

Final Deliverables for the ACTIV Code Project
(Project No. 05-07741)

Appendix II

User Guide and Sample Problems
for the ACTIV Code System

User Guide and Sample Problems
for the ACTIV Code System

Dr. John R. White

Chemical and Nuclear Engineering Department
University of Massachusetts Lowell

August 31, 1997

Introduction
This document overviews the essential information needed to set up and run various

components of the ACTIV code system. The system consists of four modules, as follows:

ACTXS - This code, in conjunction with several modules and data libraries from SCALE,
generates the multigroup activation library for use in ACTIV. The resultant
dataset should be fully consistent with the data used in the DORT transport
calculations.

ACHAIN - This routine automatically generates the chain data necessary for setting up the
activation calculations in ACTIV. It generates all possible parent-daughter-
process relationships consistent with the available base cross section library, the
materials to be irradiated, and the options set by the user. It writes a data file that
is input directly to ACTIV. This file can be easily modified as needed by the user
to specialize a particular calculation.

ACTMAT - This is a small utility routine that uses nominal information about the materials to
be irradiated (including impurity information) and creates a dataset of initial
conditions for the nuclide vector for direct application within ACTIV.

ACTIV - This is the main computational routine and it performs the space-energy
activation analysis calculations on a pointwise and/or zone-averaged basis. The
focus is on the activation and decay of excore structural materials.

This user guide is broken into two major sections. The first part gives a summary of the
user input required to execute each of the codes. Some brief Input Notes - that hopefully clarify
any uncertainty or jargon in the Input Description - are also included. These two subsections for
each of the four codes should provide enough information for efficient use of the various
modules for any specific application of interest. The second part of this guide summarizes a few
sample problem sequences that illustrate the interaction among the ACHAIN, ACTMAT, and
ACTIV modules and demonstrate several of the options available in the individual codes. The
sample problems currently use the BUGLE96-compatible ACTXS47.LIB activation library
generated using the ACTXS module and other components of the SCALE system. Since the
generation of this library is rather involved, it is discussed in more detail in a separate document
(see Appendices I and III). Thus, the sample problems treated here highlight the use of the
ACHAIN and ACTMAT utility modules (for the generation of the nuclide chain data and initial
isotope densities used in ACTIV) and the actual DORT-ACTIV sequence utilized to compute the
neutron flux distribution and activity profiles in a 1-D model of the Maine Yankee reactor. The
sample problems are only explained briefly in this document. Since the typical user is expected

ACTIV User Guide and Sample Problems 2

to be familiar with performing DORT shielding analyses, the reader can get as much detail as
desired by studying the input files for the various cases (a list of the key files used/generated as
part of the sample sequences is given in Appendix I - see the listing of the VERS2.RME file, for
example).

ACTXS Input Description
 The following execution and input instructions for ACTXS are taken directly from the
comment lines within the code. The comments within ACTXS reflect the most current
information available for the code. By including this information here, we guarantee that full
consistency is maintained between the User Guide and the actual software. The FIDAS input
processor is utilized (as common to DORT, SCALE4.3, etc.).
c
c **
c
c EXECUTION INSTRUCTIONS FOR ACTXS
c
c The code is executed in batch mode using a script file. The following
c files are used/created (with default file names):
c input - case dependent input data (ascii) (nin)
c print - case dependent output edit and debug print (ascii) (nprt)
c oldlib - input ANISN formatted cross sections containing only primary
c nuclear data (no scattering info) (this is the Phase I
c library) (binary) (nu1)
c newlib - output Phase II activation library created (ascii) (nu2)
c decaylib - ORIGEN decay data (end6dec) (ascii) (nu3)
c xseclib - ORIGEN cross section data (xsectpho) (ascii) (nu4)
c
c
c USER INPUT INSTRUCTIONS FOR ACTXS
c
c FIDAS Input:
c
c FIDAS INPUT BLOCK #1 (primary dimension setting parameters)
c
c 1$$ Array (10 entries)
c
c1 nnuc = number of isotopes of interest
c nnlt = number of isotopes in ORIGEN light element library (689)
c nnac = number of isotopes in ORIGEN actinide library (129)
c nnfp = number of isotopes in ORIGEN fission product library (879 - not
c used)
c ngrp = number of energy groups
c
c6 ntabl = table length of ANISN library (should be 10)
c nasn = number of nuclides on ANISN library
c
c fill remaining entries with zeros
c
c
c END BLOCK #1 (terminate with a 't')
c
c
c FIDAS INPUT BLOCK #2 (primary input data for problem)
c
c 2$$ Array (nnuc entries)

ACTIV User Guide and Sample Problems 3

c id(nnuc) - nuclide id for isotopes of interest
c where id = z*10000 + a*10 + is
c and z = atomic number, a = atomic weight.,
c and is = 0/1 ground/metastable state
c
c 3$$ Array (nnuc entries)
c idasn(nnuc) - nuclide id's on ANISN library
c note: This array has one-to-one correspondence with the id(nnuc) array.
c Enter zero here if no ANSIN data exist for this isotope, otherwise
c enter the ANISN identifier (from 1 to nasn). The entries in this
c array indicate the order of placement of nuclide i (which
c corresponds to the nuclide denoted as id(i)) in the ANISN library.
c If a particular isotope present in the desired nuclide list is not
c present on the ANISN file, simply enter zero.
c
c
c END BLOCK #2 (terminate with a 't')
c
c
c **
c

ACTXS Input Notes
The ACTXS code will not be needed by the typical user. Activation libraries are

designed to be general purpose datasets that are compatible with the specific transport/shielding
library used with DORT for the flux computations. A 47-group activation library compatible
with the BUGLE96 library is currently available. This activation library, known as
ACTXS47.LIB, was derived from VITAMIN-B6 data and it was designed to be used specifically
with the BUGLE96 library (and a compatible transport code - DORT, ANISN, etc.). A new
activation library is needed only if the transport computations are performed with some other
library (especially if it has a different neutron group structure).

The basic procedure for generation of an activation library for use in ACTIV is described
in some detail in Appendix III (with special focus of the generation of ACTXS47.LIB). The
overall process is broken into two steps or phases. The first step involves the collapse of the
infinitely dilute data in the base fine-group master library into the desired broad group structure
and subsequent format changes to put the Phase I Activation Library into proper form. This
involves the selection of ten specific reaction cross sections and the storage of these in standard
ANISN format (with a table length of 10 - i.e. no scattering data are present). The specific
reactions and their associated ENDF MT numbers are listed below:

ENDF MT No. 102 107 103 16 104 105 18 27 1452 1

Reaction n,γ n,α n,p n,2n n,d n,t n,f n,abs νσ f σT

The order of the cross sections in the Phase I library is essential, since ACTXS currently expects
only these ten cross sections in the order given. There is no general check for consistency here -
so be sure that the Phase I library has been generated properly! Only the first eight of these
reactions are actually used within ACTIV.

ACTIV User Guide and Sample Problems 4

 The second step in the generation of an activation library combines the data from Phase I
with a variety of information from the ENDF/B-VI version of the ORIGEN data libraries
distributed as part of the SCALE 4.3 package. In particular, two card image libraries
(END6DEC and XSECTPHO) are used here. These datasets contain important decay data and
nuclear data and photon yield libraries for the light elements, actinides, and fission products.
These libraries are read and the hollerith names, natural isotopic abundances, decay data, and
appropriate branching fractions are extracted for the isotopes of interest (no neutron cross
sections are taken from the ORIGEN libraries). The processing of the ORIGEN data files and
the merger of these data with the Phase I library are the functions of the ACTXS code. This
module was written at UMass-Lowell as a tool for integrating all the necessary nuclear data from
the Phase I activation library and the two ORIGEN libraries into a single file for use in ACTIV.

 The user interface to ACTXS simply includes a list of the IDs for the nuclides of interest
and the corresponding material number on the Phase I ANISN-formatted library. The base
isotope ID uses the ZA number of the particular isotope, where

 ID = Z*10000 + A*10 + IS

and Z = atomic number
 A = atomic weight
 IS = 0/1 to indicate the ground/metastable state.

The input libraries are searched for the nuclides of interest and, if found, the pertinent
data are added to the final Phase II activation library written in ANISN ascii format. Note that,
in the ORIGEN libraries, the data associated with the first occurrence of the nuclide ID are used
and, at present, only the light element and actinide portions of the libraries are searched (there is
no need for fission product isotopes in the final activation library, since the emphasis in ACTIV
is on the excore structural regions).

The IDs on the ANISN library are assumed to be sequenced as 1, 2, ... nasn (this is
important). The idasn(i) array contains the ANISN IDs in a 1-to-1 correspondence with array
id(i). Be aware that the correspondence between id(i) and idasn(i) is critical and that the user
must be sure that this is correct (or the wrong cross sections will be used). Again, there is no
general check for consistency here - so user beware!

 The final library has a relatively simple structure and it is written in ascii format. This
allows for simple editing of the file to modify existing data or to add additional information from
other sources as needed. Appropriate flags identifying the content of the library are incorporated
directly within the final library. In this way, ACTIV knows what information is available and it
simply eliminates any transmutation paths that are not compatible with the existing library
information.

ACHAIN Input Description
 The following execution and input instructions for ACHAIN are taken directly from the
comment lines within the main program. The internal comments within the code reflect the
latest information concerning the current version. By including this information here, we assure
that full consistency is maintained between the User Guide and the actual software. Note that
the FIDAS input processor is also utilized as the primary user interface in ACHAIN.
c

ACTIV User Guide and Sample Problems 5

c **
c
c EXECUTION INSTRUCTIONS FOR ACHAIN
c
c The code is executed in batch mode using a script file. The following
c files are used/created (with default file names):
c input - case dependent input data (ascii) (nin)
c print - case dependent output edit and debug print (ascii) (nprt)
c actlib - input activation library generated by ACTXS (ascii) (nu1)
c chnlib1 - output full parent-daughter-process data (ascii) (nu2)
c chnlib2 - output filtered parent-daughter-process relationships for
c selected activation products (ascii) (nu3)
c
c
c USER INPUT INSTRUCTIONS FOR ACHAIN
c
c FIDAS Input:
c
c FIDAS INPUT BLOCK #1 (primary dimension setting parameters)
c
c 1$$ Array (10 entries)
c
c nnuc = # of initial parent isotopes
c ngen = # of generations of daughters to follow
c nmax = maximum # of parents for any one generation (sets array dim)
c ngrp = number of neutron energy groups
c nap = 0 - given initial parent ids (stored in idop), determine all
c possible parent-daughter-process (p-d-p) relationships
c and output this information to chnlib1 (always)
c >0 - also filter above p-d-p chains and select only those
c processes that eventually lead to one of the nap desired
c activation products (the filtered p-d-p chains are saved
c in file chnlib2)
c
c fill remaining entries with zeros
c
c
c END BLOCK #1 (terminate with a 't')
c
c
c FIDAS INPUT BLOCK #2 (primary input data for problem)
c
c 2$$ Array (nnuc entries)
c idop(nnuc) - nuclide id for original parents
c where id = z*10000 + a*10 + is
c and z = atomic number, a = atomic weight,
c is = 0/1 ground/metastable state
c
c Note: If the id number ends in 0000 (i.e. both a = 0 and is = 0), the
c original nuclide represents a naturally occurring element with
c multiple stable isotopes. In this case the natural abundance
c information in the activation library will be used to expand
c the element into all its stable components.
c
c 3$$ Array (nap entries)
c idap(nap) - nuclide ids for desired activation products
c
c
c END BLOCK #2 (terminate with a 't')
c

ACTIV User Guide and Sample Problems 6

c
c **
c

ACHAIN Input Notes
This program reads an input vector containing nuclide IDs and uses information from the

activation library to generate all of the possible non-trivial nuclide chains for ngen generations.
The daughters from the first generation parents (the isotopes specified in the idop array) become
the second generation parents, and so on. Processes that are not allowed due to the lack of cross
section data are automatically deleted from the activation chains. The daughter from any
transition is identified by the addition of a suitable constant to the 6-digit nuclide ID (ZA
number) for the parent isotope. The 14 possible reactions that can be treated and the required
constant for each process are identified below:

Entry Reaction State* Equation Representation Constant
1 n, γ 0 Z

A
Z

AX n X+ → +1 +10

2 n, γ 1 Z
A

Z
AX n X+ → +1 * +11

3 n,α 0 Z
A

Z
AX n Y He+ → +−
−

2
3

2
4 -20030

4 n,p 0 Z
A

Z
AX n Y H+ → +−1 1

1 -10000

5 n,2n 0 Z
A

Z
AX n X n+ → +−1

0
12d i -10

6 n,2n 1 Z
A

Z
AX n X n+ → +−1

0
12* d i -9

7 n,d 0 Z
A

Z
AX n Y H+ → +−
−

1
1

1
2 -10010

8 n,t 0 Z
A

Z
AX n Y H+ → +−
−

1
2

1
3 -10020

9 β− decay 0 Z
A

Z
AX Y→ ++

−
1 e +10000

10 β− decay 1 Z
A

Z
AX Y→ ++

−
1

* e +10001

11 β+ decay 0 Z
A

Z
AX Y→ +−

+
1 e -10000

12 β+ decay 1 Z
A

Z
AX Y→ +−

+
1

* e -9999

13 α decay 0 Z
A

Z
AX Y→ +−
−

2
4

2
4He -20040

14 isomeric
transition 0 Z

A
Z
AX X* → -1

 *Note: A state of 0 implies the ground state and unity refers to the metastable state.

Using the above reaction-constant pairs, the daughter ID is determined from the
expression: Daughter ID = Parent ID + Constant. A check to assure that the daughter is in the
proper state (ground versus metastable) is also made.

ACTIV User Guide and Sample Problems 7

The primary goal of ACHAIN is to determine all possible parent-daughter-process
triplets that are consistent with the initial parent isotopes, the data available in the activation
library, and the 14 different processes that are allowed in ACTIV. An outline of the algorithm
used in ACHAIN to achieve this goal is as follows:

1. Input initial vector of parents and read data from the activation library.

2. If the parent ID refers to a naturally occurring element, expand that element to
include all the naturally occurring isotopes.

Loop over ngen generations

3. Find daughters for each parent based on the above reactions (if they are nonzero). If
a daughter is not contained in the base activation library, it will not be carried along
as a parent in the next generation.

4. Include production paths for hydrogen, deuterium, tritium, and helium as appropriate.

5. Set up valid parent-daughter-process relationships.

6. Eliminate multiple entries in the vector of daughters for the current generation.

7. Select only those daughters that have not been previous parents as the parents for the
next generation.

8. Edit and save the parent-daughter-process information for use in ACTIV.

The final output from the code is a comprehensive nuclide list and the full set of parent-
daughter-process triplets necessary for input to the ACTIV code - which does the actual
activation calculation using the matrix exponential method..

 ACHAIN also has the option to filter through the full parent-daughter-process chains and
retain only the processes that will eventually lead, either directly or indirectly, to a selected set of
activation products (as identified in the idap array). This option is very useful in practice,
because it allows the use of only the chains that affect the isotopes of interest in a particular
analysis.

 Finally, it should be emphasized that ACHAIN was developed as a tool to assist in the
development of appropriate transmutation data for use in ACTIV. The output libraries (full or
filtered) are written in a straightforward fashion in ascii format, and they can be edited as needed
for a particular application. The user can add, delete, or modify any of the entries as desired, or
he or she can generate a complete chain library from scratch (without ACHAIN). As always, it
is the user’s responsibility to make sure that all important processes are included in the final
library of chain data to be used in ACTIV. ACHAIN simply helps in this process.

ACTMAT Input Description
 The execution and input instructions for ACTMAT were taken directly from the
comment lines within the code. This practice guarantees that full consistency is maintained
between the User Guide and the actual software. The FIDAS input processor is also utilized
within ACTMAT as with the other codes of the ACTIV system.
c
c **

ACTIV User Guide and Sample Problems 8

c
c EXECUTION INSTRUCTIONS FOR ACTMAT
c
c The code is executed in batch mode using a script file. The following
c files are used/created (with default file names):
c input - case dependent input data (ascii) (nin)
c print - case dependent output edit and debug print (ascii) (nprt)
c chnlib - input chain data library (possibly generated by ACHAIN)
c (ascii) (nu1)
c actlib - input activation library generated by ACTXS (ascii) (nu2)
c matlib - output activation materials library (for ACTIV) (ascii) (nu3)
c
c
c USER INPUT INSTRUCTIONS FOR ACTMAT
c
c FIDAS INPUT BLOCK #1 (primary dimension setting parameters)
c
c 1$$ Array (1 entry)
c
c nmat = number of materials
c
c
c END BLOCK #1 (terminate with a 't')
c
c
c LOOP over following input arrays NMAT times
c Basic Structure: --> title
c | 13$$, 14** t
c --> 15$$, 16** and 17$$, 18** t
c
c
c Hollerith Title for Material j (a48 format)
c hmtitl(j) - material description
c
c
c FIDAS INPUT BLOCK #2
c
c 13$$ Array (5 entries)
c matid(j) - material id (used in 9$$ array in ACTIV input)
c nume1 - number of elements in material with weight percent units
c nume2 - number of elements in material with ppm units
c
c fill remaining entries with zeros
c
c 14** Array (5 entries)
c densty(i) - material mass density (g/cc)
c
c fill array with zeros
c
c
c END BLOCK #2 (terminate with a 't')
c
c
c FIDAS INPUT BLOCK #3
c
c 15$$ Array (nume1 entries)
c id1(nume1) - nuclide ids with weight percent units
c
c 16** Array (nume1 entries)
c den1(nume1) - actual weight percent of isotopes in material j

ACTIV User Guide and Sample Problems 9

c
c 17$$ Array (nume2 entries)
c id2(nume2) - nuclide ids with ppm units
c
c 18** Array (nume2 entries)
c den2(nume2) - actual ppm of isotopes in material j
c
c where id1 or id2 = z*10000 + a*10 + is
c and z = atomic number, a = atomic weight,
c is = 0/1 ground/metastable state
c
c Note: If the id number ends in 0000 (i.e. both a = 0 and is = 0), the
c original nuclide represents a naturally occurring element with
c multiple stable isotopes. In this case the natural abundance
c information in the activation library will be used to expand the
c element into all its stable components.
c
c
c END BLOCK #3 (terminate with a 't')
c
c
c **
c

ACTMAT Input Notes
The ACTMAT program reads input nuclide vector information and appropriate initial

density data for nmat materials and creates an activation material library (matlib) for use in
ACTIV. Nuclide information from an appropriate activation chain library (chnlib) is needed to
construct the final material data for inclusion in the material library. Input densities for the
materials are in g/cc and the individual components are entered as weight percent (wo) or in
parts per million (ppm) (as indicated by the 15$$ and 16** arrays or the 17$$ and 18** arrays,
respectively). The output nuclide vector for use in ACTIV has units of atoms/b-cm. The output
nuclide vector in the matlib dataset is in the same order as that given in the input chnlib database.

The input data and computations for ACTMAT are quite straightforward. For material j,
given the physical density, ρj, and the weight percent of an individual isotope i in the material,
wij, the desired atom density can be written as

 N
w

MWij j
ij

i

= × ×ρ
100

60225.

where
 Nij = atom density (atoms/b-cm) of isotope i in material j
 MWi = molecular weight of isotope i (g/gmole)

For naturally occurring elements (nuclide id ends in 0000), one inputs the weight percent
of element k in the material, wkj, and the desired atom densities for each of the isotopes within
the element can be written as

 N
w a

MWij j
kj i

k

= × × ×ρ
100 100

60225.

where ai = atom percent abundance of isotope i in natural element k

ACTIV User Guide and Sample Problems 10

 MWk = molecular weight of element k (g/gmole)

If parts per million (ppm) is given instead of weight percent (w/o), one simply replaces (wkj/100)
with (ppmkj/106) in the above equation.

 In ACTMAT, the molecular weights for individual isotopes, MWi, are determined simply
by extracting the mass number (approximate molecular weight) from the nuclide identification.
For naturally occurring elements, the molecular weight for element k is computed as

 MW a MWk
i

i k
i= ×

∈
∑ 100

where the atom percent abundance information is obtained from the base activation library.

The material data computed here are then stored in the matlib dataset for use in ACTIV.
The material ID specified in the 13$$ array is used in ACTIV to identify the activation material
to be used in each material zone of the model (see the 9$$ array in ACTIV). This material ID
can be any unique integer identification tag. The activation material library can contain any
number of activation materials. Only the specific subset given in the ACTIV 9$$ array is used in
a particular problem.

ACTIV Input Description
 The following execution and input instructions for ACTIV are taken directly from the
comment lines within the code. The comments within ACTIV reflect the very latest information
concerning the current version of the code. By echoing this information here, we guarantee that
full consistency is maintained between the User Guide and the actual software. The FIDAS
input processor is utilized (as common to DORT, SCALE4.3, etc.).
c
c **
c
c
c EXECUTION INSTRUCTIONS FOR ACTIV
c
c The code is executed in batch mode using a script file. The following
c files are used/created (with default file names):
c input - case dependent input data (ascii) (nin)
c print - case dependent output edit (ascii) (nprt)
c actlib - multigroup activation library (ascii file generated by the
c ACTXS code) (nu1)
c chnlib - parent-daughter-process information (ascii file generated by
c ACHAIN) (nu2)
c matlib - initial densities by material (ascii file generated by the
c ACTMAT code) (nu3)
c flxin - pointwise multigroup flux (binary if from DORT or DOTSYN and
c ascii if from ANISN or ascii scalar flux) (nu4)
c
c flxout - binary scalar flux file generated if iflx.ne.0 (nu8)
c
c rstrlib1 - input final-time densities to be used as a restart file
c (ascii file) (nu11)
c rstrlib2 - output final-time densities for subsequent restarts (ascii
c file) (nu12)
c debug - debug print (ascii) (ibug) [only used if internal debug
c switch is on]

ACTIV User Guide and Sample Problems 11

c
c also uses direct access file for storage of cross sections on unit nu10
c
c
c USER INPUT INSTRUCTIONS FOR ACTIV
c
c
c FIDAS INPUT BLOCK #1 (primary dimension setting parameters and edit options)
c
c 1$$ Array (20 entries)
c
c1 im = number of mesh in x-direction
c jm = number of mesh in y-direction
c igm = total number of energy groups
c izm = number of zones in model
c ingeom = geometry option (0/1/2/3/4 x/r/xz/rz/rtheta)
c
c6 iflx = format of input flux file (-2/-1/0/1/2 ascii scalar flux/ANISN
c RTFLUX/binary scalar flux/DORT VARFLM/DOTSYN)
c nacti = number of i pointwise activation analyses to perform
c nactj = number of j pointwise activation analyses to perform
c nactz = number of zone-average activation analyses to perform
c ineut = number of neutron energy groups (default ineut = igm)
c
c11 nispe = number of isotopes for special density edit
c nxspe = number of cross sections for special average cross section edit
c nbgrp = number of broad groups for calculation of average cross sections
c nts = number of time steps for activation calculation
c iequ = 0/1 - apply equilibrium option/do not apply equilibrium option
c
c16 iau = sets units for activity edits (0/1 - activities in Bq/g / Ci/g)
c irstr = 0/1 - use restart density file for initial densities (no/yes)
c (the matlib library from ACTMAT is always required
c isoref = nuclide id to be used as reference for scaling factor edits
c
c
c fill remainder of array with zeros
c
c
c 3$$ Array (10 entries)
c
c These edit switches should be 0/1 for no edit/edit as desired:
c
c1 iemap = edit zone and material maps
c iebinfo = edit lots of basic information about special edit nuclides
c (nuclide ids, decay data, parent-daughter-process information,
c and description of activation materials)
c ieact = full space-time activity edit
c ieden = full space-time density edit
c ieave = edit approximate zone average activity versus time (determined
c from 1-d profiles)
c
c
c fill remainder of array with zeros
c
c
c 5** Array (5 entries)
c
c1 xmult = normalization factor for all fluxes (default = 1.0)
c efac = factor for use in applying the equilibrium option

ACTIV User Guide and Sample Problems 12

c note: minimum value is 2.0 and default value is 10.0 (larger values will
c reduce the number of nuclides treated with the equilibrium option)
c
c
c fill remainder of array with zeros
c
c
c END BLOCK #1 (terminate with a 't')
c
c
c FIDAS INPUT BLOCK #2 (primary input data for problem)
c
c 2** Array (jm+1 entries)
c ymb(jm+1) - second dimension mesh boundaries (2 entries required for 1D
c geometry -> 0.0 1.0)
c
c 4** Array (im+1 entries)
c xmb(im+1) - first dimension mesh boundaries
c
c 8$$ Array (im*jm entries)
c izmesh(im,jm) - zone by mesh information
c note: this is usually the 8$$ array from the DORT/ANISN input -- however
c the user can redefine the zone by mesh array to give any desired
c zonewise analyses
c note: the 2**, 4**, and 8$$ arrays may also need to be redefined
c (relative to the DORT input) when using fluxes from the CHGISET
c or PASTEFL codes
c
c 9$$ Array (izm entries)
c imatz(izm) - activation material by zone
c note: in general this is NOT the same 9$$ array as in the DORT input --
c here the materials refer to activation materials, not the materials
c used to do the neutronics calculations.
c the material composition (including impurities) to be used in the
c activation analyses are defined in the material library generated
c by ACTMAT.
c also note that a material id = 0 in the 9$$ array indicates that
c the zone and associated mesh points are not to be activated (no
c structural materials to be activated are present).
c
c 10$$ Array (nacti entries)
c jloc(nacti) - j location of first dimension pointwise activations
c
c 11$$ Array (nactj entries)
c iloc(nactj) - i location of second dimension pointwise activations
c
c 12$$ Array (nactz entries)
c nzloc(nactz) - zone numbers for zone average activations
c
c 13$$ Array (nispe entries)
c idispe(nispe) - ids of isotopes for special density edit
c note: normal density edit in the code includes only those isotopes in the
c above array -- all isotopes in the full nuclide vector are
c included in the data files used for subsequent analysis
c
c 14$$ Array (nxspe entries)
c idxspe(nxspe) - ids of isotopes for special average cross section edit
c
c 15$$ Array (nxspe entries)
c itxspe(nxspe) - type of data for special average cross section edit

ACTIV User Guide and Sample Problems 13

c note: the types range from 1 to 8 (nxs) as follows:
c 1 - n,gam 2 - n,alpha 3 - n,p 4 - n,2n
c 5 - n,d 6 - n,t 7 - n,f 8 - n,abs
c note: the 14$$ and 15$$ arrays have a 1-to-1 correspondence -- a total
c of nxspe average cross sections will be computed and edited
c
c 16$$ Array (ineut entries)
c idbtf(ineut) - broad group by fine group indexing for average cross
c section edit (for nbgrp > 0)
c
c
c END BLOCK #2 (terminate with a 't')
c
c
c FIDAS INPUT BLOCK #3
c
c 21** Array (nts entries)
c pow(nts) - power normalization for each time step (this is the factor
c which multiplies the absolute flux for a given time step)
c note: if pow = 0, then a shutdown time step is assumed
c
c 22** Array (nts entries)
c delta(nts) - time increment (in days) for each time step
c note: a combination of the number of time steps and the time increment
c per step allows full flexibility over the depletion/activation
c calculation and the data available for subsequent edit purposes
c
c 23$$ Array (nts entries)
c itespe(nts) - time dependent edit switch
c where 0 - no edit at this time point
c >0 - edit space dependent activities at this time point
c 1 - fractional contribution by isotope plus total activity
c 2 - also include absolute activities by isotope plus total
c activity
c 3 - also include scaling factors by isotope relative
c to the nuclide associated with isoref (see 1$$ array)
c note: this switch gives detailed space dependent activity information for
c the isotopes listed in the 13$$ array for the time points with
c non-zero entries.
c note: if full detail is needed in time and space, then ieact (see 3$$
c array) should be turned on.
c
c
c END BLOCK #3 (terminate with a 't')
c
c
c **
c

ACTIV Input Notes
 The ACTIV code is the main computational module that performs the actual activation
calculations. In addition to the standard input file containing case-specific information, a
number of other datasets are also required as input to ACTIV for a particular computation:

ACTIV User Guide and Sample Problems 14

1. A scalar flux file from DORT or other suitable transport code must be input to ACTIV. This
file contains the space-energy neutron flux information for the particular geometry of
interest.

2. A library of multigroup cross sections with the same group structure as used in the neutron
flux computation is also required. This library must also contain all the pertinent decay and
branching ratio information for each isotope. This dataset, which is denoted as actlib within
ACTIV, is generated via the ACTXS code. In the current system, the ACTXS47.LIB library
is used (compatible with the 47 neutron group BUGLE96 shielding library).

3. A dataset containing nuclide transformation information for the problem of interest is also
needed. This library (called chnlib within ACTIV) contains the IDs of the isotopes to be
included in the nuclide vector and it has complete parent-daughter-process information for
the activation chains to be included as production paths within the transmutation matrix.

4. The initial density vector and other information for each activation material is supplied in the
matlib library.

5. Finally, if a restart case is specified, a rstrlib1 file containing the space dependent final-time
isotope densities from a previous ACTIV calculation must be specified. The material and
geometry description for a restart case must be fully compatible with the run that generated
the restart file.

The first part of ACTIV reads the user input file and all the input data libraries and
prepares the code for the specific computations that have been requested. In particular, the
current version assumes a 1-D or 2-D geometry and it can perform activation calculations for any
number of first dimension profiles (i-profiles), second dimension profiles (j-profiles), or zone
average activations (z-profiles).

The unique aspect of ACTIV is the full space-energy coupling that is built into the
computational algorithm. In activation analyses, one is interested in the interaction between the
nuclide density field and the neutron flux field within the system over relatively long periods of
time (usually alternating periods of power operation and shutdown followed by some period of
decay after the end of life of the plant). The nuclide field obeys the nuclide transmutation
equation, while the flux field in the excore region is determined by solving the neutron transport
equation. In general, the coupling between the nuclide and neutron fields is nonlinear, but in the
excore regions this nonlinear interaction is very weak and all practical methods for solving the
nonlinear transmutation equations assume that the flux is separable in time, which gives rise to a
transmutation equation of the form

d
dt

N r t M r N r t(,) () (,)= (1)

N is referred to as the nuclide vector and M is the transmutation matrix or transmutation
operator. In the linearized “quasi-static” approximation, the transmutation matrix, which consists
of microscopic reaction rates and decay constants, is time independent. With this assumption,
eqn. (1) simply represents a system of constant coefficient first-order differential equations for
each spatial location of interest. Note that since there is no space-space coupling, eqn. (1) can be
solved for only the spatial points of interest independent of information at other points in the
system.

ACTIV User Guide and Sample Problems 15

 Constant coefficient linear systems have solutions that are exponential in behavior.
Generalizing to the matrix problem of interest here, the solution to eqn. (1) becomes (dropping
the spatial dependence for convenience),

 N t e N tM t t() ()()= − 0
0 (2)

where N t()0 represents the initial isotope concentration information. Equation (2) can be
written in a more convenient form as

 N t t e N tM t() (+ =∆ ∆) (3)

or, using a discrete time index, we have

 N e Nk
M t

k+ =1
∆ (4)

This form is particularly useful since e is simply a constant matrix for some constant M t∆ ∆t .
Letting G eM t= ∆ , eqn. (4) becomes

 N GNk+ =1 k (5)

Thus, the evaluation of the nuclide field versus time requires only repeated matrix-vector
multiplication.

 The G matrix is referred to as the state transition matrix or simply the matrix
exponential. In ACTIV, this matrix is evaluated using a truncated Taylor series expansion,

 G e I M t M tM t= = + + +∆ ∆ ∆
1
2

2

!
c h (6)

where is computed internally so that eqn. (6) converges within a reasonable number of terms
in the expansion. Once

∆t
G has been determined, successive matrix multiplications are performed

using eqn. (5) to obtain the nuclide density vector at all desired times. Equations (5) and (6) are
referred to as the matrix exponential solution to the original transmutation equation given by
eqn. (1) (at each spatial point of interest).

 The unique space-energy coupling in ACTIV is built into the description of the
transmutation matrix, M . This matrix contains information about all the production and loss
mechanisms associated with a variety of possible nuclide transmutation processes (see the table
of possible reactions listed on page 6 of this document). Equation (1) written for the ith isotope is
given by

 d
dt

N Ni x ij
j

j a i i= + − +∑ σ φ λ σ φ λc h c h N (7)

where

 σ φa i = microscopic absorption rate in isotope i

 = total decay constant for isotope i λ i

 σ φx i = microscopic production rate via reaction x that transmutes isotope j into i

ACTIV User Guide and Sample Problems 16

 = decay constant (with the branching fraction) for transmutation of isotope j into
i

λ ij

and the sum over index j accounts for the fact that multiple production paths to isotope i are
possible. Thus, from this representation, we see that the diagonal elements of M containing the
loss terms are given by

 mii a i
= − +σ φ λc h (8)

and the off-diagonal elements containing the production terms are simply of the form

 mij x ij
= +σ φ λc h (9)

 Now, in general, the microscopic reaction rate, σ φx , represents an integral over energy.
With a multigroup formulation, the energy integral is represented as a discrete summation,

 σ φ σ φx
g

= ∑ xg g (10)

Thus, eqns. (8) and (9), with σ φx replaced by eqn. (10), represent the formulation for
determining the elements of the transmutation matrix within ACTIV.

 A key point here is that the multigroup activation cross sections, σxg , from the activation
library, and the multigroup flux, , from the transport calculation have the same group structure
so that eqn. (10) represents a formal integration over energy. Also, since the flux spectrum is
different at every spatial point in the system [i.e.

φg

φ φg g r→ ()], eqn. (10) represents a spatially
dependent reaction rate that has been properly integrated with the multigroup flux spectrum
appropriate for the specific point of interest. If the neutron spectrum varies significantly from
one mesh point to another (as it often does – see the JPDR results in Appendix IV, for example),
then the space-energy coupling used here becomes essential for an accurate computation of the
induced activities. The proper treatment of this full space-energy coupling was he primary
motivation for the design of the ACTIV code.

 With the above discussion to identify the equations and terminology used within ACTIV,
much of the ACTIV input becomes rather straightforward. Much of the input is geared towards
defining the geometry and material distributions (2**, 4**, 8$$, and 9$$ arrays), the locations
where the activation analyses are to be performed (10$$, 11$$, and 12$$ arrays), the various edit
options (3$$, 13$$, 14$$, 15$$, 16$$, and 23$$ arrays), and the time sequence for the various
intervals of power operation and shutdown (21** and 22** arrays). In fact, there are only three
items that require special mention, as follows:

Zone Average Activation

 The unique aspect of ACTIV is its full space-energy coupling. The i-profile and j-profile
activation sequences treat this coupling rigorously following the equations given above.
However, for full coverage of a large system, one could easily require thousands of spatial mesh,
making a totally rigorous analysis very time consuming. To address this concern, a zone-
average activation analysis capability has been implemented into ACTIV. This option does the

ACTIV User Guide and Sample Problems 17

same calculations as indicated above, except a zone-averaged multigroup flux is used instead of
the pointwise fluxes. In particular, φg r() in eqn. (10) is replaced by φgz where

 φ φgz g r dr dr= z () z (11)

and the integral is performed over the desired zone volume. If a discrete ij notation is used to
represent the spatial mesh, we have

 φ φgz
z

ijg
ij z

ijv
v=

∈
∑1 (12)

where vij is the mesh volume and vz is simply the sum of all the mesh volumes comprising zone
z.

 Although the use of the zone-averaged flux is not formally rigorous, it represents a good
approximation since the multigroup activation cross sections are weighted with the appropriately
averaged flux spectrum for that zone. However, as for any averaging process, the smaller the
zone volume the better the overall approximation. This is especially important if the spectrum
varies considerably over the zone volume. In this case, one can simply modify the 8$$ array to
define smaller regions for the zone average activations.

Equilibrium Option

 As discussed in the literature (see documentation for the VENTURE system, for
example), if an entry in the M t∆ matrix exceeds some value (a value of 12 is used in ACTIV),
the results of the series expansion in eqn. (6) for the matrix exponential may not have adequate
significance due to subtraction of numbers of nearly the same magnitude. The simplest way to
alleviate this problem is to reduce the value of ∆t , thereby reducing the elements of M t∆ . This
procedure is done automatically in ACTIV, where the ∆T value set in the 22** array is broken
into nstep smaller values, , (i.e. ∆t ∆ ∆t T enst p= /) and the number of times that eqn. (5) is
applied is increased accordingly. The maximum value of nstep is 1000 in ACTIV.

 This procedure for achieving convergence and adequate numerical significance of the
matrix exponential works nicely for many situations. However, for isotopes with large
coefficients along the diagonal of the matrix, the process of breaking ∆T into smaller
subintervals can lead to a large number of subintervals which, in turn, gives very lengthy
calculations (this is why nstep has an upper limit). Thus, for these isotopes, an equilibrium
approximation is made, as described below.

 In situations where large loss coefficients are encountered (i.e. mii > 12*efac), it is
reasonable to assume that the isotope in question will take on the end-of-timestep steady state
value very rapidly. Considering isotope i in the chain , we simply eliminate the

 coupling and replace it with an approximate coupling , with coupling coefficient
j i k→ →

j→i → k k

 m
m m

mkj
ij ki

ii

= (13)

ACTIV User Guide and Sample Problems 18

We then drop nuclide i from the calculation and assume that isotope k is produced directly from
nuclide j with production rate mkjNj. Additionally, the end-of-timestep density for equilibrium
isotope i is determined from the steady-state assumption, giving

 N t
m
m

N ti f
ij

ii
j f() ()= (14)

 This equilibrium treatment, although very simple, seems to be adequate in most
straightforward situations. However, there has not been a lot of rigorous testing to date for the
general case. This option is set as default in ACTIV, but it can be turned off completely if
desired (see the iequ option in the 1$$ array). Also, the value of efac can be increased to reduce
the number of isotopes that are identified as requiring the equilibrium option. The default value
for efac is 10, but again, there has not been any real effort to optimize this value. Simply
reducing the specified in the 22** array also minimizes the use and subsequent effects of the
equilibrium option.

∆T

Nuclide-Specific Edits

 Finally, a special note concerning the output edit may be in order. ACTIV does all its
computations with the full nuclide vector defined in the chain library, and it always uses the full
multigroup fluxes and activation cross sections. However, to keep the output edit reasonably
manageable, only the broad group fluxes and selected broad group cross section edits are
available (defined via the 14$$, 15$$, and 16$$ arrays). Additionally, the only nuclide-specific
edits (densities, activities, scaling factors, etc.) that are allowed are defined by the isotope IDs
given in the 13$$ array. The only exception here is for the total activity edit – this includes the
total activity for all the isotopes in the full nuclide vector. The fractional contribution (FC) edit,
however, is only associated with the special-edit isotopes identified in the 13$$ array and the
sum of all the fractional contributions (sum FC) only adds the contribution from the special-edit
nuclides. A value of sum FC much less than unity implies that not all the important activities at
that time point are being edited.

 All the remaining edits from ACTIV are self explanatory.

Some Sample Problem Sequences
 Three sample problems are discussed briefly here and the inputs and outputs for these
cases are distributed as part of the ACTIV code system (see listing of the VERS2.RME file
containing a description of the contents of the release of Version 2 of the ACTIV code system).
These problems demonstrate the use of the ACHAIN, ACTMAT, and ACTIV modules,
highlighting the use of several different options within the codes. All the problems use a
relatively simple 1-D computational model of the Maine Yankee reactor, with particular focus on
the excore structures. The goal of the sample problems is to illustrate the basic operation of the
codes, and the particular cases used do not represent a formal activation analysis for this reactor
system. Other than the use of the 1-D Maine Yankee geometry for realism in the physical
modeling, all the other code inputs were chosen with a focus on demonstration of the code
option, and not on actual analysis for the Maine Yankee facility. Thus, the numerical values are
not very meaningful and one should only focus on the mechanics of code operation.

ACTIV User Guide and Sample Problems 19

 The three sample problems roughly imitate the simulation of a typical small, medium,
and large problem within ACTIV. A summary description of each case follows (the reader
should also refer to the internal documentation in the VERS2.RME readme file distributed with
the codes):

SMPL0 Sequence

 This problem represents the simplest of the three cases. It does the activity calculation
for a single zone with only 8 mesh points (the thermal shield). The chain library, containing
only 11 isotopes in the nuclide vector and 9 off-diagonal production reactions, was generated by
hand (without the use of ACHAIN). A single activation material consisting of stainless steel
with a cobalt impurity level of 800 ppm is described in the ACTMAT input. These data were
input to ACTIV along with the scalar fluxes from the 1-D DORT calculation, and a 3000 day full
power burn followed by a 1500 day shutdown interval was simulated. Since the overall problem
is quite small, several of the edit options were also activated. With only two computation steps,
hand calculations (and selected auxiliary calculations with the Matlab code) were used to verify
the computations performed in ACTIV. Thus, this sample problem was used as primary
validation for many of the calculational procedures and edit options within ACTIV.

SMPL1 Sequence

 This sample sequence is somewhat more realistic of a typical computation with the
ACTIV code system. The activation analysis models 20 full power years of operation (7300
days) followed by a 1200 day zero-power decay period (total simulation time was 8500 days).
All the excore structural regions through the front part of the shield tank were activated (four
different varieties of steels with no impurities). The base chain library was generated for the
primary components of steel (no impurities) with ACHAIN. This library used the ‘filtered’
parent-daughter-process (p-d-p) relationships associated with the four specific activation
products of interest for this case (54Mn, 55Fe, 60Co, and 63Ni). ACHAIN automatically generates
a nuclide vector with 77 isotopes and 238 p-d-p triplets when the full set of isotopes associated
with the primary constituents of steel are used, but with the filtering option turned on for the four
desired activation products, only 95 production chains and 40 unique isotopes remain. All the
remaining calculations in this sequence used the filtered chain library.

 The actual ACTIV calculation for this sample problem was performed twice:

Case 1 - The ACT1 run is a simple 8500 day simulation as described above.

Case 2 - The combined ACT1A and ACT1B runs represent the same overall calculation, but
now the ACTIV computation is broken into two parts - a 7300 day full power burn
followed by a completely separate 1200 day shutdown calculation. The two separate
runs were coupled via a restart file generated in the ACT1A case and used by the
ACT1B run.

The results of the Case 1 and Case 2 sequences were identical, thus demonstrating the
mechanics and proper implementation of restart capability within ACTIV. This capability
should prove useful in practical application.

The primary focus of the SMPL1 sequence was the demonstration of the automatic chain
generation capability in ACHAIN (including the filtering option) and the restart option in

ACTIV User Guide and Sample Problems 20

ACTIV. Both features are essential in a production package for performing excore activation
studies.

SMPL2 Sequence

 The last sample problem illustrates how the addition of detailed impurity information for
the activation materials complicates the overall analysis. In this case, only two different steels
were modeled, but they included the full complement of impurities as specified in NUREG/CR-
3474 (the impurity level included the average values plus one standard deviation). With all these
base materials specified as input to ACHAIN, a full chain library with 338 nuclides and 909
possible production chains was identified. Again, with the use of the filter option (this time for
11 desired activation products), this full library was reduced considerably -- resulting in a
nuclide vector with 229 elements and a total of 636 parent-daughter-process relationships for
implementation with the matrix exponential solution scheme in ACTIV. The filtered p-d-p
library was used in the remainder of this sample sequence.

 The ACT2 ACTIV calculation is very similar to the ACT1 case except for the
significantly larger vector of unknowns (229 in ACT2 versus 40 in ACT1). The code effectively
solves 229 coupled first order differential equations at each activation point (mesh interval or
zone) specified in the ACTIV input. Thus, as expected, this case also takes substantially longer
to run than the other sample sequences. However, the SMPL2 sequence does indeed
demonstrate that realistic problems (that include lots of impurities) can be modeled and executed
with the current system.

 Finally, it should be emphasized that the above sample problems were designed to
illustrate and demonstrate the mechanics of various options and capabilities within the codes.
The reader is referred to the discussion of the JPDR benchmark computation in Appendix IV for
an illustration of the use of the ACTIV code system within the context of a real application.

	User Guide and Sample Problems
	for the ACTIV Code System
	
	Introduction
	ACTXS Input Description
	ACTXS Input Notes
	ACHAIN Input Description
	ACHAIN Input Notes
	ACTMAT Input Description
	ACTMAT Input Notes
	ACTIV Input Description
	ACTIV Input Notes
	Zone Average Activation
	Equilibrium Option
	Nuclide-Specific Edits

	Some Sample Problem Sequences

