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Introduction 
This document overviews the essential information needed to set up and run various 

components of the ACTIV code system.  The system consists of four modules, as follows: 

ACTXS    - This code, in conjunction with several modules and data libraries from SCALE, 
generates the multigroup activation library for use in ACTIV.  The resultant 
dataset should be fully consistent with the data used in the DORT transport 
calculations. 

ACHAIN  - This routine automatically generates the chain data necessary for setting up the 
activation calculations in ACTIV.  It generates all possible parent-daughter-
process relationships consistent with the available base cross section library, the 
materials to be irradiated, and the options set by the user.  It writes a data file that 
is input directly to ACTIV.  This file can be easily modified as needed by the user 
to specialize a particular calculation. 

ACTMAT - This is a small utility routine that uses nominal information about the materials to 
be irradiated (including impurity information) and creates a dataset of initial 
conditions for the nuclide vector for direct application within ACTIV. 

ACTIV   - This is the main computational routine and it performs the space-energy 
activation analysis calculations on a pointwise and/or zone-averaged basis.  The 
focus is on the activation and decay of excore structural materials. 

This user guide is broken into two major sections.  The first part gives a summary of the 
user input required to execute each of the codes.  Some brief Input Notes - that hopefully clarify 
any uncertainty or jargon in the Input Description - are also included.  These two subsections for 
each of the four codes should provide enough information for efficient use of the various 
modules for any specific application of interest.  The second part of this guide summarizes a few 
sample problem sequences that illustrate the interaction among the ACHAIN, ACTMAT, and 
ACTIV modules and demonstrate several of the options available in the individual codes.  The 
sample problems currently use the BUGLE96-compatible ACTXS47.LIB activation library 
generated using the ACTXS module and other components of the SCALE system.  Since the 
generation of this library is rather involved, it is discussed in more detail in a separate document 
(see Appendices I and III).  Thus, the sample problems treated here highlight the use of the 
ACHAIN and ACTMAT utility modules (for the generation of the nuclide chain data and initial 
isotope densities used in ACTIV) and the actual DORT-ACTIV sequence utilized to compute the 
neutron flux distribution and activity profiles in a 1-D model of the Maine Yankee reactor.  The 
sample problems are only explained briefly in this document.  Since the typical user is expected 
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to be familiar with performing DORT shielding analyses, the reader can get as much detail as 
desired by studying the input files for the various cases (a list of the key files used/generated as 
part of the sample sequences is given in Appendix I - see the listing of the VERS2.RME file, for 
example). 

ACTXS Input Description 
 The following execution and input instructions for ACTXS are taken directly from the 
comment lines within the code.  The comments within ACTXS reflect the most current 
information available for the code.  By including this information here, we guarantee that full 
consistency is maintained between the User Guide and the actual software.  The FIDAS input 
processor is utilized (as common to DORT, SCALE4.3, etc.). 
c                                                                             
c **********************************************************************      
c                                                                             
c   EXECUTION INSTRUCTIONS FOR ACTXS                                          
c 
c   The code is executed in batch mode using a script file.  The following 
c   files are used/created (with default file names): 
c    input    - case dependent input data (ascii) (nin) 
c    print    - case dependent output edit and debug print (ascii) (nprt) 
c    oldlib   - input ANISN formatted cross sections containing only primary 
c               nuclear data (no scattering info) (this is the Phase I 
c               library) (binary) (nu1) 
c    newlib   - output Phase II activation library created (ascii) (nu2) 
c    decaylib - ORIGEN decay data (end6dec) (ascii) (nu3) 
c    xseclib  - ORIGEN cross section data (xsectpho) (ascii) (nu4) 
c                                                                             
c                                                                             
c   USER INPUT INSTRUCTIONS FOR ACTXS                                         
c 
c      FIDAS Input:                                                           
c 
c FIDAS INPUT BLOCK #1  (primary dimension setting parameters) 
c                                                                             
c  1$$ Array (10 entries)                                                     
c                                                                             
c1  nnuc  = number of isotopes of interest                                    
c   nnlt  = number of isotopes in ORIGEN light element library (689)          
c   nnac  = number of isotopes in ORIGEN actinide library (129) 
c   nnfp  = number of isotopes in ORIGEN fission product library (879 - not 
c           used) 
c   ngrp  = number of energy groups  
c 
c6  ntabl = table length of ANISN library (should be 10) 
c   nasn  = number of nuclides on ANISN library 
c 
c   fill remaining entries with zeros 
c 
c 
c  END BLOCK #1  (terminate with a 't')                 
c 
c 
c FIDAS INPUT BLOCK #2  (primary input data for problem) 
c 
c  2$$ Array (nnuc entries)                                                   
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c   id(nnuc)  -  nuclide id for isotopes of interest 
c    where  id = z*10000 + a*10 + is  
c    and     z = atomic number,   a = atomic weight., 
c    and    is = 0/1 ground/metastable state 
c 
c  3$$ Array (nnuc entries)                                                   
c   idasn(nnuc)  -  nuclide id's on ANISN library 
c    note: This array has one-to-one correspondence with the id(nnuc) array. 
c          Enter zero here if no ANSIN data exist for this isotope, otherwise 
c          enter the ANISN identifier (from 1 to nasn).  The entries in this  
c          array indicate the order of placement of nuclide i (which  
c          corresponds to the nuclide denoted as id(i)) in the ANISN library. 
c          If a particular isotope present in the desired nuclide list is not 
c          present on the ANISN file, simply enter zero.   
c 
c 
c  END BLOCK #2  (terminate with a 't')                 
c 
c 
c **********************************************************************      
c 
 

ACTXS Input Notes 
The ACTXS code will not be needed by the typical user.  Activation libraries are 

designed to be general purpose datasets that are compatible with the specific transport/shielding 
library used with DORT for the flux computations.  A 47-group activation library compatible 
with the BUGLE96 library is currently available.  This activation library, known as 
ACTXS47.LIB, was derived from VITAMIN-B6 data and it was designed to be used specifically 
with the BUGLE96 library (and a compatible transport code - DORT, ANISN, etc.).  A new 
activation library is needed only if the transport computations are performed with some other 
library (especially if it has a different neutron group structure).  

The basic procedure for generation of an activation library for use in ACTIV is described 
in some detail in Appendix III (with special focus of the generation of ACTXS47.LIB).  The 
overall process is broken into two steps or phases.  The first step involves the collapse of the 
infinitely dilute data in the base fine-group master library into the desired broad group structure 
and subsequent format changes to put the Phase I Activation Library into proper form.  This 
involves the selection of ten specific reaction cross sections and the storage of these in standard 
ANISN format (with a table length of 10 - i.e. no scattering data are present).  The specific 
reactions and their associated ENDF MT numbers are listed below: 

ENDF MT No. 102 107 103 16 104 105 18 27 1452 1 

Reaction n,γ n,α n,p n,2n n,d n,t n,f n,abs νσ f  σT  

 
The order of the cross sections in the Phase I library is essential, since ACTXS currently expects 
only these ten cross sections in the order given.  There is no general check for consistency here - 
so be sure that the Phase I library has been generated properly!  Only the first eight of these 
reactions are actually used within ACTIV. 
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 The second step in the generation of an activation library combines the data from Phase I 
with a variety of information from the ENDF/B-VI version of the ORIGEN data libraries 
distributed as part of the SCALE 4.3 package.  In particular, two card image libraries 
(END6DEC and XSECTPHO) are used here.  These datasets contain important decay data and 
nuclear data and photon yield libraries for the light elements, actinides, and fission products.  
These libraries are read and the hollerith names, natural isotopic abundances, decay data, and 
appropriate branching fractions are extracted for the isotopes of interest (no neutron cross 
sections are taken from the ORIGEN libraries).  The processing of the ORIGEN data files and 
the merger of these data with the Phase I library are the functions of the ACTXS code.  This 
module was written at UMass-Lowell as a tool for integrating all the necessary nuclear data from 
the Phase I activation library and the two ORIGEN libraries into a single file for use in ACTIV. 

 The user interface to ACTXS simply includes a list of the IDs for the nuclides of interest 
and the corresponding material number on the Phase I ANISN-formatted library.  The base 
isotope ID uses the ZA number of the particular isotope, where 

 ID = Z*10000 + A*10 + IS 

and Z = atomic number 
 A = atomic weight 
 IS = 0/1 to indicate the ground/metastable state. 

The input libraries are searched for the nuclides of interest and, if found, the pertinent 
data are added to the final Phase II activation library written in ANISN ascii format.  Note that, 
in the ORIGEN libraries, the data associated with the first occurrence of the nuclide ID are used 
and, at present, only the light element and actinide portions of the libraries are searched (there is 
no need for fission product isotopes in the final activation library, since the emphasis in ACTIV 
is on the excore structural regions). 

The IDs on the ANISN library are assumed to be sequenced as 1, 2, ... nasn (this is 
important).  The idasn(i) array contains the ANISN IDs in a 1-to-1 correspondence with array 
id(i).  Be aware that the correspondence between id(i) and idasn(i) is critical and that the user 
must be sure that this is correct (or the wrong cross sections will be used).  Again, there is no 
general check for consistency here - so user beware! 

 The final library has a relatively simple structure and it is written in ascii format.  This 
allows for simple editing of the file to modify existing data or to add additional information from 
other sources as needed.  Appropriate flags identifying the content of the library are incorporated 
directly within the final library.  In this way, ACTIV knows what information is available and it 
simply eliminates any transmutation paths that are not compatible with the existing library 
information. 

ACHAIN Input Description 
 The following execution and input instructions for ACHAIN are taken directly from the 
comment lines within the main program.  The internal comments within the code reflect the 
latest information concerning the current version.  By including this information here, we assure 
that full consistency is maintained between the User Guide and the actual software.  Note that 
the FIDAS input processor is also utilized as the primary user interface in ACHAIN. 
c 
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c **********************************************************************  
c 
c   EXECUTION INSTRUCTIONS FOR ACHAIN  
c 
c   The code is executed in batch mode using a script file.  The following 
c   files are used/created (with default file names): 
c    input    - case dependent input data (ascii) (nin) 
c    print    - case dependent output edit and debug print (ascii) (nprt) 
c    actlib   - input activation library generated by ACTXS (ascii) (nu1) 
c    chnlib1  - output full parent-daughter-process data (ascii) (nu2) 
c    chnlib2  - output filtered parent-daughter-process relationships for 
c               selected activation products (ascii) (nu3) 
c 
c 
c   USER INPUT INSTRUCTIONS FOR ACHAIN  
c 
c      FIDAS Input:  
c 
c FIDAS INPUT BLOCK #1  (primary dimension setting parameters) 
c 
c  1$$ Array (10 entries)  
c 
c   nnuc = # of initial parent isotopes  
c   ngen = # of generations of daughters to follow 
c   nmax = maximum # of parents for any one generation (sets array dim) 
c   ngrp = number of neutron energy groups 
c   nap  =  0 - given initial parent ids (stored in idop), determine all 
c               possible parent-daughter-process (p-d-p) relationships  
c               and output this information to chnlib1 (always) 
c          >0 - also filter above p-d-p chains and select only those 
c               processes that eventually lead to one of the nap desired  
c               activation products (the filtered p-d-p chains are saved 
c               in file chnlib2) 
c 
c   fill remaining entries with zeros 
c 
c 
c  END BLOCK #1  (terminate with a 't')  
c 
c 
c FIDAS INPUT BLOCK #2  (primary input data for problem) 
c 
c  2$$ Array (nnuc entries)  
c   idop(nnuc)  -  nuclide id for original parents 
c    where    id = z*10000 + a*10 + is  
c    and       z = atomic number,   a = atomic weight,  
c             is = 0/1 ground/metastable state 
c 
c  Note: If the id number ends in 0000 (i.e. both a = 0 and is = 0), the 
c        original nuclide represents a naturally occurring element with  
c        multiple stable isotopes.  In this case the natural abundance  
c        information in the activation library will be used to expand  
c        the element into all its stable components. 
c 
c  3$$ Array (nap entries) 
c   idap(nap)  -  nuclide ids for desired activation products 
c 
c 
c  END BLOCK #2  (terminate with a 't')                 
c 
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c 
c **********************************************************************  
c 

ACHAIN Input Notes 
This program reads an input vector containing nuclide IDs and uses information from the 

activation library to generate all of the possible non-trivial nuclide chains for ngen generations.  
The daughters from the first generation parents (the isotopes specified in the idop array) become 
the second generation parents, and so on.  Processes that are not allowed due to the lack of cross 
section data are automatically deleted from the activation chains.  The daughter from any 
transition is identified by the addition of a suitable constant to the 6-digit nuclide ID (ZA 
number) for the parent isotope.  The 14 possible reactions that can be treated and the required 
constant for each process are identified below: 

Entry Reaction State* Equation Representation Constant 
1 n, γ  0 Z

A
Z

AX n X+ → +1  +10 

2 n, γ  1 Z
A

Z
AX n X+ → +1 *  +11 

3 n,α  0 Z
A

Z
AX n Y He+ → +−
−

2
3

2
4  -20030 

4 n,p 0 Z
A

Z
AX n Y H+ → +−1 1

1  -10000 

5 n,2n 0 Z
A

Z
AX n X n+ → +−1

0
12d i  -10 

6 n,2n 1 Z
A

Z
AX n X n+ → +−1

0
12* d i  -9 

7 n,d 0 Z
A

Z
AX n Y H+ → +−
−

1
1

1
2  -10010 

8 n,t 0 Z
A

Z
AX n Y H+ → +−
−

1
2

1
3  -10020 

9 β−  decay 0 Z
A

Z
AX Y→ ++

−
1 e  +10000 

10 β−  decay 1 Z
A

Z
AX Y→ ++

−
1

* e  +10001 

11 β+  decay 0 Z
A

Z
AX Y→ +−

+
1 e  -10000 

12 β+  decay 1 Z
A

Z
AX Y→ +−

+
1

* e  -9999 

13 α  decay 0 Z
A

Z
AX Y→ +−
−

2
4

2
4He  -20040 

14 isomeric 
transition 0 Z

A
Z
AX X* →  -1 

    *Note:  A state of 0 implies the ground state and unity refers to the metastable state. 

Using the above reaction-constant pairs, the daughter ID is determined from the 
expression:  Daughter ID  =  Parent ID + Constant.  A check to assure that the daughter is in the 
proper state (ground versus metastable) is also made. 
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The primary goal of ACHAIN is to determine all possible parent-daughter-process 
triplets that are consistent with the initial parent isotopes, the data available in the activation 
library, and the 14 different processes that are allowed in ACTIV.  An outline of the algorithm 
used in ACHAIN to achieve this goal is as follows: 

1. Input initial vector of parents and read data from the activation library. 

2. If the parent ID refers to a naturally occurring element, expand that element to 
include all the naturally occurring isotopes. 

Loop over ngen generations 

3. Find daughters for each parent based on the above reactions (if they are nonzero).  If 
a daughter is not contained in the base activation library, it will not be carried along 
as a parent in the next generation. 

4. Include production paths for hydrogen, deuterium, tritium, and helium as appropriate. 

5. Set up valid parent-daughter-process relationships. 

6. Eliminate multiple entries in the vector of daughters for the current generation. 

7. Select only those daughters that have not been previous parents as the parents for the 
next generation. 

8. Edit and save the parent-daughter-process information for use in ACTIV. 

The final output from the code is a comprehensive nuclide list and the full set of  parent-
daughter-process triplets necessary for input to the ACTIV code - which does the actual 
activation calculation using the matrix exponential method.. 

 ACHAIN also has the option to filter through the full parent-daughter-process chains and 
retain only the processes that will eventually lead, either directly or indirectly, to a selected set of 
activation products (as identified in the idap array).  This option is very useful in practice, 
because it allows the use of only the chains that affect the isotopes of interest in a particular 
analysis. 

 Finally, it should be emphasized that ACHAIN was developed as a tool to assist in the 
development of appropriate transmutation data for use in ACTIV.  The output libraries (full or 
filtered) are written in a straightforward fashion in ascii format, and they can be edited as needed 
for a particular application.  The user can add, delete, or modify any of the entries as desired, or 
he or she can generate a complete chain library from scratch (without ACHAIN).  As always, it 
is the user’s responsibility to make sure that all important processes are included in the final 
library of chain data to be used in ACTIV.  ACHAIN simply helps in this process. 

ACTMAT Input Description 
 The execution and input instructions for ACTMAT were taken directly from the 
comment lines within the code.  This practice guarantees that full consistency is maintained 
between the User Guide and the actual software.  The FIDAS input processor is also utilized 
within ACTMAT as with the other codes of the ACTIV system. 
c 
c **********************************************************************  
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c 
c   EXECUTION INSTRUCTIONS FOR ACTMAT  
c 
c   The code is executed in batch mode using a script file.  The following 
c   files are used/created (with default file names): 
c    input    - case dependent input data (ascii) (nin) 
c    print    - case dependent output edit and debug print (ascii) (nprt) 
c    chnlib   - input chain data library (possibly generated by ACHAIN) 
c               (ascii) (nu1) 
c    actlib   - input activation library generated by ACTXS (ascii) (nu2) 
c    matlib   - output activation materials library (for ACTIV) (ascii) (nu3) 
c 
c 
c   USER INPUT INSTRUCTIONS FOR ACTMAT  
c 
c FIDAS INPUT BLOCK #1  (primary dimension setting parameters) 
c 
c  1$$ Array (1 entry)  
c 
c   nmat = number of materials  
c 
c 
c  END BLOCK #1  (terminate with a 't')  
c 
c 
c  LOOP over following input arrays NMAT times 
c   Basic Structure: --> title 
c                    |   13$$, 14**    t 
c                    --> 15$$, 16**  and 17$$, 18**    t 
c 
c 
c Hollerith Title for Material j (a48 format) 
c   hmtitl(j) -  material description  
c 
c 
c FIDAS INPUT BLOCK #2   
c 
c  13$$ Array (5 entries)  
c   matid(j)  -  material id (used in 9$$ array in ACTIV input) 
c   nume1     -  number of elements in material with weight percent units 
c   nume2     -  number of elements in material with ppm units 
c 
c   fill remaining entries with zeros 
c 
c  14** Array (5 entries) 
c   densty(i) -  material mass density (g/cc) 
c 
c   fill array with zeros 
c 
c 
c  END BLOCK #2  (terminate with a 't')  
c 
c 
c FIDAS INPUT BLOCK #3 
c 
c  15$$ Array (nume1 entries) 
c   id1(nume1)  - nuclide ids with weight percent units 
c 
c  16** Array (nume1 entries) 
c   den1(nume1) - actual weight percent of isotopes in material j 
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c 
c  17$$ Array (nume2 entries) 
c   id2(nume2)  - nuclide ids with ppm units 
c 
c  18** Array (nume2 entries) 
c   den2(nume2) - actual ppm of isotopes in material j 
c 
c    where  id1 or id2 = z*10000 + a*10 + is  
c    and    z = atomic number,   a = atomic weight, 
c          is = 0/1 ground/metastable state 
c 
c   Note: If the id number ends in 0000 (i.e. both a = 0 and is = 0), the 
c         original nuclide represents a naturally occurring element with  
c         multiple stable isotopes.  In this case the natural abundance  
c         information in the activation library will be used to expand the 
c         element into all its stable components. 
c 
c 
c  END BLOCK #3  (terminate with a 't')  
c 
c 
c **********************************************************************  
c 

ACTMAT Input Notes 
The ACTMAT program reads input nuclide vector information and appropriate initial 

density data for nmat materials and creates an activation material library (matlib) for use in 
ACTIV.  Nuclide information from an appropriate activation chain library (chnlib) is needed to 
construct the final material data for inclusion in the material library.  Input densities for the 
materials are in g/cc and the individual components are entered as weight percent (wo) or in 
parts per million (ppm) (as indicated by the 15$$ and 16** arrays or the 17$$ and 18** arrays, 
respectively).  The output nuclide vector for use in ACTIV has units of atoms/b-cm.  The output 
nuclide vector in the matlib dataset is in the same order as that given in the input chnlib database. 

The input data and computations for ACTMAT are quite straightforward.  For material j, 
given the physical density, ρj, and the weight percent of an individual isotope i in the material, 
wij, the desired atom density can be written as 

 N
w

MWij j
ij

i

= × ×ρ
100

60225.  

where 
 Nij =  atom density (atoms/b-cm) of isotope i in material j 
 MWi =  molecular weight of isotope i (g/gmole) 

For naturally occurring elements (nuclide id ends in 0000), one inputs the weight percent 
of element k in the material, wkj, and the desired atom densities for each of the isotopes within 
the element can be written as 

 N
w a

MWij j
kj i

k

= × × ×ρ
100 100

60225.  

where ai =  atom percent abundance of isotope i in natural element k 
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 MWk =  molecular weight of element k (g/gmole) 

If parts per million (ppm) is given instead of weight percent (w/o), one simply replaces (wkj/100) 
with (ppmkj/106) in the above equation. 

 In ACTMAT, the molecular weights for individual isotopes, MWi, are determined simply 
by extracting the mass number (approximate molecular weight) from the nuclide identification.  
For naturally occurring elements, the molecular weight for element k is computed as 

 MW a MWk
i

i k
i= ×

∈
∑ 100

 

where the atom percent abundance information is obtained from the base activation library. 

The material data computed here are then stored in the matlib dataset for use in ACTIV.  
The material ID specified in the 13$$ array is used in ACTIV to identify the activation material 
to be used in each material zone of the model (see the 9$$ array in ACTIV).  This material ID 
can be any unique integer identification tag.  The activation material library can contain any 
number of activation materials.  Only the specific subset given in the ACTIV 9$$ array is used in 
a particular problem. 

ACTIV Input Description 
 The following execution and input instructions for ACTIV are taken directly from the 
comment lines within the code.  The comments within ACTIV reflect the very latest information 
concerning the current version of the code.  By echoing this information here, we guarantee that 
full consistency is maintained between the User Guide and the actual software.  The FIDAS 
input processor is utilized (as common to DORT, SCALE4.3, etc.). 
c 
c **********************************************************************  
c 
c 
c   EXECUTION INSTRUCTIONS FOR ACTIV  
c 
c   The code is executed in batch mode using a script file.  The following 
c   files are used/created (with default file names): 
c    input    - case dependent input data (ascii) (nin) 
c    print    - case dependent output edit (ascii) (nprt) 
c    actlib   - multigroup activation library (ascii file generated by the 
c               ACTXS code) (nu1) 
c    chnlib   - parent-daughter-process information (ascii file generated by 
c               ACHAIN) (nu2) 
c    matlib   - initial densities by material (ascii file generated by the 
c               ACTMAT code) (nu3) 
c    flxin    - pointwise multigroup flux (binary if from DORT or DOTSYN and 
c               ascii if from ANISN or ascii scalar flux) (nu4) 
c 
c    flxout   - binary scalar flux file generated if iflx.ne.0 (nu8) 
c 
c    rstrlib1 - input final-time densities to be used as a restart file  
c               (ascii file) (nu11)  
c    rstrlib2 - output final-time densities for subsequent restarts (ascii  
c               file) (nu12)  
c    debug    - debug print (ascii) (ibug)  [only used if internal debug  
c               switch is on] 
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c 
c    also uses direct access file for storage of cross sections on unit nu10 
c 
c 
c   USER INPUT INSTRUCTIONS FOR ACTIV  
c 
c 
c FIDAS INPUT BLOCK #1 (primary dimension setting parameters and edit options) 
c 
c  1$$ Array (20 entries)  
c 
c1  im     = number of mesh in x-direction  
c   jm     = number of mesh in y-direction  
c   igm    = total number of energy groups  
c   izm    = number of zones in model  
c   ingeom = geometry option (0/1/2/3/4  x/r/xz/rz/rtheta)  
c 
c6  iflx   = format of input flux file (-2/-1/0/1/2 ascii scalar flux/ANISN  
c           RTFLUX/binary scalar flux/DORT VARFLM/DOTSYN)  
c   nacti  = number of i pointwise activation analyses to perform 
c   nactj  = number of j pointwise activation analyses to perform 
c   nactz  = number of zone-average activation analyses to perform  
c   ineut  = number of neutron energy groups (default ineut = igm)  
c 
c11 nispe  = number of isotopes for special density edit 
c   nxspe  = number of cross sections for special average cross section edit 
c   nbgrp  = number of broad groups for calculation of average cross sections 
c   nts    = number of time steps for activation calculation 
c   iequ   = 0/1 - apply equilibrium option/do not apply equilibrium option 
c 
c16 iau    = sets units for activity edits (0/1 - activities in Bq/g / Ci/g) 
c   irstr  = 0/1 - use restart density file for initial densities (no/yes) 
c            (the matlib library from ACTMAT is always required 
c   isoref = nuclide id to be used as reference for scaling factor edits 
c 
c 
c   fill remainder of array with zeros 
c 
c 
c  3$$ Array (10 entries) 
c 
c  These edit switches should be 0/1 for no edit/edit as desired: 
c 
c1  iemap  = edit zone and material maps 
c  iebinfo = edit lots of basic information about special edit nuclides  
c            (nuclide ids, decay data, parent-daughter-process information, 
c            and description of activation materials) 
c   ieact  = full space-time activity edit 
c   ieden  = full space-time density edit 
c   ieave  = edit approximate zone average activity versus time (determined 
c            from 1-d profiles) 
c 
c 
c   fill remainder of array with zeros 
c 
c 
c  5** Array (5 entries)   
c 
c1  xmult  = normalization factor for all fluxes (default = 1.0)   
c   efac   = factor for use in applying the equilibrium option  
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c    note: minimum value is 2.0 and default value is 10.0 (larger values will 
c          reduce the number of nuclides treated with the equilibrium option) 
c 
c 
c   fill remainder of array with zeros 
c 
c 
c  END BLOCK #1  (terminate with a 't')  
c 
c 
c FIDAS INPUT BLOCK #2  (primary input data for problem) 
c 
c  2** Array (jm+1 entries)  
c   ymb(jm+1) - second dimension mesh boundaries (2 entries required for 1D 
c               geometry -> 0.0 1.0) 
c 
c  4** Array (im+1 entries)  
c   xmb(im+1) - first dimension mesh boundaries  
c 
c  8$$ Array (im*jm entries)  
c   izmesh(im,jm) - zone by mesh information  
c    note: this is usually the 8$$ array from the DORT/ANISN input -- however 
c          the user can redefine the zone by mesh array to give any desired  
c          zonewise analyses                               
c    note: the 2**, 4**, and 8$$ arrays may also need to be redefined  
c          (relative to the DORT input) when using fluxes from the CHGISET 
c          or PASTEFL codes 
c 
c  9$$ Array (izm entries) 
c   imatz(izm) - activation material by zone 
c    note: in general this is NOT the same 9$$ array as in the DORT input --  
c          here the materials refer to activation materials, not the materials 
c          used to do the neutronics calculations. 
c          the material composition (including impurities) to be used in the 
c          activation analyses are defined in the material library generated 
c          by ACTMAT. 
c          also note that a material id = 0 in the 9$$ array indicates that 
c          the zone and associated mesh points are not to be activated (no  
c          structural materials to be activated are present). 
c 
c  10$$ Array (nacti entries)  
c   jloc(nacti) - j location of first dimension pointwise activations  
c 
c  11$$ Array (nactj entries)  
c   iloc(nactj) - i location of second dimension pointwise activations  
c 
c  12$$ Array (nactz entries)  
c   nzloc(nactz) - zone numbers for zone average activations 
c 
c  13$$ Array (nispe entries) 
c   idispe(nispe) - ids of isotopes for special density edit 
c    note: normal density edit in the code includes only those isotopes in the 
c          above array -- all isotopes in the full nuclide vector are  
c          included in the data files used for subsequent analysis 
c 
c  14$$ Array (nxspe entries) 
c   idxspe(nxspe) - ids of isotopes for special average cross section edit 
c 
c  15$$ Array (nxspe entries) 
c   itxspe(nxspe) - type of data for special average cross section edit 



ACTIV User Guide and Sample Problems 13

c    note: the types range from 1 to 8 (nxs) as follows: 
c          1 - n,gam    2 - n,alpha   3 - n,p   4 - n,2n 
c          5 - n,d      6 - n,t       7 - n,f   8 - n,abs 
c    note: the 14$$ and 15$$ arrays have a 1-to-1 correspondence -- a total 
c          of nxspe average cross sections will be computed and edited 
c 
c  16$$ Array (ineut entries) 
c   idbtf(ineut) - broad group by fine group indexing for average cross 
c          section edit (for nbgrp > 0) 
c 
c 
c  END BLOCK #2  (terminate with a 't')  
c 
c 
c FIDAS INPUT BLOCK #3   
c 
c  21** Array (nts entries) 
c   pow(nts) - power normalization for each time step (this is the factor 
c          which multiplies the absolute flux for a given time step) 
c    note: if pow = 0, then a shutdown time step is assumed 
c 
c  22** Array (nts entries) 
c   delta(nts) - time increment (in days) for each time step 
c    note: a combination of the number of time steps and the time increment 
c          per step allows full flexibility over the depletion/activation 
c          calculation and the data available for subsequent edit purposes 
c 
c  23$$ Array (nts entries) 
c   itespe(nts) - time dependent edit switch  
c     where  0 - no edit at this time point 
c           >0 - edit space dependent activities at this time point 
c              1 - fractional contribution by isotope plus total activity 
c              2 - also include absolute activities by isotope plus total 
c                  activity 
c              3 - also include scaling factors by isotope relative 
c                  to the nuclide associated with isoref (see 1$$ array) 
c    note: this switch gives detailed space dependent activity information for 
c          the isotopes listed in the 13$$ array for the time points with 
c          non-zero entries. 
c    note: if full detail is needed in time and space, then ieact (see 3$$  
c          array) should be turned on. 
c 
c 
c  END BLOCK #3  (terminate with a 't')  
c 
c 
c **********************************************************************      
c 
 

ACTIV Input Notes 
 The ACTIV code is the main computational module that performs the actual activation 
calculations.  In addition to the standard input file containing case-specific information, a 
number of other datasets are also required as input to ACTIV for a particular computation: 
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1. A scalar flux file from DORT or other suitable transport code must be input to ACTIV.  This 
file contains the space-energy neutron flux information for the particular geometry of 
interest. 

2. A library of multigroup cross sections with the same group structure as used in the neutron 
flux computation is also required.  This library must also contain all the pertinent decay and 
branching ratio information for each isotope.  This dataset, which is denoted as actlib within 
ACTIV, is generated via the ACTXS code.  In the current system, the ACTXS47.LIB library 
is used (compatible with the 47 neutron group BUGLE96 shielding library). 

3. A dataset containing nuclide transformation information for the problem of interest is also 
needed.  This library (called chnlib within ACTIV) contains the IDs of the isotopes to be 
included in the nuclide vector and it has complete parent-daughter-process information for 
the activation chains to be included as production paths within the transmutation matrix. 

4. The initial density vector and other information for each activation material is supplied in the 
matlib library. 

5. Finally, if a restart case is specified, a rstrlib1 file containing the space dependent final-time 
isotope densities from a previous ACTIV calculation must be specified.  The material and 
geometry description for a restart case must be fully compatible with the run that generated 
the restart file. 

The first part of ACTIV reads the user input file and all the input data libraries and 
prepares the code for the specific computations that have been requested.  In particular, the 
current version assumes a 1-D or 2-D geometry and it can perform activation calculations for any 
number of first dimension profiles (i-profiles), second dimension profiles (j-profiles), or zone 
average activations (z-profiles). 

The unique aspect of ACTIV is the full space-energy coupling that is built into the 
computational algorithm.  In activation analyses, one is interested in the interaction between the 
nuclide density field and the neutron flux field within the system over relatively long periods of 
time (usually alternating periods of power operation and shutdown followed by some period of 
decay after the end of life of the plant).  The nuclide field obeys the nuclide transmutation 
equation, while the flux field in the excore region is determined by solving the neutron transport 
equation.  In general, the coupling between the nuclide and neutron fields is nonlinear, but in the 
excore regions this nonlinear interaction is very weak and all practical methods for solving the 
nonlinear transmutation equations assume that the flux is separable in time, which gives rise to a 
transmutation equation of the form 

d
dt

N r t M r N r t( , ) ( ) ( , )=         (1) 

N  is referred to as the nuclide vector and M  is the transmutation matrix or transmutation 
operator. In the linearized “quasi-static” approximation, the transmutation matrix, which consists 
of microscopic reaction rates and decay constants, is time independent.  With this assumption, 
eqn. (1) simply represents a system of constant coefficient first-order differential equations for 
each spatial location of interest.  Note that since there is no space-space coupling, eqn. (1) can be 
solved for only the spatial points of interest independent of information at other points in the 
system. 
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 Constant coefficient linear systems have solutions that are exponential in behavior.  
Generalizing to the matrix problem of interest here, the solution to eqn. (1) becomes (dropping 
the spatial dependence for convenience), 

 N t e N tM t t( ) ( )( )= − 0
0          (2) 

where N t( )0  represents the initial isotope concentration information.  Equation (2) can be 
written in a more convenient form as 

 N t t e N tM t( ) (+ =∆ ∆ )          (3) 

or, using a discrete time index, we have 

 N e Nk
M t

k+ =1
∆          (4) 

This form is particularly useful since e  is simply a constant matrix for some constant M t∆ ∆t .  
Letting G eM t= ∆ , eqn. (4) becomes 

 N GNk+ =1 k           (5) 

Thus, the evaluation of the nuclide field versus time requires only repeated matrix-vector 
multiplication. 

 The G  matrix is referred to as the state transition matrix or simply the matrix 
exponential.  In ACTIV, this matrix is evaluated using a truncated Taylor series expansion, 

 G e I M t M tM t= = + + +∆ ∆ ∆
1
2

2

!
c h        (6) 

where  is computed internally so that eqn. (6) converges within a reasonable number of terms 
in the expansion.  Once 

∆t
G  has been determined, successive matrix multiplications are performed 

using eqn. (5) to obtain the nuclide density vector at all desired times.  Equations (5) and (6) are 
referred to as the matrix exponential solution to the original transmutation equation given by 
eqn. (1) (at each spatial point of interest). 

 The unique space-energy coupling in ACTIV is built into the description of the 
transmutation matrix, M .  This matrix contains information about all the production and loss 
mechanisms associated with a variety of possible nuclide transmutation processes (see the table 
of possible reactions listed on page 6 of this document).  Equation (1) written for the ith isotope is 
given by 

 d
dt

N Ni x ij
j

j a i i= + − +∑ σ φ λ σ φ λc h c h N       (7) 

where 

 σ φa i  =  microscopic absorption rate in isotope i 

  =  total decay constant for isotope i λ i

 σ φx i  =  microscopic production rate via reaction x that transmutes isotope j into i 
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  =  decay constant (with the branching fraction) for transmutation of isotope j into 
i  

λ ij

and the sum over index j accounts for the fact that multiple production paths to isotope i are 
possible.  Thus, from this representation, we see that the diagonal elements of M  containing the 
loss terms are given by 

 mii a i
= − +σ φ λc h          (8) 

and the off-diagonal elements containing the production terms are simply of the form 

 mij x ij
= +σ φ λc h          (9) 

 Now, in general, the microscopic reaction rate, σ φx , represents an integral over energy.  
With a multigroup formulation, the energy integral is represented as a discrete summation, 

 σ φ σ φx
g

= ∑ xg g          (10) 

Thus, eqns. (8) and (9), with σ φx  replaced by eqn. (10), represent the formulation for 
determining the elements of the transmutation matrix within ACTIV. 

 A key point here is that the multigroup activation cross sections, σxg , from the activation 
library, and the multigroup flux, , from the transport calculation have the same group structure 
so that eqn. (10) represents a formal integration over energy.  Also, since the flux spectrum is 
different at every spatial point in the system [i.e. 

φg

φ φg g r→ ( ) ], eqn. (10) represents a spatially 
dependent reaction rate that has been properly integrated with the multigroup flux spectrum 
appropriate for the specific point of interest.  If the neutron spectrum varies significantly from 
one mesh point to another (as it often does – see the JPDR results in Appendix IV, for example), 
then the space-energy coupling used here becomes essential for an accurate computation of the 
induced activities.  The proper treatment of this full space-energy coupling was he primary 
motivation for the design of the ACTIV code. 

 With the above discussion to identify the equations and terminology used within ACTIV, 
much of the ACTIV input becomes rather straightforward.  Much of the input  is geared towards 
defining the geometry and material distributions (2**, 4**, 8$$, and 9$$ arrays), the locations 
where the activation analyses are to be performed (10$$, 11$$, and 12$$ arrays), the various edit 
options (3$$, 13$$, 14$$, 15$$, 16$$, and 23$$ arrays), and the time sequence for the various 
intervals of power operation and shutdown (21** and 22** arrays).  In fact, there are only three 
items that require special mention, as follows: 

Zone Average Activation 

 The unique aspect of ACTIV is its full space-energy coupling.  The i-profile and j-profile 
activation sequences treat this coupling rigorously following the equations given above.  
However, for full coverage of a large system, one could easily require thousands of spatial mesh, 
making a totally rigorous analysis very time consuming.  To address this concern, a zone-
average activation analysis capability has been implemented into ACTIV.  This option does the 
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same calculations as indicated above, except a zone-averaged multigroup flux is used instead of 
the pointwise fluxes.  In particular, φg r( )  in eqn. (10) is replaced by φgz  where 

 φ φgz g r dr dr= z ( ) z          (11) 

and the integral is performed over the desired zone volume.  If a discrete ij notation is used to 
represent the spatial mesh, we have 

 φ φgz
z

ijg
ij z

ijv
v=

∈
∑1          (12) 

where vij is the mesh volume and vz is simply the sum of all the mesh volumes comprising zone 
z. 

 Although the use of the zone-averaged flux is not formally rigorous, it represents a good 
approximation since the multigroup activation cross sections are weighted with the appropriately 
averaged flux spectrum for that zone.  However, as for any averaging process, the smaller the 
zone volume the better the overall approximation.  This is especially important if the spectrum 
varies considerably over the zone volume.  In this case, one can simply modify the 8$$ array to 
define smaller regions for the zone average activations. 

Equilibrium Option 

 As discussed in the literature (see documentation for the VENTURE system, for 
example), if an entry in the M t∆  matrix exceeds some value (a value of 12 is used in ACTIV), 
the results of the series expansion in eqn. (6) for the matrix exponential may not have adequate 
significance due to subtraction of numbers of nearly the same magnitude.  The simplest way to 
alleviate this problem is to reduce the value of ∆t , thereby reducing the elements of M t∆ .  This 
procedure is done automatically in ACTIV, where the ∆T value set in the 22** array is broken 
into nstep smaller values, , (i.e. ∆t ∆ ∆t T enst p= / ) and the number of times that eqn. (5) is 
applied is increased accordingly.  The maximum value of nstep is 1000 in ACTIV. 

 This procedure for achieving convergence and adequate numerical significance of the 
matrix exponential works nicely for many situations.  However, for isotopes with large 
coefficients along the diagonal of the matrix, the process of breaking ∆T into smaller 
subintervals can lead to a large number of subintervals which, in turn, gives very lengthy 
calculations (this is why nstep has an upper limit).  Thus, for these isotopes, an equilibrium 
approximation is made, as described below. 

 In situations where large loss coefficients are encountered (i.e. mii > 12*efac), it is 
reasonable to assume that the isotope in question will take on the end-of-timestep steady state 
value very rapidly.  Considering isotope i in the chain , we simply eliminate the 

 coupling and replace it with an approximate coupling , with coupling coefficient 
j i k→ →

j→i → k k

 m
m m

mkj
ij ki

ii

=           (13) 
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We then drop nuclide i from the calculation and assume that isotope k is produced directly from 
nuclide j with production rate mkjNj.  Additionally, the end-of-timestep density for equilibrium 
isotope i is determined from the steady-state assumption, giving 

 N t
m
m

N ti f
ij

ii
j f( ) ( )=          (14) 

 This equilibrium treatment, although very simple, seems to be adequate in most 
straightforward situations.  However, there has not been a lot of rigorous testing to date for the 
general case.  This option is set as default in ACTIV, but it can be turned off completely if 
desired (see the iequ option in the 1$$ array).  Also, the value of efac can be increased to reduce 
the number of isotopes that are identified as requiring the equilibrium option.  The default value 
for efac is 10, but again, there has not been any real effort to optimize this value.  Simply 
reducing the  specified in the 22** array also minimizes the use and subsequent effects of the 
equilibrium option. 

∆T

Nuclide-Specific Edits 

 Finally, a special note concerning the output edit may be in order.  ACTIV does all its 
computations with the full nuclide vector defined in the chain library, and it always uses the full 
multigroup fluxes and activation cross sections.  However, to keep the output edit reasonably 
manageable, only the broad group fluxes and selected broad group cross section edits are 
available (defined via the 14$$, 15$$, and 16$$ arrays).  Additionally, the only nuclide-specific 
edits (densities, activities, scaling factors, etc.) that are allowed are defined by the isotope IDs 
given in the 13$$ array.  The only exception here is for the total activity edit – this includes the 
total activity for all the isotopes in the full nuclide vector.  The fractional contribution (FC) edit, 
however, is only associated with the special-edit isotopes identified in the 13$$ array and the 
sum of all the fractional contributions (sum FC) only adds the contribution from the special-edit 
nuclides.  A value of sum FC much less than unity implies that not all the important activities at 
that time point are being edited. 

 All the remaining edits from ACTIV are self explanatory. 

Some Sample Problem Sequences 
 Three sample problems are discussed briefly here and the inputs and outputs for these 
cases are distributed as part of the ACTIV code system (see listing of the VERS2.RME file 
containing a description of the contents of the release of Version 2 of the ACTIV code system).  
These problems demonstrate the use of the ACHAIN, ACTMAT, and ACTIV modules, 
highlighting the use of several different options within the codes.  All the problems use a 
relatively simple 1-D computational model of the Maine Yankee reactor, with particular focus on 
the excore structures.  The goal of the sample problems is to illustrate the basic operation of the 
codes, and the particular cases used do not represent a formal activation analysis for this reactor 
system.  Other than the use of the 1-D Maine Yankee geometry for realism in the physical 
modeling, all the other code inputs were chosen with a focus on demonstration of the code 
option, and not on actual analysis for the Maine Yankee facility.  Thus, the numerical values are 
not very meaningful and one should only focus on the mechanics of code operation. 
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 The three sample problems roughly imitate the simulation of a typical small, medium, 
and large problem within ACTIV.  A summary description of each case follows (the reader 
should also refer to the internal documentation in the VERS2.RME readme file distributed with 
the codes): 

SMPL0 Sequence 

 This problem represents the simplest of the three cases.  It does the activity calculation 
for a single zone with only 8 mesh points (the thermal shield).  The chain library, containing 
only 11 isotopes in the nuclide vector and 9 off-diagonal production reactions, was generated by 
hand (without the use of ACHAIN).  A single activation material consisting of stainless steel 
with a cobalt impurity level of 800 ppm is described in the ACTMAT input.  These data were 
input to ACTIV along with the scalar fluxes from the 1-D DORT calculation, and a 3000 day full 
power burn followed by a 1500 day shutdown interval was simulated.  Since the overall problem 
is quite small, several of the edit options were also activated.  With only two computation steps, 
hand calculations (and selected auxiliary calculations with the Matlab code) were used to verify 
the computations performed in ACTIV.  Thus, this sample problem was used as primary 
validation for many of the calculational procedures and edit options within ACTIV. 

SMPL1 Sequence 

 This sample sequence is somewhat more realistic of a typical computation with the 
ACTIV code system.  The activation analysis models 20 full power years of operation (7300 
days) followed by a 1200 day zero-power decay period (total simulation time was 8500 days).  
All the excore structural regions through the front part of the shield tank were activated (four 
different varieties of steels with no impurities).  The base chain library was generated for the 
primary components of steel (no impurities) with ACHAIN.  This library used the ‘filtered’ 
parent-daughter-process (p-d-p) relationships associated with the four specific activation 
products of interest for this case (54Mn, 55Fe, 60Co, and 63Ni).  ACHAIN automatically generates 
a nuclide vector with 77 isotopes and 238 p-d-p triplets when the full set of isotopes associated 
with the primary constituents of steel are used, but with the filtering option turned on for the four 
desired activation products, only 95 production chains and 40 unique isotopes remain.  All the 
remaining calculations in this sequence used the filtered chain library. 

 The actual ACTIV calculation for this sample problem was performed twice: 

Case 1  -  The ACT1 run is a simple 8500 day simulation as described above. 

Case 2  -  The combined ACT1A and ACT1B runs represent the same overall calculation, but 
now the ACTIV computation is broken into two parts - a 7300 day full power burn 
followed by a completely separate 1200 day shutdown calculation.  The two separate 
runs were coupled via a restart file generated in the ACT1A case and used by the 
ACT1B run.   

The results of the Case 1 and Case 2 sequences were identical, thus demonstrating the 
mechanics and proper implementation of restart capability within ACTIV.  This capability 
should prove useful in practical application. 

The primary focus of the SMPL1 sequence was the demonstration of the automatic chain 
generation capability in ACHAIN (including the filtering option) and the restart option in 
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ACTIV.  Both features are essential in a production package for performing excore activation 
studies. 

SMPL2 Sequence 

 The last sample problem illustrates how the addition of detailed impurity information for 
the activation materials complicates the overall analysis.  In this case, only two different steels 
were modeled, but they included the full complement of impurities as specified in NUREG/CR-
3474 (the impurity level included the average values plus one standard deviation).  With all these 
base materials specified as input to ACHAIN, a full chain library with 338 nuclides and 909 
possible production chains was identified.  Again, with the use of the filter option (this time for 
11 desired activation products), this full library was reduced considerably -- resulting in a 
nuclide vector with 229 elements and a total of 636 parent-daughter-process relationships for 
implementation with the matrix exponential solution scheme in ACTIV.  The filtered p-d-p 
library was used in the remainder of this sample sequence. 

 The ACT2 ACTIV calculation is very similar to the ACT1 case except for the 
significantly larger vector of unknowns (229 in ACT2 versus 40 in ACT1).  The code effectively 
solves 229 coupled first order differential equations at each activation point (mesh interval or 
zone) specified in the ACTIV input.  Thus, as expected, this case also takes substantially longer 
to run than the other sample sequences.  However, the SMPL2 sequence does indeed 
demonstrate that realistic problems (that include lots of impurities) can be modeled and executed 
with the current system. 

 Finally, it should be emphasized that the above sample problems were designed to 
illustrate and demonstrate the mechanics of various options and capabilities within the codes.  
The reader is referred to the discussion of the JPDR benchmark computation in Appendix IV for 
an illustration of the use of the ACTIV code system within the context of a real application. 
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