

Major and Minor Losses

This lesson makes practical use of the relationships and concepts developed in the previous lesson on Viscous Internal Flows.

In particular, the head loss term is broken into two components:

Major Losses:

$$
h_{L_{\text {major }}}=f \frac{L}{D_{h}} \frac{v^{2}}{2 g}
$$

Darcy Eqn. with f as the friction factor
$h_{\text {Lmajor }}$ accounts for friction loss along a pipe of length L.

Minor Losses:

$$
h_{L_{\text {minor }}}=\left(\sum_{i} K_{i}\right) \frac{v^{2}}{2 g}=K \frac{v^{2}}{2 g}
$$

K is the resistance or loss coefficient
$\mathrm{h}_{\text {Lminor }}$ accounts for friction loss in pipe bends, fittings, valves, exits and entrances, etc. (anything that causes acceleration changes).

The Friction Factor -- f

$$
h_{L}=f \frac{L}{D_{h}} \frac{v^{2}}{2 g}
$$

Laminar Flow: $f=64 /$ Re (discussed in previous lesson)
Turbulent Flow: $f=\phi(\varepsilon / D, R e) \quad$ where ε / D is the relative roughness
For turbulent flow, the function dependence, $\phi(\varepsilon / \mathrm{D}, \mathrm{Re})$, is given as:
Colebrook Eqn.
$\frac{1}{\sqrt{f}}=-2.0 \log _{10}\left(\frac{\varepsilon / D}{3.7}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right)$
This is used to create (implicit eq.)

$$
\frac{\frac{1}{\sqrt{\mathrm{f}}}=-1.8 \log _{10}\left(\left(\frac{\varepsilon / \mathrm{D}}{3.7}\right)^{1.11}+\frac{6.9}{\operatorname{Re}}\right)}{\text { Haaland Eqn. }}
$$

$$
\mathrm{f}=\frac{0.25}{\left[\log _{10}\left(\frac{\varepsilon / D}{3.7}+\frac{5.74}{\operatorname{Re}^{0.9}}\right)\right]^{2}}
$$

The Moody Chart

Ex. \#2 -- Type II (D given, Q is unknown)

The pressure at A is 40 psi and the $\mathbf{2 " ~}^{\prime \prime}$ pipe is galvanized iron. The minor losses include the 2 elbows, a flush entrance, and an open gate valve.

Estimate the water flow rate (gpm) under these conditions.

Ex. \#3 -- Type III (Q given, D is unknown)

Water is to be delivered at $0.04 \mathrm{~m}^{3} / \mathrm{s}$ to point B along the ground.
The pump supplies 40 kW of power to the fluid.
Assuming minimal elevation change, determine the smallest diameter flexible tubing that can be used for this application (use $\varepsilon=0.00002 \mathrm{~m}$).
water properties:

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \text { and } \mu=1.15 \times 10^{-3} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}
$$

PD vs Centrifugal Pumps

PD pumps have nearly constant capacity (flow rate) vs head
PD pumps work nicely with high viscosity fluids
The efficiency of PD pumps is nearly constant vs head, but
They only allow relatively low to moderate flow rates (< $\mathbf{1 0 0}$ gpm)
Centrifugal pumps are used for all high flow rate applications

Flow Rate

Viscosity cst
CHEN. 3030 Fluid Mechanıcs VIII. Pipe Flow Applications
(April 2017)

Efficiency - Head

Example \#4 -- The Operating Point

Water is pumped from the lake to the tank through a 5 cm diameter galvanized iron pipe.
The pipe length is 50 m . Also include the minor loss associated with 590° elbows.
With the pump performance curve given, determine the flow rate that will develop in this system. water properties:
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.0 \times 10^{-3} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$

