CHEN. 3030 Fluid Mechanics

VII. Internal Viscous Flows

Prof. John R. White
Chemical and Nuclear Engineering
UMass-Lowell, Lowell MA

> See Chapter 9
> (all sections except 9.2 \& 9.4) in your text by Hibbeler

Laminar vs. Turbulent Flow

(a)

Laminar flow
(b)

Transitional flow
(c)

Turbulent flow
(d)

$$
\operatorname{Re}=\frac{\rho v L}{\mu}=\frac{v L}{v}
$$

where L is a characteristic dimension associated with the flow geometry
$L \rightarrow D=$ pipe diameter for pipe flow
$L \rightarrow D_{h}=$ hydraulic diameter for general internal flows

$$
D_{h}=\frac{4 A_{f}}{P_{w}}
$$

where A_{f} is the flow area and P_{w} is the wetted perimeter
CHEN. 3030 Fluid Mechanics
VII. Internal Viscous Flows

Ex. \#1 -- hydraulic diameter...

Consider water flow within the annulus shown in the sketch for $T=30^{\circ} \mathrm{C}$ and $Q=0.01 \mathrm{~m}^{3} / \mathrm{s}$ with $\mathrm{r}_{\mathrm{i}}=0.04 \mathrm{~m}$ and $\mathrm{r}_{\mathrm{o}}=0.06 \mathrm{~m}$. Is the flow laminar or turbulent?

Water properties at $30^{\circ} \mathrm{C}$ from Appendix A :

$$
\rho=995.7 \mathrm{~kg} / \mathrm{m}^{3} \text { and } \mu=0.801 \times 10^{-3} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}
$$

Steady Laminar Flow - Smooth Pipe

Basic Configuration and Coordinate Definitions

Free-body diagram.
(b)

(c)

Free Body Diagram

Steady Laminar Flow - Smooth Pipe

$$
\begin{aligned}
& \tau(\mathbf{r})=\frac{\mathbf{r}}{\mathbf{2}} \frac{\mathbf{d}}{\mathbf{d x}}(\mathbf{P}+\gamma \mathbf{h}) \quad\left(\begin{array}{c}
\text { Shear Stress } \\
\text { Distribution } \\
\text { (Laminar }+ \text { Turbulent })
\end{array}\right) \\
& \mathbf{u}(\mathbf{r})=-\frac{\left(\mathbf{R}^{2}-\mathbf{r}^{2}\right)}{4 \mu} \frac{\mathbf{d}}{\mathbf{d x}}(\mathbf{P}+\gamma \mathbf{h})\left[\begin{array}{c}
\text { Velocity } \\
\text { Profile } \\
\text { (Laminar Flow Only) }
\end{array}\right. \\
& \frac{d}{d x}(P+\gamma h)=\frac{P_{2}-P_{1}}{L}+\gamma \frac{h_{2}-h_{1}}{L} \\
& \text { or } \\
& -\frac{d}{d x}(P+\gamma h)=\frac{P_{1}-P_{2}}{L}+\gamma \frac{h_{1}-h_{2}}{L}
\end{aligned}
$$

CHEN. 3030 Fluid Mechanics VII. Internal Viscous Flows

Steady Laminar Flow - Smooth Pipe

Shear Stress and Velocity Profile for a Negative Pressure Gradient

Also

$$
Q=\int_{A} \overrightarrow{\mathbf{v}} \cdot \hat{\mathbf{n}} \mathbf{d A}=\int_{A} u d A=-\frac{\pi D^{4}}{128 \mu} \frac{d}{d x}(P+\gamma h)
$$

and

$$
-\frac{d}{d x}(P+\gamma h)=\frac{\gamma h_{L}}{L} \quad \text { Thus, } \quad h_{L}=\frac{128 \mu L Q}{\rho g \pi D^{4}}=\frac{32 \mu \mathrm{Lv}}{\rho g D^{2}}
$$

from Energy Eqn ČHEN. 3030 Fluid Mechanics VII. Internal Viscous Flows

Steady Laminar Flow - Parallel Plates

UMASS

Basic Configuration

Coordinate Definitions

Steady Laminar Flow - Parallel Plates

$$
\begin{array}{r}
\tau(\mathbf{y})=\frac{\mathbf{U} \mu}{\mathbf{a}}+\left[\frac{\mathbf{d}}{\mathbf{d} \mathbf{x}}(\mathbf{P}+\gamma \mathbf{h})\right]\left(\mathbf{y}-\frac{\mathbf{a}}{2}\right) \\
\mathbf{u}(\mathbf{y})=\frac{\mathbf{U}}{\mathbf{a}} \mathbf{y}-\frac{\mathbf{1}}{2 \boldsymbol{\mu}}\left[\frac{\mathbf{d}}{\mathbf{d} \mathbf{x}}(\mathbf{P}+\gamma \mathbf{h})\right]\left(\mathbf{a y}-\mathbf{y}^{\mathbf{2}}\right) \\
\substack{\text { CHEN. } 3030 \text { Fluid Mechanics } \\
\text { VII. Internal Viscous Flows }}
\end{array}
$$

Shear Stress Distribution (Laminar +Turbulent)

Velocity Profile
(Laminar Flow Only)
(April 2017)

Steady Laminar Flow - Parallel Plates

Note that the above development used the fact that the sum of the pressure and elevation gradients are independent of y!!!

$$
\begin{gathered}
\frac{d}{d x}(P+\gamma h)=\frac{P_{2}-P_{1}}{L}+\gamma \frac{h_{2}-h_{1}}{L} \\
\text { or } \\
\frac{d}{d x}(P+\gamma h)=\frac{P_{4}-P_{3}}{L}+\gamma \frac{h_{4}-h_{3}}{L}
\end{gathered}
$$

(see discussion in Hibbeler pg. 471) and

$$
-\frac{d}{d x}(P+\gamma h)=\frac{P_{1}-P_{2}}{L}+\gamma \frac{h_{1}-h_{2}}{L}
$$

Steady Laminar Flow - Parallel Plates

UMASS

Shear-stress distribution and actual and average velocity profiles with negative pressure gradient and no motion of the plates.
and from Energy Eqn.

$$
-\frac{\mathbf{d}}{\mathbf{d x}}(\mathbf{P}+\gamma \mathbf{h})=\frac{\gamma \mathbf{h}_{L}}{\mathbf{L}}
$$

Thus, For $\mathrm{U}=0$ (no plate movement) and $b=$ plate depth into page, we have

$$
\begin{aligned}
Q & =\int_{A} \overrightarrow{\mathbf{v}} \cdot \hat{\mathbf{n}} d A=\int_{A} u d A \\
& =-\frac{\mathbf{b a}^{3}}{12 \mu} \frac{d}{d x}(P+\gamma h)
\end{aligned}
$$

$$
\mathrm{h}_{\mathrm{L}}=\frac{12 \mu \mathrm{LQ}}{\rho \mathrm{gba}^{3}}=\frac{12 \mu \mathrm{Lv}}{\rho \mathrm{ga}^{2}}
$$

Steady Laminar Flow - Darcy Eqn.

Learning with Purpose

$$
\begin{aligned}
& h_{L}=\frac{128 \mu \mathrm{LQ}}{\rho g \pi D^{4}}=\frac{32 \mu \mathrm{Lv}}{\rho g D^{2}} \\
& \text { Parallel Plates (} \mathrm{b} \gg \mathrm{a} \text {) } \\
& h_{L}=\frac{12 \mu \mathrm{LQ}}{\rho \mathrm{gba}^{3}}=\frac{12 \mu \mathrm{Lv}}{\rho \mathrm{ga}^{2}} \\
& D_{h}=\frac{4\left(\pi D^{2} / 4\right)}{\pi D}=D \\
& \mathbf{D}_{\mathrm{h}}=\frac{\mathbf{4 A _ { f }}}{\mathbf{P}_{\mathrm{w}}} \\
& D_{h}=\frac{4 a b}{2 a+2 b} \approx 2 a \\
& h_{L}=(32)(2) \frac{\mu}{\rho v D} \frac{L}{D} \frac{v^{2}}{2 g} \\
& h_{L}=\frac{64}{\operatorname{Re}} \frac{\mathbf{L}}{D} \frac{v^{2}}{2 g} \\
& h_{L}=f \frac{L}{D_{h}} \frac{\mathbf{v}^{2}}{2 g} \\
& \text { Darcy Eqn. } \\
& h_{L}=f \frac{L}{D_{h}} \frac{v^{2}}{2 g} \\
& h_{L}=(12)(8) \frac{\mu}{\rho v 2 a} \frac{L}{2 a} \frac{v^{2}}{2 g} \\
& h_{L}=\frac{96}{\operatorname{Re}_{h}} \frac{L}{D_{h}} \frac{v^{2}}{2 g}
\end{aligned}
$$

CHEN. 3030 Fluid Mechanics VII. Internal Viscous Flows

Ex. \#2 -- ΔP in MTR Fuel

Ex. \#2 (continued)

Consider the MTR fuel plate flow geometry as shown.
Water flows downward between the plates.
Neglecting end effects, estimate the $\Delta \mathrm{P}$ over the $\mathbf{2} \mathrm{ft}$ length of the fuel plates.
water properties:

$$
\rho=1.820 \text { slugs } / \mathrm{ft}^{3} \& \mu=5.46 \times 10^{-6} \mathrm{lbf}-\mathrm{s} / \mathrm{ft}^{2}
$$

Ex. \#3 -- ΔP and head Loss...

Oil has a flow rate $\mathrm{Q}=0.004 \mathbf{m}^{3} / \mathrm{s}$ through the 0.15 m diameter pipe.
Determine the pressure drop in the 8-m long section and calculate the head loss per meter of pipe.
oil properties:

$$
\rho=900 \mathrm{~kg} / \mathrm{m}^{3} \text { and } \mu=0.370 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}
$$

Fully Developed Turbulent Flow

Fully Developed Turbulent Flow

Learning with Purpose

Surface Roughness

Learning with Purpose

$$
\underbrace{\text { where } \varepsilon / \mathbf{D}=\text { relative roughness }}_{\mathbf{h}_{L}=\mathbf{f} \frac{\mathbf{L}}{\mathbf{D}_{\mathbf{h}}} \frac{\mathbf{v}^{2}}{2 g} \quad \mathbf{f}=\phi\left(\frac{\varepsilon}{\mathbf{D}}, \operatorname{Re}\right)}
$$

Material

Roughness $€$ (\mathbf{m})
Roughness $\boldsymbol{\epsilon}(\mathbf{f t})$

Glass	Smooth
Plastic	3.0×10^{-7}
Drawn tubing; copper, brass, steel	1.5×10^{-6}
Steel, commercial or welded	4.6×10^{-5}
Galvanized iron	1.5×10^{-4}
Ductile iron-coated	1.2×10^{-4}
Ductile iron-uncoated	2.4×10^{-4}
Concrete, well made	1.2×10^{-4}
Riveted steel	1.8×10^{-3}

Smooth
1.0×10^{-6}
5.0×10^{-6}
1.5×10^{-4}
5.0×10^{-4}
4.0×10^{-4}
8.0×10^{-4}
4.0×10^{-4}
6.0×10^{-3}

CHEN. 3030 Fluid Mechanics VII. Internal Viscous Flows
(April 2017)

The Moody Chart (preview from Chapter 10)

Learning with Purpose

CHEN. 3030 Fluid Mechanics
VII. Internal Viscous Flows

Ex. \#4 -- Turbulent Flow ...

Water flows in the 2-in diameter smooth pipe with $\Delta P=1.5 \mathrm{psi}$ along the 2-ft length.
Determine the shear stress along the wall and at the pipe centerline. Also compute $u_{\text {max }}$.
water properties:

$$
\rho=62.4 \mathrm{lbm} / \mathrm{ft}^{3} \text { and } v=16.6 \times 10^{-6} \mathrm{ft}^{2} / \mathrm{s}
$$

