
On Evaluating Infinite Series -- An Example

As mentioned in the Lesson #4 Lecture Notes, the Taylor series is an essential tool for applied

numerical methods and for the general field of mathematical modeling. In addition, numerically

evaluating and plotting infinite series expansions are common tasks that occur frequently in

engineering applications. Thus, the goals of this example are to illustrate how to develop a

Taylor series expansion for a given function, f(x), and then to develop an algorithm to efficiently

evaluate and plot the resultant series expansion.

In this application, we will use the hyperbolic sine function to illustrate the appropriate

procedures, where

x xe e
f (x) sinh x

2


  (1)

If we generate a Taylor series expansion for sinh x about the point xo = 0, we start with the

general Taylor series,

2 3
o o

o o o

f ''(x)h f '''(x)h
f (x h) f (x) f '(x)h

2! 3!
      (2a)

and let x = xo + h or h = (xo + h) - xo = x - xo. However, with xo = 0, then h = x and eqn. (2a)

becomes

2 3
o o

o o

f ''(x)x f '''(x)x
f (x) f (x) f '(x)x

2! 3!
     (2b)

Now, the function and all its derivatives in eqn. (2b) can be easily evaluated at xo = 0, as

 f(x) = sinh x and f(xo) = 0

 f (x) = cosh x and f (xo) = 1

 f (x) = sinh x and f (xo) = 0

 f (x) = cosh x and f (xo) = 1

 etc. etc.

Thus, we see that all the even-order terms vanish and the resultant Taylor series for sinh x can be

written as

3 5 2n 1

n 1

x x x
f (x) sinh x x

3! 5! (2n 1)!





     


 (3)

Now, the question of interest becomes “How do we evaluate eqn. (3)?”. This is a very practical

goal and, if done improperly, can lead to lots of problems.

Actually, there are two issues, as follows:

1. Obviously, we cannot use an infinite number of terms in the expansion. Thus, one concern is

associated with determining how many terms to include. This is usually accomplished by

Applied Engineering Problem Solving -- On Evaluating Infinite Series

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Oct. 2017)

2

setting some user-specified error tolerance, tol, and then one simply truncates the series when

the relative change associated with adding another term is less than tol.

2. The second issue concerns computation of the individual terms in the series. Clearly, if the

series is convergent, the individual terms must eventually get smaller and smaller and

approach zero as n  . However, as apparent in eqn. (3), the magnitude of the numerator

and denominator can become quite large -- to the point where round off error can become

significant.

For example, if x = 2 and n = 10, the tenth term in eqn. (3) would be

19
12

17

2 524288
4.30998 10

19! 1.21645 10

  


which is definitely the kind of computation that we would like to avoid (now that we have

some understanding of round off error).

One way to address these two issues, and to significantly improve the overall computational

efficiency, is to implement the infinite power series as a recurrence relation of the form,

n

n 1

f (x) T (x)




 (4)

with n 1 n nT r T  (5)

where rn is the ratio of the (n+1)th term, Tn+1, to the nth term, Tn. With this form, one can easily

and efficiently utilize the following algorithm:

Algorithm to Evaluate Infinite Power Series

• Set maximum number of terms, maxT, and the user-specified tolerance, tol, for stopping the

calculation.

• Initialize the counter variable n and set the first term in the series -- set n = 1 and T = T1.

• Initialize the partial sum after first term -- set f = T.

• while  > tol and n < maxT

compute r, where rn = Tn+1/Tn (specific to function of interest -- see below)

T = r*T (compute next term in series)

f = f + T (update partial sum)

 = max(abs(T/f)) (compute maximum relative change due to (n+1)th term)

n = n + 1 (increment counter)

end

This algorithm works great, with only minor changes for a variety of functions written in the

form of an infinite series involving powers of x. The only steps that are case-specific involve

initializing the first term, T1, and the computation of the ratio, rn = Tn+1/Tn, whose formula must

be determined prior to implementation. For the present case, where f(x) = sinh x, rn is given by

Applied Engineering Problem Solving -- On Evaluating Infinite Series

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Oct. 2017)

3

 

 

   

 

  

2(n 1) 1
n 1

n 2n 1
n

2 2n 1 2

2n 1

2n 1 !T x
r

T 2(n 1) 1 ! x

2n 1 !x x x

2n 1 2n 2n 1 ! 2n 1 2nx

 









  

 


  

  

 (6)

where we have used the fact that

         2(n 1) 1 ! 2n 2 1 ! 2n 1 ! 2n 1 2n 2n 1 !         

Thus, with the value of rn given by eqn. (6) and the fact that T1 = x, we are ready to implement

the above algorithm for the current example.

This was done in function file sinh_series.m, which is listed in Table 1. This function file is

simply called with one of the following syntaxes:

f = sinh_series(x)

f = sinh_series(x,maxT)

f = sinh_series(x,maxT,tol)

Table 1 Listing of the sinh_series.m function file.

%

% SINH_SERIES.M Evaluate sinh(x) using Taylor Series

%

% Inputs:

% x - vector of independent variable values

% maxT - maximum number of terms in series (optional, default value = 10)

% tol - error tolerance for truncating series (optional, default value = 0.0001)

%

% Outputs:

% f - value of sinh(x) evaluated at all x values

%

% File prepared by J. R. White, UMass-Lowell (last update: Oct. 2017)

%

 function f = sinh_series(x,maxT,tol)

%

% set defaults if no inputs for maxT or tol, and check on minimum value for tol

 if nargin == 1, maxT = 10; tol = 0.0001; end

 if nargin == 2, tol = 0.0001; end

 if isempty(maxT) || maxT < 1, maxT = 10; end

 if tol < 100*eps, tol = 100*eps; end

%

% initialize variables and perform computational loop

 T = x; f = T; rerr = 1.0; n = 1;

 while rerr > tol && n < maxT

 r = x.*x/((2*n+1)*2*n);

 T = r.*T; % next termin series

 f = f + T; % update running sum

 i = find(f); % finds indices of nonzero values of f

 rerr = max(abs(T(i)./f(i))); % calc max relative error

 n = n+1;

 end

%

% display warning if hit max # of terms

 if n == maxT

 disp(' ')

 disp(' *** WARNING *** Hit max # of terms in sinh_series.m')

 disp(' ')

 end

%

% end of function

Applied Engineering Problem Solving -- On Evaluating Infinite Series

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Oct. 2017)

4

If only one input is used (i.e. maxT and tol are not specified in the input stream), then default

values of maxT = 10 and tol = 0.0001 are specified internally within the function file. Note also

that the minimum allowed value of tol is 100*eps, where eps is the built-in value of machine

epsilon. Finally, we note that, since dot arithmetic is used consistently inside sinh_series.m, the

variable x can be a single value or a vector (or matrix) of values.

To illustrate the use of sinh_series.m, we can type the following commands at the Matlab

prompt:

>> format short e

>> x = linspace(100*eps,5,11); x = x';

>> f = sinh_series(x);

>> rerr = (f-sinh(x))./sinh(x);

>> disp(' x f = sinh(x) rel error'), [x f rerr]

which gives (with some slight editing)

 x f = sinh(x) rel error

 2.2204e-14 2.2204e-14 0

 5.0000e-01 5.2110e-01 0

 1.0000e+00 1.1752e+00 0

 1.5000e+00 2.1293e+00 -8.5511e-15

 2.0000e+00 3.6269e+00 -1.2000e-12

 2.5000e+00 6.0502e+00 -5.0175e-11

 3.0000e+00 1.0018e+01 -9.7455e-10

 3.5000e+00 1.6543e+01 -1.1127e-08

 4.0000e+00 2.7290e+01 -8.6059e-08

 4.5000e+00 4.5003e+01 -4.9429e-07

 5.0000e+00 7.4203e+01 -2.2453e-06

Clearly, this shows that our infinite series implementation agrees with Matlab’s built-in sinh

function to within the default tolerance of 0.0001.

However, if we simply type

>> sinh_series(10)

 *** WARNING *** Hit max # of terms in sinh_series.m

ans =

 1.0989e+04

we get a numerical value, but the default value of 10 terms was not sufficient to compute the

value of sinh(10) = 1.1013e+004 (from Matlab) to the specified accuracy.

We can increase the needed tolerance

>> sinh_series(10,[],0.05)

ans =

 1.0907e+04

or increase the maximum number of terms in the series expansion

>> sinh_series(10,25)

ans =

 1.1013e+04

and both these options get rid of the warning that the maximum number of terms was reached --

but the second option clearly gives the better result!

Finally, we could plot f(x) = sinh(x) using our infinite series expansion with the following

commands:

Applied Engineering Problem Solving -- On Evaluating Infinite Series

Lecture Notes for CHEN.3170 Applied Engineering Problem Solving

by Dr. John R. White, UMass-Lowell (Oct. 2017)

5

>> clear x f

>> x = 0:0.1:2; f = sinh_series(x);

>> plot(x,f,'r-','LineWidth',2),grid

>> title('Plot of f(x) = sinh(x) using Taylor Series')

>> xlabel('x value'), ylabel('f(x) = sinh(x)')

The plot given in Fig. 1 reproduces the result of the above sequence -- and it clearly behaves as

expected.

Fig. 1 Plot of series expansion for sinh(x) (from sinh_series.m).

In concluding this simple example, I should note that the recursive approach developed here to

evaluate an infinite power series is a fairly common for many numerical methods. In addition,

the while … end structure, with a test on the maximum number of times through the loop and a

check on some error criterion, is seen routinely in most iterative schemes. Thus, this example

not only represents a good illustration of working with Taylor series and numerically evaluating

the resultant expansion, it also gives you a preview of some structures that are common to many

algorithms. Thus, it is worth your time to really understand the current illustration…

