
On the Convergence of Iterative Methods 

 

Because the solution of linear systems is so easy with Matlab’s backslash operator, we tend to 

use this direct elimination method for most small and medium-sized applications requiring this 

capability.  However, it needs to be emphasized that, in contrast, most large simulation tools 

(requiring the solution of thousands of coupled equations that simulate PDE-based models) use 

iterative techniques to solve the resultant system of equations.  Then again, an introductory 

numerical methods course (like this one) is not the best place to address these type of simulation 

tools (these are more appropriate in upper-level applications-oriented courses).  Thus, we have 

somewhat of a dilemma on how to introduce students to iterative methods since, for most of the 

problems we will face in this course, Matlab’s x = A\b capability is the way to go and, at this 

point, we are not ready to tackle large PDE-based models. 

Thus, with no explicit practical application readily available, we will “make up” a series of 

problems that illustrate some key aspects concerning the convergence properties of the Gauss 

Seidel method with successive relaxation (SR method).  We have already discussed these 

methods in the main Lesson #6 Lecture Notes and the srdemo_lesson6.m example clearly shows 

the key relationships associated with convergence rate, the spectral radius of the iteration matrix, 

and the relaxation parameter, .  However, for large systems, the spectral radius is not practical 

to compute, so we often simply rely on a rule of thumb that involves diagonal dominance to 

estimate whether an iterative method will converge for the given system. 

To explore the relationship of diagonal dominance (or near diagonal dominance) and 

convergence more closely, let’s consider the following three cases: 

Case 1:     

1

2

3

4

5

6

x9 3 1 0 0 0 10

x3 9 3 1 0 0 0

x1 3 9 3 1 0 0

x0 1 3 9 3 1 0

x0 0 1 3 9 3 0

x0 0 0 1 3 9 20

    
    
    
    
    
    
    

    

 

Case 2:    Same as Case 1 except use 6 along the diagonal of the matrix. 

Case 3:    Same as Case 1 except use 3 along the diagonal of the matrix. 

Now, for a matrix to be diagonally dominant, we must have 

ii ij

j i

a a for all i


         (1) 

Applying this condition to the above three cases gives the following observations: 

1. Case 1 is diagonally dominant.  The condition in eqn. (1) is satisfied for all rows.  In 

particular, the inequality test gives 9 > 4, 9 > 7, 9 > 8, 9 > 8, 9 > 7, and 9 > 4, for rows 1 

through 6 respectively. 

2. Case 2 is not diagonally dominant.  The condition in eqn. (1) is not satisfied for rows 2 

through 5, where the inequality test gives 6 < 7, 6 < 8, 6 < 8, and 6 < 7, respectively.  

However, we should note that, although the formal test in eqn. (1) failed, the sum of the 
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magnitudes of the off-diagonal elements does not greatly exceed the magnitude of the 

diagonal value (here the worse case ratio of these terms is 8/6 = 1.333).  Sometimes this is 

referred to as “nearly diagonally dominant”, but this is surely a subjective description of the 

current situation since “near” and “far away” are only qualitative descriptions, not 

quantitative relationships. 

3. Case 3 is also not diagonally dominant.  The condition in eqn. (1) is not satisfied for any 

row, where the inequality test gives 3 < 4, 3 < 7, 3 < 8, 3 < 8, 3 < 7, and 3 < 4, respectively 

for rows 1 through 6.  Here, every row failed, and the maximum ratio of the sum of the 

magnitudes of the off-diagonal elements to the magnitude of the diagonal element is 8/3 = 

2.667.  In this case, one might say that this system is “farther away” from satisfying the 

diagonal dominance condition. 

So, what do these observations mean?  Well, as a start, we can say for sure that Case 1 will 

converge using the Gauss Seidel method (see the discussion on pages 19-20 of the Lesson #6 

Lecture Notes).  However, for Cases 2 and 3, we do not know anything  --  based solely on the 

statement that diagonal dominance of the original A matrix is a sufficient (but not necessary) 

condition for convergence of the Gauss Seidel method.  Nevertheless, experience has shown 

that nearly diagonally systems are likely to converge and that a system that is far removed from 

satisfying the diagonal dominance condition is more likely not to converge.  Note that phrases 

like “nearly diagonally dominant”, “far removed”, “likely or not likely to converge” are 

purposely rather vague because these are simply rules of thumb that have been developed from 

practical experience, but that have no formal mathematical basis. 

Using these rather vague terms, clearly Case 2 is more “nearly diagonally dominant” than Case 

3, and Case 3 is clearly “farther removed” from satisfying the formal diagonal dominance 

condition.  Based on this observation, one could argue that Case 2 is “more likely” to converge 

than Case 3 (but there is no formal mathematical basis for this statement). 

Well, as a specific test of this practical experience, we attempt to solve all three of the above 

cases in file conv_demo_1.m (see Table 1), first using Matlab’s backslash operator and then 

using the sr.m routine discussed in the Lesson #6 notes (recall the sr.m does not perform any 

partial pivoting  --  but the equations for this demo have been written so that this is not needed 

here). 

The results of the x = A\b operation for the three cases are: 

1 2 3

     
     
     
       
     
     
     
     

 1.2510  2.3434  -7.7778

-0.4526 -1.5354  11.1111

 0.0988  0.5455   0.0000
x x x

 0.0236  0.5455 -10.0000

-0.8536 -2.6465   4.4444

 2.5041  4.5657   5.5556

 

Now, when the sr.m routine is used with  = 1.0 for the standard Gauss Seidel method, the first 

two cases converge to the above results in 12 and 20 iterations, respectively, and Case 3 did not 

converge at all!  However, based on the above discussion of diagonal dominance (or near 

diagonal dominance), this result is not unexpected.  Case 1 converged in the fewest iterations, 

Case 2, which in this case may be considered as a nearly diagonally dominant system, did 

converge, but it took several more iterations and, Case 3, which is far removed from being 
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diagonally dominant, did not converge  --  and all this is consistent with the behavior that was 

expected based on previous experience with the Gauss Seidel iteration method. 

As a final note here, we computed the spectral radius of the iteration matrix for the above three 

cases (with  = 1.0) where 

1 = 0.238          2 = 0.474          and          3 = 1.668 

Clearly, since 3 > 1, we would expect this case to diverge (as it did).  Also showing a consistent 

trend is that 1 < 2, which supports the observation that Case 1 converged more rapidly than 

Case 2  -- but, since both 1 and 2 are less than unity, both cases did indeed converge. 

Well, the point of real interest here is that full diagonally dominant systems always converge, 

and nearly diagonally dominant systems usually converge using the Gauss Seidel and 

Successive Relaxation methods.  This is important since many linear systems derived from 

physical steady state balance equations of the form 

production rate    loss rate = 0 

are often either fully or nearly diagonally dominant. 

In particular, when setting up such models, the loss rate often shows up along the diagonal of the 

matrix and the production terms occur in both the off-diagonal elements and on the right hand 

side of the equations.  Thus, the loss term is usually on the same order of magnitude as the sum 

of the off-diagonal terms in each equation (because of the original balance equations).  This 

condition is what gives many physical systems their fully or nearly diagonally dominant 

behavior  --  and this is why the Gauss Seidel method usually works for these systems! 

------------------- 

Note:  As an example of how the setup of a real system appears in matrix form, you should go 

back and run the rect1d_fin_2.m program from the Lesson #4 Illustrative Applications with      

N = 7 and print out the A matrix.  I did this, and the resultant matrix is presented below: 

A = 

   -2.0258    1.0000         0         0         0         0         0 

    1.0000   -2.0258    1.0000         0         0         0         0 

         0    1.0000   -2.0258    1.0000         0         0         0 

         0         0    1.0000   -2.0258    1.0000         0         0 

         0         0         0    1.0000   -2.0258    1.0000         0 

         0         0         0         0    1.0000   -2.0258    1.0000 

         0         0         0         0    1.0000         0   -1.0872 

 

Now, recall that each node in this 1-D discretized fin heat transfer problem has conduction heat 

transfer to/from the nearest neighbor to the right and left, and convection heat transfer to the 

ambient fluid.  Thus, all the interior nodes (the end nodes are special and incorporate case-

specific boundary conditions) have conduction losses to two nearest neighbors and convection 

losses to the ambient fluid.  However, from the production perspective, only two production 

paths (conduction from its neighbors) show up in the A matrix, since the production from 

convection includes the ambient temperature, T, and this term shows up in the right-hand side b 

vector.  Thus, in this case, the magnitude of the diagonal elements (the loss terms) is slightly 

greater than the sum of the magnitudes of the off diagonal terms (the production terms)  --  as 

seen in the above NN A matrix for N = 7.  Thus, in this case, the system is indeed diagonally 

dominant  --  although more often than not, the discrete system is only nearly diagonally 

dominant.  However, in either case, the resultant linear equations will often converge using the 
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Gauss Seidel/SR method.  This discussion illustrates why the Gauss Seidel/SR method (and 

variants thereof) is employed in most large-scale simulation tools… 

 

Table 1  Listing of the conv_demo_1.m program. 

 

% 

%   CONV_DEMO_1.M   Study the convergence of the Gauss Seidel method for three 

%              different systems (with varying degrees of diagonal dominance) 

% 

%   This program solves three systems of equations using the Gauss Seidel/SR method  

%   (with the relaxation parameter set at 1.0) as part of a demonstration in the  

%   Lesson 6 Lecture Notes of what we mean by near diagonal dominance. 

% 

%   This script file calls the SR.M routine to apply the SR method. 

% 

%   File written by J. R. White, UMass-Lowell (last update:  Nov. 2017) 

% 

  

      clear all,  close all   

      format compact 

% 

%   set parameters for Gauss Seidel method (same for all cases) 

      tol = 1e-5;   M = 250;  alf = 1;  xo = zeros(6,1); 

% 

%   Case 1: fully diagonally dominant 

      A = [ 9 3 1 0 0 0; 3 9 3 1 0 0; 1 3 9 3 1 0; 

            0 1 3 9 3 1; 0 0 1 3 9 3; 0 0 0 1 3 9]; 

      b = [10 0 0 0 0 20]';   

      disp('Case 1 solution via x = A\b: ');  x = A\b 

      disp('Case 1 solution via Gauss Seidel: ');  [x,k] = sr(A,b,xo,alf,tol,M) 

      if k == M, disp(' *** Warning -- Case not converged ***'); end 

      L = tril(A,-1);  D = diag(diag(A));  U = triu(A,1); 

      B = inv(alf*L + D)*((1-alf)*D - alf*U);   ev = eig(B); 

      disp('Case 1 spectral radius: ');   p = max(abs(ev)) 

% 

%   Case 2: "nearly" diagonally dominant 

      A = [ 6 3 1 0 0 0; 3 6 3 1 0 0; 1 3 6 3 1 0; 

            0 1 3 6 3 1; 0 0 1 3 6 3; 0 0 0 1 3 6]; 

      b = [10 0 0 0 0 20]';   

      disp('Case 2 solution via x = A\b: ');  x = A\b 

      disp('Case 2 solution via Gauss Seidel: ');  [x,k] = sr(A,b,xo,alf,tol,M) 

      if k == M, disp(' *** Warning -- Case not converged ***'); end 

      L = tril(A,-1);  D = diag(diag(A));  U = triu(A,1); 

      B = inv(alf*L + D)*((1-alf)*D - alf*U);   ev = eig(B); 

      disp('Case 2 spectral radius: ');   p = max(abs(ev)) 

% 

%   Case 3: "far removed" from being diagonally dominant 

      A =  [3 3 1 0 0 0; 3 3 3 1 0 0; 1 3 3 3 1 0; 

            0 1 3 3 3 1; 0 0 1 3 3 3; 0 0 0 1 3 3]; 

      b = [10 0 0 0 0 20]';   

      disp('Case 3 solution via x = A\b: ');  x = A\b 

      disp('Case 3 solution via Gauss Seidel: ');  [x,k] = sr(A,b,xo,alf,tol,M) 

      if k == M, disp(' *** Warning -- Case not converged ***'); end 

      L = tril(A,-1);  D = diag(diag(A));  U = triu(A,1); 

      B = inv(alf*L + D)*((1-alf)*D - alf*U);   ev = eig(B); 

      disp('Case 3 spectral radius: ');   p = max(abs(ev)) 

% 

%   end of program 

 

 


