E1f = 0.25;   NE1 = 251;   E1 = linspace(E1o,E1f,NE1)'; 

      NT = length(T);   F1 = zeros(NE1,NT);   st = cell(NT,1); 

      for j = 1:NT 

        F1(:,j) = c(j)*sqrt(E1).*exp(-E1/kT(j));  % evaluate function for all E & Tj 

      end 

% 

%   Case 2  Evaluate function, f(E,T), on a logarithmic energy grid 

      E2o = -5;   E2f = 0;     NE2 = 251;   E2 = logspace(E2o,E2f,NE2)'; 

      F2 = zeros(NE2,NT);    

      for j = 1:NT 

        F2(:,j) = c(j)*sqrt(E2).*exp(-E2/kT(j));  % evaluate function for all E & Tj 

      end 

% 

%   now plot the results (both linear and semilog scales) 

      nfig = nfig+1;   figure(nfig) 

      subplot(2,1,1),plot(E1,F1,'LineWidth',2), grid 

      title('Maxwell\_2a:  Maxwellian Distribution for Different Temperatures');  

      xlabel('Energy (eV)'),ylabel('Probability per eV, f(E)') 

      for j = 1:NT,   tt = sprintf('T = %3g C',Tc(j));   st(j) = cellstr(tt);   end 

      legend(st) 

% 

      subplot(2,1,2),semilogx(E2,F2,'LineWidth',2), grid 

      xlabel('Energy (eV)'),ylabel('Probability per eV, f(E)') 

      for j = 1:NT;   gtext(['T = ',num2str(Tc(j)),' C']);   end 

% 

%   plot linear case again -- this time with different line styles (max of 6 lines) 

      Ncm = 6;   scm = ['b- ';'g--';'r-.';'m: ';'c- ';'k--']; % set color/marker code  

      nfig = nfig+1;   figure(nfig),   hold on 

      for j = 1:NT 

        plot(E1,F1(:,j),scm(j,:),'LineWidth',2) 

        tt = sprintf('T = %3g C',Tc(j));   st(j) = cellstr(tt);  

      end 

      title('Maxwell\_2a:  Maxwellian Distribution for Different Temperatures');  

      xlabel('Energy (eV)'),ylabel('Probability per eV, f(E)') 

      grid on,  legend(st),  hold off 

% 

%   end of program 

 

 

Similar calculations are presented for both linear and logarithmic energy scales and the results 

are summarized in Fig. 1.  Note that, whenever multiple curves are presented on the same axis, 

an appropriate label to explicitly identify each curve is needed.  I often use Matlab’s gtext or 

legend commands to do this.  In this case, I used both techniques for illustration purposes  --  

where the linear plot is labeled using the legend command, and the logarithmic curves are 

annotated using the gtext function.  Either approach is appropriate here  --  usually this is just a 

matter of choice of the person doing the analysis.  Note, however, that the legend command 

required us to be a little clever in developing the cell string that is inserted within the legend 

function (see Matlab’s help facility for the sprintf and cellstr commands). 
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Fig. 1  Plots of the Maxwellian distribution from maxwell_2a.m. 

 

Note that, as expected, the plots show exactly the same behavior as discussed in our Lesson #1 

example of the Maxwellian distribution, but now it is much easier to compare f(E,Tj) for 

different temperatures.  Since the curves for 20, 150, and 300 C are on the same plot, we can 

easily see and quantify how the distribution broadens and the peak probability decreases as the 

temperature increases.  This information was available from the previous maxwell_1.m program, 

but it is much easier to visualize this behavior when f(E,Tj) for multiple temperatures, Tj, are 

plotted on the same axis. 

One thing I don’t like about Fig. 1 is that all the curves use the same line style.  The curves look 

fine when viewed in color, but if this page was printed on a black and white printer, then all the 

curves look the same, and the legend in the top part of the figure becomes essentially useless.  To 

avoid this problem, one can plot the individual curves within a looping structure and explicitly 

change the line style for each temperature used.  This is done in the last plot made in 

maxwell_2a.m and the results is shown in Fig. 2.  This plot is informative both in color and in 

B&W. 

An alternate way to present functions of two variables is by using a variety of 3-D plotting 

techniques.  The resultant plots are often referred to as 3-D plots since the dependent variable, 

f(x,y), is plotted along the z-axis as a function of the two independent variables which lie along 

the x and y axes.  The Matlab program listed in Table 2, maxwell_2b.m, shows a few examples 

of this capability for the Maxwellian distribution. 
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Fig. 2  Maxwellian distribution on linear scale with different line styles. 

 

 

Table 2  Program listing for maxwell_2b.m. 

% 

%   MAXWELL_2B.M   Plots Maxwellian Distribution for Several Temperatures and  

%                illustrates some of Matlab's 3-D surface plotting capabilities 

% 

%   This demo illustrates several aspects of programming within the Matlab  

%   environment.  The goal here is to evaluate and plot the Maxwellian  

%   Distribution for several temperatures and to illustrate some 3-D visualization 

%   capability in Matlab.  The function of interest is 

%        f(E,T) = (2*pi/(pi*kT)^1.5)*sqrt(E)*exp(-E/kT) 

%   and this is evaluated on linear grids for both energy and temperature. 

% 

%   Related files, MAXWELL_1.M and MAXWELL_2A.M, perform similar operations.  

%   MAXWELL_1.M is a simplified version of this file and only plots f(E) for one  

%   temperature at a time.  MAXWELL_2A.M does a similar evaluation as the current  

%   file, with a focus on plotting f(E,T) as a family of curves in a simple 2-D plot. 

% 

%   File prepared by J. R. White, UMass-Lowell (last update: September 2017) 

% 

  

      clear all,  close all,  nfig = 0; 

% 

%   define the Boltzmann constant, desired temperatures and energies 

      k = 8.6170e-5;                           % Boltzmann constant (eV/K) 

      Tc = 0:10:300;                           % desired temperature vector (C) 

      T = Tc+273;                              % desired temperature vector (K) 

      Emax = 0.2;  E = linspace(0,Emax,101);   % desired energy vector (eV) 

% 

%   define 2-D arrays containing Tj,Ei grid points 

      [EE,TT] = meshgrid(E,T);    TTc = TT-273;                             

% 
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%   now evaluate Maxwellian at all grid points (be careful with dot arithmetic) 

      kT = k*TT;   c = 2*pi./(pi*kT).^1.5; 

      F = c.*sqrt(EE).*exp(-EE./kT); 

% 

%   Plot family of curves for f(E) for every 5th temperature on single 2-D plot  

      Ncm = 6;   scm = ['r- ';'g--';'b-.';'m: ';'c- ';'k--']; % set color/marker code  

      nfig = nfig+1;   figure(nfig),   hold on 

      n = 0;  nn = 0;  rr = 1:5:length(Tc);  st = cell(length(rr),1); 

      for j = rr                                % j is temp profile of interest 

        n = n+1;                                % counter for number of curves 

        nn = nn+1;  if nn > Ncm,  nn = 1;  end  % counter for line style/color 

        plot(E,F(j,:),scm(nn,:),'LineWidth',2) 

        tt = sprintf('T = %3g C',Tc(j));   st(n) = cellstr(tt); 

      end 

      title('Maxwell\_2b:  Maxwellian Distribution for Different Temps') 

      xlabel('Energy (eV)'),ylabel('Probability per eV, f(E,T)') 

      grid on,  legend(st),  hold off 

% 

%   Let's try a mesh plot of f(E,T) --- using mesh 

      nfig = nfig+1;   figure(nfig) 

      mesh(EE,TTc,F) 

      title('Maxwell\_2b:  Maxwellian Distribution (mesh command)') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

      zlabel('Probability per eV, f(E,T)') 

% 

%   Let's try a surface plot of f(E,T) --- using surf 

      nfig = nfig+1;   figure(nfig) 

      surf(EE,TTc,F) 

      title('Maxwell\_2b:  Maxwellian Distribution (surf command)') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

      zlabel('Probability per eV, f(E,T)') 

% 

%   Let's add a color bar to the surface plot --- using surf and colorbar 

      nfig = nfig+1;   figure(nfig) 

      surf(EE,TTc,F),  colorbar 

      title('Maxwell\_2b:  Maxwellian Distribution (surf and colorbar)') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

      zlabel('Probability per eV, f(E,T)') 

% 

%   Let's redo the same 3D plot with a different view --- using view 

      nfig = nfig+1;   figure(nfig) 

      surf(EE,TTc,F),  colorbar,  view(20,30) 

      title('Maxwell\_2b:  Maxwellian Distribution (surf, colorbar, & view)') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

      zlabel('Probability per eV, f(E,T)') 

% 

%   One more time - this time with "interpolated shading" --- using shading 

      nfig = nfig+1;   figure(nfig) 

      surf(EE,TTc,F),  colorbar,  shading interp 

      title('Maxwell\_2b:  Maxwellian Distribution (surf, colorbar, & shading)') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

      zlabel('Probability per eV, f(E,T)') 

% 

%   And, as a final plot, how about a contour plot with a colorbar? 

      nfig = nfig+1;   figure(nfig) 

      [cs,h] = contour(EE,TTc,F);  clabel(cs),  colorbar,  colormap(jet),  grid 

      set(h,'LineWidth',2) 

      title('Maxwellian Dist. --  Lines of Constant Prob. per eV') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

% 

%   Well, one final final plot, how about a contour plot where we set the levels? 

      nfig = nfig+1;   figure(nfig) 

      [cs,h] = contour(EE,TTc,F,[0.5 4 8 12 16 20]);   

      clabel(cs),  colorbar,  colormap(jet),  grid 

      set(h,'LineWidth',2) 

      title('Maxwellian Dist. --  Lines of Constant Prob. per eV') 

      xlabel('Energy (eV)'),ylabel('Temperature (C)'), 

% 

%   enough already...  end of program 
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For 3-D plots, both independent variables must have a small enough mesh spacing, E and T in 

this case, so that the surface, f(E,T), is sufficiently smooth (i.e. no “jaggies” are allowed in either 

2-D or 3-D plots).  We use Matlab’s meshgrid command to facilitate evaluation of the function 

at all the discrete combinations of Ei and Tj.  One first creates vectors for the independent 

variables as usual, and then uses meshgrid to expand these into two 2-D arrays that contain the 

values of the independent variables at each i,j mesh location  --  giving EEij and TTij. 

An example, like a picture, is worth a thousand words!!!  Thus, let’s create a vector, E, with 6 

values over the range 0 < E < 0.25 eV, and a vector, T, with 7 values between 0 and 300 C. 

>> E = linspace(0,0.25,6) 

E = 

         0    0.0500    0.1000    0.1500    0.2000    0.2500 

>> T = linspace(0,300,7) 

T = 

     0    50   100   150   200   250   300 

 

Now, using meshgrid, we create two matrices, EE and TT, that each contain 7x6 = 42 discrete 

Tj,Ei combinations within 2-D arrays that represent a discrete grid for the independent variables, 

E and T (note that the second independent variable occurs along the row index of the 2-D 

arrays).  The appropriate Matlab command is 

>> [EE,TT] = meshgrid(E,T) 

EE = 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

     0    0.0500    0.1000    0.1500    0.2000    0.2500 

TT = 

     0     0     0     0     0     0 

    50    50    50    50    50    50 

   100   100   100   100   100   100 

   150   150   150   150   150   150 

   200   200   200   200   200   200 

   250   250   250   250   250   250 

   300   300   300   300   300   300 

 

Now, with two 7x6 arrays for the independent variables, we can evaluate the Maxwellian 

distribution function, f(E,T), at each mesh grid location with a single Matlab statement (after 

defining the appropriate equation constants and converting the temperature array to absolute 

temperatures).  Thus, being careful to use the appropriate element-by-element arithmetic, we can 

use Matlab’s powerful array processing capability as follows: 

>> TT = TT+273;  k = 8.6170e-5;  kT = k*TT;  c = 2*pi./(pi*kT).^1.5; 

>> F = c.*sqrt(EE).*exp(-EE./kT) 

F = 

         0    8.5424    4.1741    1.7663    0.7047    0.2722 

         0    8.1888    4.3744    2.0237    0.8827    0.3728 

         0    7.8247    4.5070    2.2483    1.0574    0.4815 

         0    7.4632    4.5854    2.4398    1.2239    0.5945 

         0    7.1121    4.6208    2.5999    1.3792    0.7084 

         0    6.7757    4.6226    2.7312    1.5214    0.8206 

         0    6.4562    4.5986    2.8366    1.6497    0.9289 

 

And, with f(E,T) evaluated on a discrete grid, we can now plot the Maxwellian distribution 

function in a number of different ways using a variety of Matlab’s built-in 3-D plot functions. 
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The above procedure was used in maxwell_2b.m to evaluate f(E,T) on a sufficiently fine grid 

and a series of 3-D plots were generated as described in Table 2 (see the comments within the 

code listing).  The resultant plots  --  each showing the same functional behavior with a slightly 

different style, view orientation, or plot attribute  --  are shown in Fig. 3.  Most of these plots 

give a good qualitative overview of the functional behavior of f(E,T) over the domain of interest.  

Here it is easy to see the broadening of the distribution function with increasing temperature and 

the rapid (exponential) decrease of f(E,T) at high energy.  Thus, these type of plots help us to 

visualize the overall functional behavior  --  although it is often difficult to obtain precise 

quantitative data from the 3-D plots.  Thus, you should use a variety of 2-D and/or 3-D plotting 

techniques, as needed, for your particular application.  I strongly recommend 2-D plots when 

quantitative data are needed and 3-D plots when a general qualitative view is desired.  

Occasionally, you may want to use both plotting styles in a particular application, where the 3-D 

plot gives the big picture and one or more 2-D plots highlight some specific behavior from a 

more quantitative perspective.  Finally, we note that the use of a labeled contour plot, as shown 

in Fig. 4, is also often a good choice  --  since it provides an alternative quantitative view of the 

same information relative to the traditional 2-D or 3-D plotting options.  This type of plot is also 

excellent when one is interested in identifying the extreme points (maxima or minima) of a given 

function… 

Well, this completes our first example of 2-D function evaluation in Matlab and the use of 2-D 

and 3-D plotting techniques to help visualize and interpret functions of two independent 

variables.  Our ability to easily evaluate and visualize two-dimensional functions in this way is 

actually quite remarkable!  The array processing capability in Matlab is very efficient and 

relatively easy to use  --  if you are careful to use the appropriate dot arithmetic where needed.  

The visualization capability in modern computational tools, such as Matlab, is also really quite 

nice, and it gives us the ability to easily analyze the rather complicated behavior that is often 

associated with real physical systems and processes. 

We have only barely touched upon some of Matlab’s capability in this area, and the reader is 

certainly encouraged to use Matlab’s help facility to explore further (see Matlab’s help on the 

meshgrid, surf, mesh, colormap, colorbar, view, contour, surfc, etc. commands).  We will 

certainly revisit some of these commands and explore many others in further detail over the 

remainder of the semester.  Here you have just gotten a brief taste of what is possible  --  there is 

certainly a lot more to come… 
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Fig. 3  Various 2-D and 3-D plots of the Maxwellian distribution from maxwell_2b.m. 
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Fig. 4  Contour plots showing lines of constant f(E,T). 

 


