

CHEN.3030 Fluid Mechanics

I. Fundamental Concepts and Fluid Properties

Prof. John R. White Chemical and Nuclear Engineering UMass-Lowell, Lowell MA

See Chapter 1 (sections 1–10) in your text by Hibbeler

CHEN.3030 Fluid Mechanics I. Fundamental Concepts and Fluid Properties

1

Solids, Liquids, and Gases

CHEN.3030 Fluid Mechanics I. Fundamental Concepts and Fluid Properties

(Jan. 2017)

Fluid Definition and Compressibility

Fluids Continuously Deform under a Shear Stress

I. Fundamental Concepts and Fluid Properties

(Jan. 2017)

Newtonian & Non-Newtonian Fluids

The higher the viscosity, the more difficult it is for a fluid to flow.

Newtonian & Non-Newtonian Fluids

Viscosity vs. Temperature

⁷

Ex. #1 – Block on Inclined Surface

A 10 kg block slides down a smooth inclined surface as shown. Determine the terminal velocity v of the block if the 0.1 mm gap between the block and the surface contains oil with $\mu = 0.38$ N-s/m². The area of the block in contact with the oil is 0.2 m^2 .

Assume that the velocity profile in the thin gap is linear.

Ex. #2 – A Simple Viscometer

Consider a horizontal shaft of length L and diameter d being pulled along the axial centerline of a bearing sleeve of diameter D. The clearance is filled with the fluid of interest. At equilibrium, the force F needed to pull the rod through the sleeve at constant velocity v is exactly balanced by the viscous friction along the sides of the shaft.

- a. For this situation, develop an expression for the fluid viscosity in terms of the system parameters, F, v, d, D, and L. Assume a linear velocity profile in the thin gap.
- b. Given that d = 6 cm, D = 6.02 cm, and L = 40 cm, what is the kinematic viscosity of the test fluid (sg = 0.88) if the measured steady state velocity was 0.4 m/s for a applied force of 800 N?

Surface Tension

Surface tension is the force per unit length needed to separate the molecules on the surface

Surface tension forces for several cases ($F_{\sigma} = \sigma \times \text{length}$)

(b) Spherical bubble

(a) Spherical droplet

(c) Cylinder supported by surface tension (liquid does not wet cylinder) Ring D_o $F_{\sigma, o}$ $F_{\sigma, i}$ $F_{\sigma, o}$

(*d*) Ring pulled out of liquid (liquid wets the ring)

I. Fundamental Concepts and Fluid Properties

(Jan. 2017)

11